

Paul Scherrer Institute

M. Hildebrandt

Neutron detectors at SINQ/PSI – further opportunity for MPGDs? Current R&D project and first thoughts about future projects

Second Special Workshop on Neutron Detection with MPGDs CERN, March 16th – 17th, 2015

121m

21m

Particle Physics and Neutron Science

220m

- detector needs to be robust, performance reliable
- low maintenance and repair work required

Malte Hildebrandt, Paul Scherrer Institute

Workshop on Neutron Detection with MPGDs, CERN, 16-17 March 2015

POLDI - Upgrade

POLDI beam line at SINQ (PSI)

- time-of-flight neutron diffractometer
- strain measurements: accurate determination of lattice spacings

current detector

• single ³He multi-wire chamber (1-dimensional)

upgrade program (started in 2013):

• two oppositely placed detector banks to allow in-situ deformation measurements of axial and transverse strain component

POLDI - Upgrade

POLDI beam line at SINQ (PSI)

- time-of-flight neutron diffractometer
- strain measurements: accurate determination of lattice spacings

current detector

• single ³He multi-wire chamber (1-dimensional)

upgrade program (started in 2013):

• two oppositely placed detector banks to allow in-situ deformation measurements of axial and transverse strain component

detector requirements:

detector modules	2 x 2 (radius 2000 mm)
channel width / height	2.5 mm / 200 mm
channels per module	400
neutron wavelength	1 - 6 Å
detection efficiency	≥ 65 % @ 1.2 Å
time resolution	≤ 1 μs
sustainable count rate	4 kHz (per channel)
gamma sensitivity	< 10 ⁻⁶
quiet background rate	< 0.003 Hz (per channel)

- status: proof of principle for ZnS:Ag/⁶LiF with WLS fibres and SiPM readout achieved
 - 16-channel module build, goal: 400-channel module (25×16-ch module) in 2015(?)

DMC - Upgrade

DMC beam line at SINQ (PSI)

- cold neutron powder diffractometer, option for single crystal
- crystallography, solid state physics, chemistry, material science

current detector

- single volume BF₃ multi-wire chamber (1-dimensional)
- since more than 30 years in operation

upgrade program:

- curved high-pressure ³He multi-wire chamber (2-dimensional)
 total intensity gain factor 2-10
 - \rightarrow total intensity gain factor 2-10

DMC - Upgrade

DMC beam line at SINQ (PSI)

- cold neutron powder diffractometer, option for single crystal
- crystallography, solid state physics, chemistry, material science

current detector

- single volume BF₃ multi-wire chamber (1-dimensional)
- since more than 30 years in operation

upgrade program:

curved high-pressure ³He multi-wire chamber (2-dimensional)
 → total intensity gain factor 2-10

detector requirements (FRM2/TUM-PSI-ILL):

-
≥ 120° / ≥ 200 mm
800 mm
1.6 mm (0.125°)
1.6 mm (0.125°)
≥ 75 % @ 1.8 Å
50 kHz/wire
≥200 kHz/segment
10%@200kHz/segment
< 250 litres

goal: "BNL-type" ³He wire chamber

G.Smith, VCI2007

status: • finalisation of common specifications & design in order to build prototype

backup slides

Neutron Detector R&D at PSI

neutron

1) alpha

test prototype

1/4 channel height

ND2:1 screen

Optical epoxy

new approach: • ZnS:Ag/⁶LiF with WLS fibres and SiPM readout

• efficient light collection and single photon counting

detection unit

- ZnS:Ag/⁶LiF ND2:1, d = 2.8 mm $\rightarrow e_{n-abs} > 80\%$ @ 1.2 Å
- WLS fibres Y11(400) \rightarrow efficient & uniform light collection
- 12 WLS fibres (1 ch) \rightarrow connected to individual (1×1) mm² SiPM

0.3 0.5

detection channel 2.4 mm

new approach: • ZnS:Ag/6LiF with WLS fibres and SiPM readout

• efficient light collection and single photon counting

detection unit

- ZnS:Ag/⁶LiF ND2:1, d = 2.8 mm $\rightarrow e_{n-abs} > 80\% @ 1.2 \text{ Å}$
- WLS fibres Y11(400) \rightarrow efficient & uniform light collection
- 12 WLS fibres (1 ch) \rightarrow connected to individual (1×1) mm² SiPM

signal processing system

- single photon counting \rightarrow analyse temporal distribution of SiPM pulses to supress SiPM dark counts
- multi-stage filter based on consecutive delayed self-coincidence on SD-pulse sequence
 - \rightarrow suppression of SiPM cell-to-cell cross-talk
 - \rightarrow elimination of single-pulse and late after-glow photons
- \rightarrow allows to distinguish SiPM dark count and neutron event

