

Recent results of GEM-based thermal neutron detectors

G. Croci^{1,2,3}, G. Albani³, C. Cazzaniga³, G. Claps⁴, G. Grosso¹, A. Muraro¹, F. Murtas⁴, E. Perelli Cippo¹, M. Rebai^{2,4}, M. Tardocchi¹, C. Höglund^{5,6}, L. Hultman⁶, J. Birch⁶, R. Hall-Wilton^{6,7}, Xiao-Xiao Cai^{5,8}, I. Llamas Jansa^{5,8} and G. Gorini3,4

 Istituto di Fisica del Plasma (IFP-CNR) – Via Cozzi 53, 20125 Milano, Italy INFN – Sez. Di Milano-Bicocca – Piazza della Scienza 3, 20126 Milano, Italy Dipartimento di Fisica, Università degli Studi di Milano-Bicocca – Piazza della Scienza 3, 20126 Milano, Italy INFN – Laboratori Nazionali di Frascati –Via Fermi 40, 0044 Frascati, Italy European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund, Sweden Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linköping University, SE-581 83 Linköping, Sweden Mid-Sweden University, SE-851 70 Sundsvall, Sweden IFE: Institute for Energy Technology, Box 40, 2027 Kjeller, Norway

OUTLINE

 Why and how to use GEM-based detectors to detect neutrons

- THERMAL NEUTRON DETECTORS
	- Rate capability tests
	- Comparison with 3He in Diffraction experiments
	- High efficiency detector

Conclusions and Future Perspectives

WHY AND HOW TO USE GEMS TO DETECT NEUTRONS

- GEM detectors born for tracking and triggering applications (detection of charged particles)
- In order to detect neutral particles you need a converter
	- Thermal Neutrons: ¹⁰Boron converter
		- Neutrons are detected using the productus (alpha,Li) from nuclear reaction ¹⁰B(n,alpha)7Li
	- Fast Neutrons: Polyethylene converter + Aluminium
		- Neutrons are converted in protons through elastic scattering on hydrogen
- GEMs offer the following advantages
	- Very high rate capability (MHz/mm²) suitable for high flux neutron beams like at ESS
	- Submillimetric space resolution (suited to experiment requirements)
	- Time resolution from 5 ns (gas mixture dependent)
	- Possibility to be realized in large areas and in different shapes
	- Radiation hardness
	- Low sensitivity to gamma rays (with appropriate gain)

THERMAL NEUTRON DETECTORS

- bGEM
	- Rate capability measurements
	- Test in a real diffraction experiment
- BAND-GEM
	- Efficiency measurements

bGEM thermal neutron detector

- Triple GEM detector equipped with an aluminum cathode coated with 1 μ m of B₄C: first bGEM prototype
- Exploit the ${}^{10}B(n,\alpha)^7$ Li reaction in order to detect thermal neutrons

Detector Schematics

 B_4C coated aluminium cathode mounted on its support

 B_4C coated aluminium cathode assembled inside the bGEM chamber layout

Low efficiency detector (few % maximum)

Rate Capability

Test rate capability under neutron irradiation

Neutron Rate capability measurements

- GEM-based detectors have proven very high-rate capabilities (up to 1MHz/mm²) \rightarrow This was shown with X-rays, not yet with neutrons
- Radiation hardness of the electronics to neutrons may be a reason of concern

Measurement at the G3-2 irradiation station at the ORPHEE reactor (LLB-Saclay)

Thermal ($E_{\rm peak}$ = 3.5 meV) neutron flux: 7.88 x 10⁸ $\,$ n/s cm 2 Full beam about 2cm x 3 cm0

Measurements of Rate capability, Linearity and Stability

Linearity and Rate capability through a comparison with a fission chamber

Beam attenuated with a series 1.8 mm calibrated plastic slabs credited with a beam reduction of a factor 2 each

$$
y = a x / (1 + b x)
$$
 $x = FC$ rate; $y = GEM$ rate
a = 3,5191e+06 [Hz/(pad a.u.)]
b = 0,028143 [a.u.⁻¹]

Electronics saturation above 10 MHz/cm² system; Saturation time = $b/a = 8.0$ ns

Comparable with X-ray GEM rate capability $(1MHz/mm^2 = 100 MHz/cm^2)$ Expected rate with $\Phi = 7.88 \times 10^8$ n/cm²s and $\varepsilon_{\text{GFM}} = 5\%$ is **39.4 MHz/cm²**

Stability: integrated counts into a 0.4 s interval for an allnight long run....

Mean: 3.6604 10⁷ cps Median: 3.6603 10⁷ cps Std Dev: 1.4 x 10⁵ cps

Neutron Diffraction experiments

First time a GEM was tested in a «real» experiment!

First test of bGEM detector for neutron diffraction measurements

bGEM – borated cathode

128 8x8 mm² pads

Interface with ISIS-DAE: Time of Flight measurement perfomed using standard ISIS TOF DAE → First Time a GEM is inside standard ISIS *DAQ System*

In collaboration with E. Schooneveld and A. Scherillo

First test of bGEM detector for neutron diffraction measurements

- TOF- diffractogram recorded from a **bronze sample** by the GEM detector (to our knowledge the first ever neutron diffractogram recorded by a GEM....)
- Time measurements: 18 hours

G. Croci et Al, 2014 *EPL* **107** 12001

Comparison with INES 3He tubes at 90°

Second Test of bGEM detector for neutron diffraction measurements

Efficiency comparison with corresponding ³He tubes

Improvement in S/B ratio (1): effect of the enriched Boron

S/B can be compared on selected peaks

A direct comparison of count rates between the 1st and 2nd test is without meaning (different position and different sample).

As an example, in peak No. 3 (see graph) the **improvement in S/B is about a factor 2.5**

Improvement in S/B ratio: collimator effect

The improvement in S/B due to the collimator is very low, about a factor 0.25 again on peak 3 (thus even a rough Cd collimators improves S/B). However thus could mean that a well done collimator could provide a significant improvement in the S/B ratio.

Debye-Scherrer cones

- A randomly oriented polycrystalline sample (e.g. a powder) contains a very large number of crystallites
- A beam impinging on the sample will find a representative number of crystallites in the right orientation for diffraction
- Diffraction occurs only at specific angles, those where Bragg's law is satisfied

Focussing to improve bGEM resolution

The **focussing** (thanks to **2D readout**) improves significantly the **resolution** that now is **comparable with the 3He tubes within 2%**.

BAND-GEM detector

A further step towards a high efficiency GEM based neutron detector

10B₄C Coating on the lamellas

25

Deposition done by Dr. Carina Hoglund

The resulting coated lamellas

A 1 μ m ¹⁰B₄C coating has been deposited on both sides of the lamella and on all the 15 strips

In total more than 50 lamellas have been coated 50 Lamellas are necessary to assembly the first detector prototype

Boron quantity has been determined through neutron absoprtion measurements (performed at ISIS-ROTAX beamline)

Detector Assembly

The full Lamella System An aluminium cathode (few microns thick) has been mounted on top

REALIZED IN COLLABORATION WITH ARTEL SRL

Detector test with X-Rays

Detector completed

Test with X-Rays (in IFP-lab)

Detector test at IFE (JEEP II Reactor, RD2D beamline)

Monochromatic neutron beam: possibility to select two wavelenghts: λ = 1.54 Å, E = 34.5 meV $\lambda = 2 \text{ Å}, E = 20.45 \text{ meV}$ Possibility to set different beam sizes

Beam Profile Reconstruction

First efficiency estimation as a function of wavelenght

Where *σ(λ) = λ/ λ⁰*

If $\lambda = \lambda_0 = 1.54$ A $\varepsilon = 0.15$ for 10 degrees and $\varepsilon = 0.20$ for 7 degrees (Angle with respect neutron direction)

Conclusions

- GEM-based thermal neutron detectors have been successfully realized and tested. They provide:
	- Real-time neutron beam profile with a portable system (HV System + CARIOCAS & MBFPGA LNF)
	- Measurements with the necessary space resolution (pad dimension)
	- Stability in time
	- High rate capability under neutron irradiation
	- Comparable results to 3He tubes in a real diffraction experiment
- First prototype of higher efficiency realized
	- About 15% efficiency reached at $En = 34.5 meV$
	- Need to understand the angular effect (data analysys still ongoing
	- Need to understand Gamma ray background rejection
	- Already Working on a revised detector version
	- New GEMINI electronics almost ready

Relationship with the industry

- HVGEM : MPElettronica Rome (Italy)
- CARIOCA Chips: Artel SRL Florence (Italy)
- MB-FPGA: Athenatek Rome (Italy)
- GEM FRAMES: Meroni & Longoni Milan (Italy)
- GEM Foils: CERN
- Detector construction: LNF-INFN (Frascati) and IFP-CNR (Milano)

Spare Slides

Thermal neutron measurements as a function of detector gain (wp and γ-rejec) at ISIS-Vesuvio

- **A wide plateau** is present for 820 V $\lt V_{\text{GEM}}$ \lt 910 V \to This confirms that the detector is revealing all the alpha particles emitted from the $10B(n,\alpha)^7$ Li reaction. The detector reached its maximum efficiency.
	- The detector is gamma-background free with V_{GEM} < 900 V
- At V_{GFM} =870V corresponding to a GEM effective gain of 100, the measured efficiency is about (0.95±0.08)% , very similar to the expected one 0.86%

Measurement of ISIS-vesuvio 2D thermal neutron beam profile

The measured FWHM is around 3 cm compatible with ISIS-Vesuvio data

G. Croci et Al, NIMA (2013), In Press

- **bGEM counting rate exactly follows the ISIS beam**
- **Measured% of counting rate variation with time = 3.5 %**
- **Stability is a very important feature for a beam monitor** G. Croci et Al, NIMA

(2013), In Press ³⁸

Thermal neutrons time of flight spectrum

MB.

The spectrum is compatible with TOF spectrum measured by standard Vesuvio beam monitors