RG running in the presence of spacetime curvature

arXiv:1407.3141 arXiv:1412.3991

Tommi Markkanen¹²

in collaboration with Matti Herranen³ Sami Nurmi¹ Arttu Rajantie²

> ¹Imperial College London, ²University of Helsinki, ³Niels Bohr International Academy Copenhagen

> > UK-QFT March 2015

A D > A B >
 A

くヨ♪

- Quantum fields in curved space
- 3 Higgs stability during inflation
- 4 Running of the Cosmological Constant

5 Conclusions

1-loop effective potential for the SM

- Quantum fields in curved space
- 3 Higgs stability during inflation
- Running of the Cosmological Constant
- 5 Conclusions

イロト イポト イヨト

1-loop Effective potential

• Massive self-interacting scalar field [1]

$$\begin{aligned} \mathcal{L} &= \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4 \\ \Rightarrow \\ V_{\text{eff}}(\phi) &= \underbrace{\frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4!} \phi^4}_{\text{classical}} + \underbrace{\frac{M(\phi)^4}{64\pi^2} \left[\log \underbrace{\left(\frac{M(\phi)^2}{\mu^2} \right)}_{\text{quantum}} - \frac{3}{2} \right]}_{\text{quantum}} \\ ; M(\phi)^2 &= m^2 + \frac{\lambda}{2} \phi^2 \end{aligned}$$

- μ is the renormalization scale
- Similarly one may derive the potential for the SM Higgs

[1] Coleman & Weinberg (1972)

< 🗗 >

Effective potential for the SM Higgs

$$V_{\text{eff}}(\phi) = -\frac{1}{2}m^2\phi^2 + \frac{1}{4}\lambda\phi^4 + \sum_{i=1}^5 \frac{n_i}{64\pi^2}M_i^4(\phi)\left[\log\frac{M_i^2(\phi)}{\mu^2} - c_i\right]$$

$$; M_i^2(\phi) = \kappa_i\phi^2 - \kappa'_i$$

Φ	i	n _i	κ_i	κ'_i	Ci
W^{\pm}	1	6	$g^{2}/4$	0	5/6
Z^0	2	3	$(g^2+g^{\prime 2})/4$	0	5/6
t	3 -	-12	$y_{t}^{2}/2$	0	3/2
ϕ	4	1	3λ	m^2	3/2
χi	5	3	λ	m^2	3/2

• Explicit μ dependence?

(日)、(四)、(王)、(王)、三

Callan-Symanzik equation for massless $\lambda \phi^4$ theory

- The effective potential is renormalized at a scale μ $\lambda_0 \rightarrow \lambda_R, \quad \phi \rightarrow Z^{1/2}\phi$
- However, the physical result must not depend on µ:

$$\begin{split} \frac{d}{d\mu} V_{\rm eff}(\phi) &= 0 \quad \Leftrightarrow \quad \left\{ \mu \frac{\partial}{\partial \mu} + \beta_{\lambda} \frac{\partial}{\partial \lambda} + \gamma_{\phi} \phi \frac{\partial}{\partial \phi} \right\} V_{\rm eff}(\phi) = 0 \\ &; \beta_{\lambda} \equiv \mu \frac{\partial \lambda}{\partial \mu}, \quad \gamma_{\phi} \equiv \mu \frac{\partial \ln Z^{1/2}}{\partial \mu} \end{split}$$

- This can be used to improve the perturbative result
- Leads to a potential with *running parameters* $\bar{V}_{eff}(\phi(t), \lambda(t))$; $t \equiv \log(\mu/M_t)$, $\phi(t) \equiv Z(t)^{1/2}\phi$

▲御入 ★注入 ★注入 ……注

SM running (1-loop)

• For large scales, the potential is dominated by the quartic term $\lambda \phi^4$

프 > 프

P.

Scale independence of $V_{\rm eff}$

 A perturbative result is scale invariant only up to higher order corrections [2]

$$rac{d}{d\mu}ar{V}_{
m eff} = 0 + \mathcal{O}(\hbar^2)$$

• μ should be chosen such that the error is small [3]

The optimal choice for
$$\phi \gg m$$

 $\mu \sim \phi$
 \Rightarrow No large logarithms!

Do curvature effects change this?

1-loop effective potential for the SM

- Quantum fields in curved space
- 3 Higgs stability during inflation
- Running of the Cosmological Constant
- 5 Conclusions

イロト イロト イヨト イ

Curved space field theory

- QFT in curved spacetime
 - No graviton loops

$$Z[J, g^{\mu\nu}] = \int \mathcal{D}\varphi e^{iS[\varphi, g^{\mu\nu}] + i\int J\varphi}$$
$$S[\varphi, g^{\mu\nu}] \equiv S_g[g^{\mu\nu}] + S_m[\varphi, g^{\mu\nu}]$$

 Is renormalizable but requires generalization the Einstein-Hilbert action

$$\mathcal{L}_{g}[g^{\mu\nu}] = \Lambda + \alpha R$$

$$\rightarrow \Lambda_{0} + \alpha_{0}R + \beta_{0}R^{2} + \epsilon_{1,0}R_{\alpha\beta}R^{\alpha\beta} + \epsilon_{2,0}R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta}$$

• Importantly, loops generate a term $\propto R\phi^2$

UV expanding the mode

• We must solve Klein-Gordon equation in curved space

$$\begin{bmatrix} -\Box + m^2 + \xi R \end{bmatrix} \hat{\phi} = 0; \qquad \Box \equiv \frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} \partial^\mu)$$
$$g_{\mu\nu} dx^\mu dx^\nu = -dt^2 + a(t) d\mathbf{x}^2$$

• Using an UV ansatz for the Fourier mode,

$$\phi = \int d^3k \left[\hat{a}_{\mathbf{k}} u_{\mathbf{k}} + \hat{a}_{\mathbf{k}}^{\dagger} u_{\mathbf{k}}^* \right], \quad u_{\mathbf{k}} = \frac{1}{\sqrt{a(t)^3 W}} e^{-i \int^t W dt'} e^{i\mathbf{k}\cdot\mathbf{x}}$$
$$\Rightarrow \quad W^2 = \frac{k^2}{a(t)^2} + m^2 + \xi R - \frac{R}{6} + \mathcal{O}(k^{-2})$$
$$Mass shift \propto R \text{ (scalar curvature)}$$

- Works also for spinors and gauge fields
- Coincides with the resummed heat kernel method [4]

[4] Jack & Parker (1985)

(E) < E)</p>

Summary of curved space effects

- All effective masses acquire shifts $\propto R$
- A non-minimal ξ -term is generated by loop corrections
 - Virtually unbounded by the LHC, $\xi_{\rm EW} < 10^{15}$ [5]
- RG equation for β_{ξ}
 - Can easily be calculated from $V_{\rm eff}(\phi)$

The optimal scale in curved space $\mu^2 \sim \phi^2 + {\it R} \label{eq:main}$

 \Rightarrow Spacetime curvature effects how the couplings run

◆夏→

イロト イポト イヨト

1-loop Effective potential in curved space

$$V_{\text{eff}}(\phi, R) = -\frac{1}{2}m^2(t)\phi(t)^2 + \frac{1}{2}\xi(t)R\phi(t)^2 + \frac{1}{4}\lambda(t)\phi(t)^4 + \sum_{i=1}^9 \frac{n_i}{64\pi^2}M_i^4(t)\left[\log\frac{|M_i^2(t)|}{\mu^2(t)} - c_i\right] \qquad ; M_i^2(t) = \kappa_i\phi(t)^2 - \kappa_i' + \theta_i R$$

Φ	i	n_i	κ_i	κ'_i	$ heta_i$	Ci
	1	2	$g^{2}/4$	0	1/12	3/2
W^{\pm}	2	6	$g^{2}/4$	0	-1/6	5/6
	3	-2	$g^{2}/4$	0	-1/6	3/2
Z^0 5	4	1	$(g^2 + g'^2)/4$	0	1/12	3/2
	3	$(g^2 + g'^2)/4$	0	-1/6	5/6	
6 -		-1	$(g^2 + g'^2)/4$	0	-1/6	3/2
t	7	-12	$y_{t}^{2}/2$	0	1/12	3/2
ϕ	8	1	3λ	m^2	$\xi - 1/6$	3/2
χ_i	9	3	3 λ		$\xi - 1/6$	3/2
					4 🗆	► < (¹) ►

Markkanen

ł

- 2 Quantum fields in curved space
- Higgs stability during inflation
 - 4 Running of the Cosmological Constant

5 Conclusions

Image: A matrix and a matrix

Standard Model Higgs potential

• Minimum at $\phi = v$

- Sensitive to M_h and M_t
- A vacuum at $\phi \neq v$ incompatible with observations
- Meta stable at 99% CL [6]
 - Lifetime much longer than 13.8 · 10⁹ years
- Is this also true for the early Universe (inflation)?
- New physics needed to stabilize the vacuum?

Inflation and the Standard Model

- In principle we can assume the SM to be valid
 - Energy-density is dominated by decoupled physics
- Inflation induces fluctuations to the Higgs field $\Delta \phi \sim H$
 - Important if $\overline{\Lambda}_{\max} \lesssim H$
 - State of the art calculations [7]: $\overline{\Lambda}_{max} \sim 10^{11} GeV$

Stability results (Minkowski)

• For large H (~ $10^{3}\overline{\Lambda}_{max}$), the SM is not stable [8]

What about curvature corrections?

 [8] Kobakhidze & Spencer-Smith (2014); Hook et. al. (2014); Fairbairn & Hogan (2014);

 Enqvist, Meriniemi & Nurmi (2014)

Stability results (curved space) I

• First attempt, set $\xi_{\rm EW} = 0$ and $H \sim 10^{10} {
m GeV}$ ($\sim 10^3 {\overline \Lambda}_{\rm max}$)

- Potential negative everywhere
 - Clearly unstable (worse than with Minkowski QFT)
- What causes this?

Stability results (curved space) II

- In curved space $\lambda(\mu) < 0$ earlier since $\mu^2 \sim \phi^2 + \mathbf{R}$
- ξ Can become positive or negative depending on ξ_{EW}

э

医下颌 医下颌

A ID > A (P) > A

Stability results (curved space) III

Stability results (curved space) IV

• The (in)stability of the potential is determined by ξ_{EW}

O > <
 O >

프 🕨 🛛 프

- Quantum fields in curved space
- 3 Higgs stability during inflation
- 4 Running of the Cosmological Constant

5 Conclusions

< ∃⇒

Image: A matrix and a matrix

Cosmological constant problem(s)

$$\Lambda \sim \int^{k_{
m max}} d^3k \sqrt{k^2 + m^2} \sim M_{
m pl}^4$$

- Zero-point energies imply a value too large by 10¹²⁰
 - Argument comes from non-covariant cut-off regularization
 - Not a problem in dim. reg.

$$\Lambda \sim V(\langle \phi \rangle) \sim m_{\rm h}^4$$

EW symmetry breaking implies a value too large by 10⁵⁵
 "The real magnitude of the fine-tuning" [10]

$$\partial \Lambda$$
 $\sum 4$

$$\mu \frac{\partial \Lambda}{\partial \mu} \equiv \beta_{\Lambda} \sim \sum_{i} m_{i}^{4}$$

• Running potentially problematic [10] J. Martin (2012); J. Solà (2013)

イロト 不得 とくほと くほとう

Decoupling theorem

• Consider the electric charge $\beta_e = -\frac{e}{2}\mu \frac{\partial}{\partial \mu}\Pi$

• Using a physical subtraction scheme at $p^2 = -M^2$

$$\beta_e^{\rm ph} = \beta_e^{\overline{\rm MS}} \int_0^1 dx \, \frac{M^2 x(x-1)}{m^2 + M^2 x(x-1)}$$

Appelquist-Carazzone theorem $\beta_{c}^{\text{ph}} \rightarrow \beta_{c}^{\overline{\text{MS}}}, \quad M \gg m,$

BUT
$$\beta_e^{\rm ph} \to 0, \qquad M \ll m$$

• Heavy degrees of freedom decouple [11]

[11] Appelquist & Carazzone (1974)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Curvature induced running in the EW vacuum

- Consider then the SM on a dynamical curved background with T = 0
- If the only dynamics comes from changing *R*,

$$\Rightarrow \mu = \mu(R)$$

- Curvature induces running of Λ [12]
- In the electroweak vacuum $R \ll m^2$, $\Rightarrow \overline{\text{MS}}$ is no good
- In a scheme respecting the decoupling theorem we get

$$\Lambda_{\rm in} \lesssim \xi^2 \frac{R_{\rm EW}^2}{128\pi^2} \frac{48y^4 - 9g_1^4 - 6g_1^2g_2^2 - 3g_2^4 - 64\lambda^2}{16\lambda^2} \lesssim 10^{-47} {\rm GeV}^4$$

Is the complete running of Λ compatible with observations?
 [12] J.Solà & I. Shapiro (2008)

1-loop effective potential for the SM

- Quantum fields in curved space
- 3 Higgs stability during inflation
- 4 Running of the Cosmological Constant

5 Conclusions

イロト イポト イヨト

- ∢ ≣ →

Curvature effects in RG running

- Important for EW vacuum stability
 - SM with $\xi_{EW} = 0$ is unstable during inflation for large *H*
 - Having $\xi_{EW} \gtrsim 6 \times 10^{-2}$ stabilizes the vacuum

Induce running of the Cosmological Constant

イロト イポト イヨト イヨト

Sensitivity to the choice of μ

- A loop calculation is never fully scale invariant
- How dependent is the result on the choice $\mu^2 = \phi^2 + R$?

