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1-loop Effective potential

Massive self-interacting scalar field [1]

L =
1
2

(∂µφ)2 − 1
2

m2φ2 − λ

4!
φ4

⇒

Veff(φ) =
1
2

m2φ2 +
λ

4!
φ4︸ ︷︷ ︸

classical

+
M(φ)4

64π2

[
log

effective mass︷ ︸︸ ︷(
M(φ)2

µ2

)
−3

2

]
︸ ︷︷ ︸

quantum

; M(φ)2 = m2 +
λ

2
φ2

µ is the renormalization scale
Similarly one may derive the potential for the SM Higgs

[1] Coleman & Weinberg (1972)
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Effective potential for the SM Higgs

Veff(φ) = −1
2

m2φ2 +
1
4
λφ4 +

5∑
i=1

ni

64π2 M4
i (φ)

[
log

M2
i (φ)

µ2 − ci

]
; M2

i (φ) = κiφ
2 − κ′i

Φ i ni κi κ′i ci

W± 1 6 g2/4 0 5/6

Z0 2 3 (g2 + g′2)/4 0 5/6

t 3−12 y2
t /2 0 3/2

φ 4 1 3λ m2 3/2

χi 5 3 λ m2 3/2

Explicit µ dependence?
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Callan-Symanzik equation for massless λφ4 theory

The effective potential is renormalized at a scale µ
λ0 → λR, φ→ Z1/2φ

However, the physical result must not depend on µ:

d
dµ

Veff(φ) = 0 ⇔
{
µ
∂

∂µ
+ βλ

∂

∂λ
+ γφφ

∂

∂φ

}
Veff(φ) = 0

;βλ ≡ µ
∂λ

∂µ
, γφ ≡ µ

∂ ln Z1/2

∂µ

This can be used to improve the perturbative result
Leads to a potential with running parameters
V̄eff
(
φ(t), λ(t)

)
; t ≡ log(µ/Mt), φ(t) ≡ Z(t)1/2φ
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SM running (1-loop)
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For large scales, the potential is dominated by the quartic
term λφ4
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Scale independence of Veff

A perturbative result is scale invariant only up to higher
order corrections [2]

d
dµ

V̄eff = 0 +O(~2)

µ should be chosen such that the error is small [3]

The optimal choice for φ� m

µ ∼ φ
⇒ No large logarithms!

Do curvature effects change this?

[2] Casas et. al. (1994)
[3] Ford et. al. (1993)
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Curved space field theory

QFT in curved spacetime
No graviton loops

Z[J, gµν ] =

∫
Dϕe iS[ϕ,gµν ]+i

∫
Jϕ

S[ϕ, gµν ] ≡ Sg[gµν ] + Sm[ϕ, gµν ]

Is renormalizable but requires generalization the
Einstein-Hilbert action

Lg[gµν ] = Λ + αR

→ Λ0 + α0R + β0R2 + ε1,0RαβRαβ + ε2,0RαβγδRαβγδ

Importantly, loops generate a term ∝ Rφ2

⇒ ξRφ2 is a part of the SM!
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UV expanding the mode

We must solve Klein-Gordon equation in curved space[
−�+ m2 + ξR

]
φ̂ = 0; � ≡ 1√−g

∂µ(
√−g∂µ)

gµνdxµdxν = −dt2 + a(t)dx2

Using an UV ansatz for the Fourier mode,

φ =

∫
d3k
[
âkuk + â†ku∗k

]
, uk =

1√
a(t)3W

e−i
∫ t Wdt′eik·x

⇒ W2 =
k2

a(t)2 + m2 + ξR− R
6

+O(k−2)

Mass shift ∝ R (scalar curvature)

Works also for spinors and gauge fields
Coincides with the resummed heat kernel method [4]

[4] Jack & Parker (1985)
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Summary of curved space effects

All effective masses acquire shifts ∝ R

A non-minimal ξ-term is generated by loop corrections
Virtually unbounded by the LHC, ξEW < 1015 [5]

RG equation for βξ
Can easily be calculated from Veff(φ)

The optimal scale in curved space

µ2 ∼ φ2 + R

⇒ Spacetime curvature effects how the couplings run

[5] Atkins & Calmet (2012)
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1-loop Effective potential in curved space

Veff(φ,R) = −1
2

m2(t)φ(t)2 +
1
2
ξ(t)Rφ(t)2 +

1
4
λ(t)φ(t)4

+
9∑

i=1

ni

64π2 M4
i (t)

[
log

∣∣M2
i (t)
∣∣

µ2(t)
− ci

]
; M2

i (t) = κiφ(t)2 − κ′i + θiR

Φ i ni κi κ′i θi ci

1 2 g2/4 0 1/12 3/2

W± 2 6 g2/4 0 −1/6 5/6

3 −2 g2/4 0 −1/6 3/2

4 1 (g2 + g′2)/4 0 1/12 3/2

Z0 5 3 (g2 + g′2)/4 0 −1/6 5/6

6 −1 (g2 + g′2)/4 0 −1/6 3/2

t 7 −12 y2
t /2 0 1/12 3/2

φ 8 1 3λ m2 ξ − 1/6 3/2

χi 9 3 λ m2 ξ − 1/6 3/2
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Standard Model Higgs potential

0 v

0

VHΦL

Minimum at φ = v
v

0

VHΦL

Sensitive to Mh and Mt

A vacuum at φ 6= v incompatible with observations
Meta stable at 99% CL [6]

Lifetime much longer than 13.8 · 109 years

Is this also true for the early Universe (inflation)?
New physics needed to stabilize the vacuum?

[6] Buttazzo et al. (2013); Spencer-Smith (2014)
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Inflation and the Standard Model

In principle we can assume the SM to be valid
Energy-density is dominated by decoupled physics

Inflation induces fluctuations to the Higgs field ∆φ ∼ H
Important if Λmax . H
State of the art calculations [7]: Λmax ∼ 1011GeV

v L max

0

Vmax

VHΦL
r = PT/PR

Λmax ∼ H

⇒ r ∼ 2 · 10−7

BICEP2:
Λmax � H

[7] Degrazzi et. al.(2013); Buttazzo et. al. (2013)
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Stability results (Minkowski)
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For large H (∼ 103Λmax), the SM is not stable [8]

What about curvature corrections?

[8] Kobakhidze & Spencer-Smith (2014); Hook et. al. (2014); Fairbairn & Hogan (2014);
Enqvist, Meriniemi & Nurmi (2014)
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Stability results (curved space) I

First attempt, set ξEW= 0 and H ∼ 1010GeV (∼ 103Λmax )
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Potential negative everywhere
Clearly unstable (worse than with Minkowski QFT)

What causes this?
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Stability results (curved space) II

In curved space λ(µ) < 0 earlier since µ2 ∼ φ2 + R

ξ Can become positive or negative depending on ξEW
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Stability results (curved space) III

Now choosing ξEW = 0.1 [9]
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Vmax(curved)� Vmax(flat) (and at a higher scale)

P ∼ exp
[
− 8π2 (Vmax/3H4)

]
⇒ Stable!

[9] Espinosa, Giudice & Riotto (2008)
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Stability results (curved space) IV

The (in)stability of the potential is determined by ξEW
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Cosmological constant problem(s)

Λ ∼
∫ kmax

d3k
√

k2 + m2 ∼ M4
pl

Zero-point energies imply a value too large by 10120

Argument comes from non-covariant cut-off regularization
Not a problem in dim. reg.

Λ ∼ V(〈φ〉) ∼ m4
h

EW symmetry breaking implies a value too large by 1055

"The real magnitude of the fine-tuning" [10]

µ
∂Λ

∂µ
≡ βΛ ∼

∑
i

m4
i

Running potentially problematic
[10] J. Martin (2012); J. Solà (2013)
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Decoupling theorem

Consider the electric charge βe = − e
2µ

∂
∂µΠ

Π ∼

0 / 0

Using a physical subtraction scheme at p2 = −M2

βph
e = βMS

e

∫ 1

0
dx

M2x(x− 1)

m2 + M2x(x− 1)

Appelquist-Carazzone theorem

βph
e → βMS

e , M � m,

BUT βph
e → 0, M � m

Heavy degrees of freedom decouple [11]
[11] Appelquist & Carazzone (1974)
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Curvature induced running in the EW vacuum

Consider then the SM on a dynamical curved background
with T = 0
If the only dynamics comes from changing R,

⇒ µ = µ(R)

Curvature induces running of Λ [12]

In the electroweak vacuum R� m2, ⇒ MS is no good
In a scheme respecting the decoupling theorem we get

Λin . ξ
2 R2

EW
128π2

48y4 − 9g4
1 − 6g2

1g2
2 − 3g2

4 − 64λ2

16λ2 . 10−47GeV4

Is the complete running of Λ compatible with observations?
[12] J.Solà & I. Shapiro (2008)
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Conclusions

Curvature effects in RG running

Important for EW vacuum stability
SM with ξEW = 0 is unstable during inflation for large H
Having ξEW & 6× 10−2 stabilizes the vacuum

Induce running of the Cosmological Constant

Thank You!
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Sensitivity to the choice of µ

A loop calculation is never fully scale invariant
How dependent is the result on the choice µ2 =φ2+R ?

µ2 = αφ2 + βR α, β ∈ {0.1 · · · 10}
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