

Validation

Witold Pokorski, Alberto Ribon CERN PH/SFT

ESIPAP, Archamps, 16-17 February 2014

Validation & tuning of hadronic models

 The developers of the hadronic models are responsible of the tuning & validation of these models with thin-target (microscopic, single-interaction) measurements

 Validation of complete physics configurations is performed by users mostly via measurements of hadronic showers in calorimeter test-beam setups (thick targets)

2

- The most important application of the hadronic models for collider experiments is the simulation of jets, which involves:
 - **1.** the Monte Carlo event generator
 - **2.** the convolution of the showers for each constituent hadron
 - 3. experiment specific: geometry & materials, digitization, etc.

Model-level thin-target test FTF Results at 400 GeV/c

p Ta -> pi+ X

Model-level thin-target test

FTF validation, HARP-CDP data

Model-level thin-target test

Validation of the Bertini Cascade

Model-level thin-target test

Preco validation, 22 MeV p – Fe -> n

Validation of Precompound & de-excitation

LHC calorimeter test-beams

Calorimeter observables

- The simulation of hadronic showers can be validated with calorimeter test-beam set-ups, with pion and proton beams of various energies, considering the following observables:
 - Energy response:
 - Energy resolution:
 - Shower profile:
 - Longitudinal:

- Erec / Ebeam
- Δ Erec / Erec

Erec(z) / Erec

- Lateral (transverse or radial): Erec(r) / Erec
- Note that we can test directly only single-hadron showers in calorimeter test-beam set-ups, whereas for a collider experiment (e.g. ATLAS and CMS) jets are measured. The simulation of jets involves:
 - 1. the Monte Carlo Event Generator
 - 2. the convolution of the showers for each constituent hadron

A long journey...

- Once you have collected data from a calorimeter test-beam set-up with hadron beams, there is a long work needed before drawing conclusions on the hadronic simulation:
 - Cleaning/selection cuts to have the purest possible sample
 - Model beam composition and spread
 - Check material composition, geometry, dead material
 - Model quenching effects (Birks' law), photo-statistics, etc.
 - Include noise, cross-talk, DAQ time-window, and digitization

To help on these steps:

- Special triggers
- Muon beam
- Electron beam (also needed for the electromagnetic calibration)

Energy response

ATLAS TileCal test-beam

Energy resolution

ATLAS HEC test-beam

Longitudinal shower shapes

Lateral shower shapes

ATLAS TileCal test-beam @90°

Muon physics in G4 is extensively tested and validated in the energy range 10 GeV – 10 TeV

Muon simulation vs. p-p collision data

Isolated single hadron response: simulation vs. CMS p-p data

Agreement is better than ±3% between 2-20 GeV/c

Di-jet invariant mass: simulation vs. CMS p-p data

Very good agreement between simulation and collision data!

Three ingredients are convoluted in the simulation:

- Monte Carlo event generator: Pythia
- Detector simulation engine: Geant4
- Experiment-specific aspects: geometry/materials, digitization, calibration, rec.

18

Number of Events / GeV CMS Preliminary 2010 **CMS** 10⁶ $\sqrt{n} = 7 \text{ TeV}$ PF MET 10⁵ 10^{4} 10^{3} 10^{2} 10 1 2040 60 80 120 140100 0 Pf ∉_⊤ [GeV]

Good agreement over 6 orders of magnitudes!