

16.02.2015 Isabelle Wingerter-Seez - LAPP-CNRS - Annecy

Programme

Lesson 1

Why build calorimeters ? Electromagnetic showers Detection processes EM calorimeters

Lesson 2

Hadronic showers & calorimeters Jets Missing Transverse Energy CMS & ATLAS calorimeters

Lesson 3

Other calorimeters Calorimeter R&Ds for future colliders H→γγ & the EM calorimeter

Tutorial

Existing Calorimeters

The NA48 experiment

GeV/c track momentum)

- Hodoscope for timing measurements $(\sigma_t \sim 200 \ ps)$
- Muon veto to reject $\pi\mu\nu$ background.

Le calorimètre à Krypton liquide de NA48

- NA48 has measured Re(ϵ'/ϵ) ~10⁻⁴ identifying the modes K_S $\rightarrow \pi^0 \pi^0 \pi^0$ et K_L $\rightarrow \pi^0 \pi^0 \pi^0$
- Mass resolution on $m(\pi^0)$: 1MeV ($m(\pi^0) = 135$ MeV)
- Energy resolution $5\%/\sqrt{E}$
- LKr instrumented with electrodes with zig-zag geometry to collect all the charges.

Energy Resolution

Main tool to study in situ the performances of the calorimeter :

$$K_L \to \pi^{\pm} e^{\mp} \nu$$
 decays

Spectrometer \Rightarrow Impulsion **p** (resolution $\approx 0.5\%$ to 1%) Calorimeter \Rightarrow Energy E

In ideal world,

 $\frac{E}{p} = 1$

 $\Rightarrow \underset{(\text{from 5 to 100 GeV})}{\text{Non linearity}} \approx 0.1\%$

"Natural Calorimeter"

The method

Reconstruct the shower position in atmosphere Estimate the energy from signal in telepscopes + simulation of air showers

Détection des rayons y

Gerbe électromagnétique

1000

Homogenous Calorimeter with air: H_{igh} E_{nergy} S_{teretoscopic} S_{ystem}: installed in Namibia

Super-Kamiokande: Čerenkov dans l'eau

SUPERKAMIOKANDE INSTITUTE FOR CORING RAY RESEARCH UNIVERSITY OF THEYO

MICCEN SEKK

Performance Super-Samiokande

- Prior to data taking: testbeam
- Response and time uniformity better than 0.5%

•10% à 10MeV

Alpha Magnétique Spectrometer

- AMS was conceived to study very high energy cosmic rays.
- AMS is searching for presence of antimatter in cosmic rays (e.g. anti-He)
- AMS also measures high energy photons with its calorimeter

Alpha Magnetic Spectrometer

Transition Radiation Detector Foam + drift tubes (Xe/CO2) Time of Flight (trigger) Scintillators, fine mesh PMT's σ_t ~ 120 ps Superconducting magnet (0.86 T·m²) Tracker (8 layers, 6m²) 6 double-sided silicon strips σ_=10 µm in bending plane RICH Radiator (Aerogel+NaF) PMT's (16 pixels) 3D-sampling ECAL Lead+Scintillating-fibers PMT's (4 pixels)

ECAL Structure

 9 super layers (16X₀) alternatively oriented along X and Y axis

1 Super layer:

11 grooved Pb foils (1mm thick) interleaved with 10 layers of scintillating fibers (∅=1mm) glued by an epoxy resin

CALOR, Perugia, April 2, 2004 -

Calorimeters R&D for Linear Colliders

Some ideas for future calorimeters (Linear Colliders)

LINEAR COLLIDER: JET ENERGY MEASUREMENT

Component	Detector	Fraction	Part. resolution	Jet Energy Res.
Charged (X [±])	Tracker	60%	10 ⁻⁴ E _x	negligible
Photons (y)	ECAL	30%	0.1/ √ E _Y	.06/ √ E _{jet}
Neutral Hadrons (h)	E/HCAL	10%	0.5/√E _{had}	.16/ √ E _{jet}

Particle Flow Analysis

Choose detector best suited for particular particle type

use tracks and distinguish *charged* from *neutral* energy to avoid double counting

SEGMENTATION

distinguish electromgnetic and hadronic energy deposits for software compensation

Difficulties

Non-compensation

hadronic vs electromagnetic energy

Missing energy

e.g. muon tracks

Double counting

when using track momenta

Solutions

Particle Flow Calorimetry

Reduce the role of *hadron* calorimetry to measurement of neutrons, K⁰

Compensating Calorimetry

Correcting hadronic energy to nuclear-binding energy loss

LINEAR COLLIDER: OVERALL DESIGN

LINEAR COLLIDER ECAL design

LINEAR COLLIDER HCAL design

Why digital ? Better PFA performance *Cheap*, robust detector Small total thickness

Used technologies GEMs µMegas RPCs

Example RPCs:

Pad Size: 1 x 1 cm² Total thickness: < 6 mm possible

Vertical Slice Test with 9 small chambers successful

Large Prototype to be built

Calorimeter requirements

Many ongoing testbeams (e.g. CALICE)

Example: DHCAL

Linear Collider Calorimeters Development: Fine segmentation (also for HAD) Both longitudinal and lateral Self-suporting calorimeter Minimize dead zones Semi-digital readout Electronics embedded inside the calorimeter Development of Power Pulsing

Dual readout for hadronic showers DREAM

Intermezzo: DREAM (ongoing R&D)

DREAM: Structure

- Some characteristics of the DREAM detector to em only
 - Depth 200 cm (10.0 λ_{int})
 - Effective radius 16.2 cm (0.81 λ_{int} , 8.0 ρ_M)
 - Mass instrumented volume 1030 kg
 - Number of fibers 35910, diameter 0.8 mm, total length $\approx 90~{\rm km}$
 - Hexagonal towers (19), each read out by 2 PMTs

(Cerenkov light)

DREAM: some results

Chaîne de lecture de l'accordéon

Electronique ON DETECTOR

49 cm

Le système BackEnd pour les calorimètres EM+HAD de ATLAS OFF-DETECTOR

In the cavern

80.549

11:08

In the counting room

THUTTLE

7

ATLAS Trigger chain

Calorimeters are playing a critical role large detectors such as the LHC ones Electron/Photon - Jet - E_T^{miss} reconstruction

Background rejection $e^{\pm}/jets - \gamma/\pi^0$

Triggering

Detector design & construction have (obviously) a direct impact onto the physics

Cell segmentation 0.1x0.1 at Tevatron, 0.025(0.003)x0.025 at LHC, semidigital R/O for Linear Collider

More and more precise simulation (interaction with matter, detector geometry) allows to understand quickly and very efficiently the detector performance

SOME CONCLUSIONS

SIGNAL on a LARGE BACKGROUND

SIGNAL on a LARGE BACKGROUND

H→γγ MASS SPECTRA & SIGNAL OBSERVATION

