

Motivation

- The interaction between particles & matter is at the base of several human activities
- Plenty of applications not only in research and not only in Particle & Astroparticle

Very important for particle detection !

In order to detect a particle, the latter must interact with the material of the detector, and produce 'a (detectable) signal'

http://www.spiegel.de/international/zeitgeist/spiegel-interview-with-umberto-eco-we-like-lists-because-we-don-t-want-to-die-a-659577-2.html

Marco Delmastro

Experimental Particle Physics

Lucia Di Ciaccio - ESIPAP IPM - January 2015

12

Shell (C) and Density(δ) effect corrections

Knock-on electrons or delta(δ) rays (secondary electrons)

 $\boldsymbol{\delta}$ rays are rare but produce high ionization

For $\beta \approx 1$ particle, on average **one** collision with **T** > **10 keV** along a path length of **90 cm** of **Ar** gas

Restricted energy loss

- **δ rays** that may escape the detector if it is too thin
 - \rightarrow The average energy deposits are very often much smaller than predicted by **Bethe & Bloch**

If the energy transferred is restricted to $T \leq T_{\text{cut}} \leq T_{\text{max}} \rightarrow$ "restricted energy loss"

$$\left. -\frac{dE}{dx} \right|_{T < T_{\rm cut}} = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\rm cut}}{I^2} - \frac{\beta^2}{2} \left(1 + \frac{T_{\rm cut}}{T_{\rm max}} \right) - \frac{\delta}{2} \right]$$

The difference between the restricted energy loss formula and the **B** & **B** is given by the contribution of the (escaping) δ rays

At very high energies, when $\beta\gamma > 10^{51}$, the stopping power reaches a constant called "Fermi plateau" :

$$-\left(\frac{dE}{dx}\right)\left[\frac{MeV}{g/cm^{2}}\right]=0.3071\frac{z^{2}Z}{2.A(g)}\ln\left(\frac{2m_{e}T_{cut}}{(hv_{n})^{2}}\right)$$

S1, $hv_p =$ density effect parameters

 $h v_p =$ $\hbar \omega$ = "Plasma energy" $\sqrt{\rho \langle Z/A \rangle} \times 28.816 \text{ eV}$ $(\rho \text{ in g cm}^{-3})$

23

Lucia Di Ciaccio - ESIPAP IPM - January 2015

S_0, S_1	2.1, a, n	Values o nd, and d	f Z , Z/A δ_0 for ele	A, I , ρ in mental s	units of ubstance	g/cm ³ , / s.	$h\nu_p$ and	density-e	effect par	ramet
El.	Z	Z/A	I eV	ρ	$h u_p$ eV	S_0	S_1	a	md	δο
He	2	0.500	41.8	$1.66 \\ 10^{-4}$	0.26	2.202	3.612	0.134	5.835	0.00
Li	3	0.432	40.0	0.53	13.84	0.130	1.640	0.951	2.500	0.14
0	8	0.500	95.0	$1.33 \\ 10^{-3}$	0.74	1.754	4.321	0.118	3.291	0.00
Ne	10	0.496	137.0	$8.36 \\ 10^{-4}$	0.59	2.074	4.642	0.081	3.577	0.00
Al	13	0.482	166.0	2.70	32.86	0.171	3.013	0.080	3.635	0.15
Si	14	0.498	173.0	2.33	31.06	0.201	2.872	0.149	3.255	0.14
Ar	18	0.451	188.0	$1.66 \\ 10^{-3}$	0.79	1.764	4.486	0.197	2.962	0.00
Fe	26	0.466	286.0	7.87	55.17	-0.001	3.153	0.147	2.963	0.1
Cu	29	0.456	322.0	8.96	58.27	-0.025	3.279	0.143	2.904	0.0
Ge	32	0.441	350.0	5.32	44.14	0.338	3.610	0.072	3.331	0.1
Kr	36	0.430	352.0	3.48 10^{-3}	1.11	1.716	5.075	0.074	3.405	0.00
Ag	47	0.436	470.0	10.50	61.64	0.066	3.107	0.246	2.690	0.14
Xe	54	0.411	482.0	5.49 10^{-3}	1.37	1.563	4.737	0.233	2.741	0.0
Ta	73	0.403	718.0	16.65	74.69	0.212	3.481	0.178	2.762	0.14
W	74	0.403	727.0	19.30	80.32	0.217	3.496	0.155	2.845	0.14
Au	79	0.401	790.0	19.32	80.22	0.202	3.698	0.098	3.110	0.14
Pb	82	0.396	823.0	11.35	61.07	0.378	3.807	0.094	3.161	0.14
U	92	0.387	890.0	18.95	77.99	0.226	3.372	0.197	2.817	0.14

Data are from [Sternheimer, Berger and Seltzer (1984)]

dE/dx Fluctuations → Energy straggling

dE/dx Fluctuations → Energy straggling

Stopping power of a compound medium

• For a compound of f elements:

$$-\frac{dE}{\rho\,dx} = \sum_{1}^{f} w_{i} \quad \frac{dE}{\rho_{i}\,dx}$$

 ρ_i = density of element i

 $\frac{dE}{\rho_i dx}$ = stopping power of element i

 w_i = mass fraction of element i

 $w_i = (N_i A_i)/A_m$

 N_i = number of atoms of element i A_i = atomic weight of element i A_m = molar mass of compound

 $A_m = \sum N_i A_i$

• It is also possible to use effective quantities (empirical):

$$Z_{eff} = \sum N_i Z_i$$

$$A_{eff} = \sum N_i A_i$$

$$\ln I_{eff} = (\sum N_i Z_i \ln I_i) / Z_{eff}$$

$$\delta_{eff} = (\sum N_i Z_i \delta_i) / Z_{eff}$$

$$C_{eff} = \sum N_i C_i$$

Lucia Di Ciaccio - ESIPAP IPM - January 2015

29

Mean Particle Range

 If the medium is thick enough, a particle will progressively decelerate while increasing its stopping power (β^{-5/3}) until it reaches a maximum (called the Bragg peak).

Heidelberg Ion-Beam Therapy Center (HIT)

~ 30 centers around the world Lucia Di Ciaccio - ESIPAP IPM - January 2015

33

Stopping power of e[±] by ionization and excitation in matter

The **Bethe-Bloch formula** for **e**[±] is **modified** since:

- 1) the change in direction of the particle was neglected; for e^{\pm} this approximation is not valid (scattering on particle with same mass)
- 2) Pauli Principle : the incoming and outgoing particles are the identical particles

 $-\frac{dE}{dx} = 2 \pi N_A r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \frac{\tau^2 (\tau + 2)}{(l^2 / m_e c^2)^2} + F(\tau) - \delta - 2 \frac{C}{Z} \right]$ trans: $F(\tau) = 1 - \beta^2 + \frac{(\tau^2 / 8) - (2 \tau + 1) \ln 2}{(\tau^2 / 8) - (2 \tau + 1) \ln 2} \qquad \tau = \frac{1}{\sqrt{1 - \beta^2}} - 1 = E_k / (mc^2)$

For electrons:

$$F(\tau) = 1 - \beta^{2} + \frac{1}{(\tau + 1)^{2}} \sqrt{1 - \frac{1}{2}} \sqrt{1 - \frac{1}{2}} = 2 \ln 2 - \frac{\beta^{2}}{12} \left(23 + \frac{14}{\tau + 2} + \frac{10}{(\tau + 2)^{2}} + \frac{4}{(\tau + 2)^{2}} \right)$$

For positrons :

- e[±] loose more energy wrt heavier particles since they interact with particles of the same mass
- When a positron comes to a rest it annihilates : $e^+ + e^- \rightarrow \gamma \gamma$ of 511 keV each
- A positron may also undergo A positron may also undergo an annihilation in flight: $\sigma(Z, E) = \frac{Z \pi r_e^2}{\gamma + 1} \left[\frac{\gamma^2 + 4\gamma + 1}{\gamma^2 - 1} \ln(\gamma + \sqrt{\gamma^2 - 1}) - \frac{\gamma + 3}{\sqrt{\gamma^2 - 1}} \right]$ with a cross section : with a cross section :

Bremsstrahlung – Energy Spectrum

Normalized bremsstrahlung cross section vs y (= k / E_0) fraction of the electron energy transferred to the radiated γ

Bremsstrahlung. Mean radiative energy loss

For a particle of charge z and mass m:

$$\frac{dE}{dx}_{\text{brem}}(z,m) = \left(\frac{m_e}{m}\right)^2 z^2 \frac{dE}{dx}_{\text{brem}}(e^-)$$

- Relevant in particular for e[±] due to their small mass
- Shown so far is the mean energy loss due interaction in the field of the nucleus
- Contribution also from radiation which arises in the fields of the **atomic electrons**.
- Cross section are given by the above formula but replacing Z² with Z.
- The overall contribution can be approximated by replacing Z² by Z (Z+1) in all the above formulas

Lucia Di Ciaccio - ESIPAP IPM - January 2015

37

Critical energy (E_c)

 The relevance of bremsstralung wrt ionisation depends on the critical energy (E_c) of the particle P in the material

• The critical energy (E_c) is the energy at which the ionization stopping power is equal to the mean radiative energy loss.

Radiation lenght X₀

$$X_0 \qquad \begin{cases} Pb = 0.56 \text{ cm} \\ Fe = 1.76 \text{ cm} \\ Air = 30050 \text{ cm} \end{cases}$$
$$X_0 \rho \qquad \qquad X_0' = \frac{716.4 \text{ g cm}^{-2} A}{Z(Z+1) \ln(287/\sqrt{Z})}$$

Expressing the mean radiated energy in unit of $X_0^{\prime\prime}$

ightarrow The probability of the process becomes less dependent on the material

Pour un composé de N éléments :

 $X'_0 \equiv$

$$\frac{1}{X_0} = \sum_i w_i \frac{1}{X_{0i}}$$

 w_i = fraction in mass of element i X_{0i} = radiation lenght of element i

Lucia Di Ciaccio - ESIPAP IPM - January 2015

For electrons Z X_0 (g/cm²) X_0 (cm) E_c (MeV) medium A 1.01 700000 350 hydrogen 1 63 helium 2 4 94 530000 250 3 lithium 6.94 83 156 180 carbon 6 12.01 43 18.8 90 7 nitrogen 14.01 38 30500 85 8 24000 75 oxygen 16 34 aluminium 13 26.98 24 8.9 40 silicon 14 28.09 22 9.4 39 iron 26 55.85 13.9 1.76 20.7 29 63.55 12.9 1.43 18.8 copper 109.9 silver 47 9.3 0.89 11.9 183.9 0.35 tungsten 74 6.8 8 lead 82 207.2 6.4 0.56 7.4 7.3 14.4 30000 84 air 37 silica (SiO₂) 11.2 21.7 27 12 57 7.5 14.2 36 83 water 36

41

3. Elastic scattering with nuclei

A **charged particle P** traversing a medium is deflected many times (mainly) by small-angles essentially due to **Coulomb scattering** in the electromagnetic field of **the nuclei**.

P P (nucleus + e)

The **energy loss** (or transferred to the nuclei) is small ($m_{nucleus} >> m_{P}$) therefore **neglected**, The change of direction is important.

• A single collision is described by the Rutherford formula (ignores spin and screening effects)

$$\frac{d\sigma}{d\Omega} = 4zZr_e^2 \left(\frac{m_e c}{\beta p}\right)^2 \frac{1}{\sin^4 \theta/2}$$
P
 $d\Omega = \sin \vartheta \, d\vartheta \, d\varphi$
• Multiple scattering: N_{collisions} > 20

The particle follows a zig-zag trajectory Deflection angles are described by the Molière theory

Cherenkov light emission

Cerenkov light emission

dN

 $d\lambda$

strongly peaked at short λ

Number of photons emitted per unit path length and unit of wave length

$$\frac{dN}{dx d \lambda} = 2\pi \alpha \frac{1}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right)^{z^2}$$

• Number of photons per unit path length is:

$$\frac{dN}{dx} = 2\pi \alpha z_{\beta n>1}^2 \left(1 - \frac{1}{\beta^2 n^2}\right) \frac{d\lambda}{\lambda^2}$$

Assuming $n \sim const$ over the wavelength region detected

$$\frac{dN}{dx} = 2\pi \alpha \sin^2 \theta \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right) z^2$$

in λ range 350-500 nm (photomultiplier sensitivity range),

$$\frac{dN}{dx}$$
 = 390 sin² θ photons/cm

dE/dx due to Cherenkov radiation is small compared to ionization loss (< 1%) and much weaker than scintillating output. It can be neglected in energy loss of a particle. Lucia Di Ciaccio - ESIPAP IPM - January 2015 52 λ

Transition radiation

- This radiation is emitted mostly in the X- ray domain when a particle crosses a boundary between media of different dielectric properties
- The radiation is emitted in a cone at an angle $\cos \theta = 1/\gamma$
- The probability of radiation per transition surface is low ~ $1/2 \alpha$ (fine structure constant)
- The energy of radiated photons increases as a function of y

The Transition Radiation Detector (TRD)

Interactions of photons (γ)

 γ : particles with $m_{\gamma} = 0$, $q_{\gamma} = 0$, $J^{PC}(\gamma) = 1^{-1}$

Since $\mathbf{q}_{\mathbf{y}} = \mathbf{0}$, the photons are **indirectly** detected : in their interactions they produce electrons and/or positrons which subsequently interact (e.m.) with matter.

Main processes :

1. Photoelectric effect 2. Compton scattering 3. e+ e- pairs production

Eγ

Photons may be absorbed (photoelectric effect or e+e- pair creation) or scattered (Compton scattering) through large deflection angles.

 \rightarrow difficult to define a mean range \rightarrow an attenuation law is introduced :

 μ absorption coefficient

- N atoms/m³
- A masse molaire
- N_A nombre Avogadro ρ density
- **Photon cross section** σ
- λ Mean free path or absorption lenght 54

1.Photoelectric effect

2. Compton scattering

Elastic scattering of γ on « **free** » electrons

γ + e --> γ' + e

In the matter electrons are bounded. When the γ energy , ${\rm E}_{\gamma}>>$ binding electron energy the electron can be considered as free.

Compton Cross Section

e⁺ e⁻ pair production cross-section

Electromagnetic showers Dominant processes at high energies ABSORBER E_{inc} t_{max}= In ____ -1 e-Eint Ec 0.5 gamma L 95% ~ t_{max} + 0.08 Z + 9.6 [X0] X_0 Also electrons can start e.m. showers See M. Delmastro, I. Wingerter lectures Ec= critical energy Lucia Di Ciaccio - ESIPAP IPM - January 2015 68

Hadron collisions and interaction lengths

		6. ATOMI	CAND	NUCLEA	R PROP	ERTIE	S OF M	ATERIAL	s		
Table 6.1. 1 atm), and D line blend	Abridge square (589.2	ed from pdg.lbl.gov/At brackets indicate quanti nm); values ≫1 in brack	comicNucles ties evaluat cets are for	arProperti ed at STP. $(n-1) \times 10$	es by D. E. Boiling point ⁶ (gases).	Groom (20 is are at 1	007). Qua atm. Ref	ntities in pare ractive indice	entheses and n are even by a second secon	re for NTP aluated at	(20° C and the sodium
Material	Z	Α	$\langle Z/A \rangle$	Nucl.coll.	Nucl.inter.	Rad.len.	$dE/dx _{\rm m}$	in Density	Melting	Boiling	Refract.
				length λ_{T}	length λ_T	Xo	{ MeV	{g cm ⁻³ }	noint	noint	index
				-21	(-2)	-21	-1 2	$(g \circ m)$	(V)	(K)	(@ N _z D)
				{g cm -}	{g cm -}	g cm -}	g ⁻ cm ⁻	} ({gℓ ~})	(K)	(K)	(@ Na D)
H ₂	1	1.00794(7)	0.99212	42.8	52.0	63.04	(4.103)	0.071(0.084)	13.81	20.28	1.11[132.]
D_2	1	2.01410177803(8)	0.49650	51.3	71.8	125.97	(2.053)	0.169(0.168)	18.7	23.65	1.11[138.]
He	2	4.002602(2)	0.49967	51.8	71.0	94.32	(1.937)	0.125(0.166)		4.220	1.02[35.0]
Li	3	6.941(2)	0.43221	52.2	71.3	82.78	1.639	0.534	453.6	1615.	
Be	4	9.012182(3)	0.44384	55.3	77.8	65.19	1.595	1.848	1560.	2744.	
C diamond	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.725	3.520			2.42
C graphite	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.742	2.210			
N_2	7	14.0067(2)	0.49976	61.1	89.7	37.99	(1.825)	0.807(1.165)	63.15	77.29	1.20[298.]
O_2	8	15.9994(3)	0.50002	61.3	90.2	34.24	(1.801)	1.141(1.332)	54.36	90.20	1.22[271.]
F_2	9	18.9984032(5)	0.47372	65.0	97.4	32.93	(1.676)	1.507(1.580)	53.53	85.03	[195.]
Ne	10	20.1797(6)	0.49555	65.7	99.0	28.93	(1.724)	1.204(0.839)	24.56	27.07	1.09[67.1]
Al	13	26.9815386(8)	0.48181	69.7	107.2	24.01	1.615	2.699	933.5	2792.	
Si	14	28.0855(3)	0.49848	70.2	108.4	21.82	1.664	2.329	1687.	3538.	3.95
Cl_2	17	35.453(2)	0.47951	73.8	115.7	19.28	(1.630)	1.574(2.980)	171.6	239.1	[773.]
Ar	18	39.948(1)	0.45059	75.7	119.7	19.55	(1.519)	1.396(1.662)	83.81	87.26	1.23[281.]
Ti	22	47.867(1)	0.45961	78.8	126.2	16.16	1.477	4.540	1941.	3560.	
Fe	26	55.845(2)	0.46557	81.7	132.1	13.84	1.451	7.874	1811.	3134.	
Cu	29	63.546(3)	0.45636	84.2	137.3	12.86	1.403	8.960	1358.	2835.	
Ge	32	72.64(1)	0.44053	86.9	143.0	12.25	1.370	5.323	1211.	3106.	
Sn	50	118.710(7)	0.42119	98.2	166.7	8.82	1.263	7.310	505.1	2875.	
Xe	54	131.293(6)	0.41129	100.8	172.1	8.48	(1.255)	2.953(5.483)	161.4	165.1	1.39[701.]
W	74	183.84(1)	0.40252	110.4	191.9	6.76	1.145	19.300	3695.	5828.	
Pt	78	195.084(9)	0.39983	112.2	195.7	6.54	1.128	21.450	2042.	4098.	
Au	79	196.966569(4)	0.40108	112.5	196.3	6.46	1.134	19.320	1337.	3129.	
Pb	82	207.2(1)	0.39575	114.1	199.6	6.37	1.122	11.350	600.6	2022.	
U	92	[238.02891(3)]	0.38651	118.6	209.0	6.00	1.081	18.950	1408.	4404.	

Material Z A	$\langle Z/A \rangle$	Nucl.coll.	Nucl.inter.	Rad.len.	$dE/dx _{min}$	Density	Melting	Boiling	Refract.
		length λ_T	length λ_I	X_0	{ MeV	$\{g \text{ cm}^{-3}\}$	point	point	index
		$\int g \ cm^{-2}$	$\int g \ cm^{-2}$	$\int g \ cm^{-2}$	$q^{-1}cm^{2}l$	$(f_{\sigma}\ell^{-1})$	(K)	(K)	(@ Na I
1		ig cm l	ig cm j	ig cm j	g cm j	(18° J)	(11)	(11)	(0 14 1
Air (dry, 1 atm)	0.49919	61.3	90.1	36.62	(1.815)	(1.205)		78.80	
Shielding concrete	0.50274	65.1	97.5	26.57	1.711	2.300			
Borosilicate glass (Pyrex)	0.49707	64.6	96.5	28.17	1.696	2.230			
Lead glass	0.42101	95.9	158.0	7.87	1.255	6.220			
Standard rock	0.50000	66.8	101.3	26.54	1.688	2.650			
Methane (CH ₄)	0.62334	54.0	73.8	46.47	(2.417)	(0.667)	90.68	111.7	[444.]
Ethane (C ₂ H ₆)	0.59861	55.0	75.9	45.66	(2.304)	(1.263)	90.36	184.5	
Butane (C ₄ H ₁₀)	0.59497	55.5	77.1	45.23	(2.278)	(2.489)	134.9	272.6	
Octane (C ₈ H ₁₈)	0.57778	55.8	77.8	45.00	2.123	0.703	214.4	398.8	
Paraffin (CH ₃ (CH ₂) _{n≈23} CH ₃)	0.57275	56.0	78.3	44.85	2.088	0.930			
Nylon (type 6, 6/6)	0.54790	57.5	81.6	41.92	1.973	1.18			
Polycarbonate (Lexan)	0.52697	58.3	83.6	41.50	1.886	1.20			
Polyethylene ([CH ₂ CH ₂] _n)	0.57034	56.1	78.5	44.77	2.079	0.89			
Polyethylene terephthalate (Mylar)	0.52037	58.9	84.9	39.95	1.848	1.40			
Polymethylmethacrylate (acrylic)	0.53937	58.1	82.8	40.55	1.929	1.19			1.49
Polypropylene	0.55998	56.1	78.5	44.77	2.041	0.90			
Polystyrene ([C ₆ H ₅ CHCH ₂] _n)	0.53768	57.5	81.7	43.79	1.936	1.06			1.59
Polytetrafluoroethylene (Teflon)	0.47992	63.5	94.4	34.84	1.671	2.20			
Polyvinyltoluene	0.54141	57.3	81.3	43.90	1.956	1.03			1.58
Aluminum oxide (sapphire)	0.49038	65.5	98.4	27.94	1.647	3.970	2327.	3273.	1.77
Barium flouride (BaF ₂)	0.42207	90.8	149.0	9.91	1.303	4.893	1641.	2533.	1.47
Carbon dioxide gas (CO_2)	0.49989	60.7	88.9	36.20	1.819	(1.842)			[449.]
Solid carbon dioxide (dry ice)	0.49989	60.7	88.9	36.20	1.787	1.563	Sublimes	at 194.7	K
Cesium iodide (CsI)	0.41569	100.6	171.5	8.39	1.243	4.510	894.2	1553.	1.79
Lithium fluoride (LiF)	0.46262	61.0	88.7	39.26	1.614	2.635	1121.	1946.	1.39
Lithium hydride (LiH)	0.50321	50.8	68.1	79.62	1.897	0.820	965.		
Lead tungstate (PbWO ₄)	0.41315	100.6	168.3	7.39	1.229	8.300	1403.		2.20
Silicon dioxide (SiO ₂ , fused quartz)	0.49930	65.2	97.8	27.05	1.699	2.200	1986.	3223.	1.46
Sodium chloride (NaCl)	0.55509	71.2	110.1	21.91	1.847	2.170	1075.	1738.	1.54
Sodium iodide (NaI)	0.42697	93.1	154.6	9.49	1.305	3.667	933.2	1577.	1.77
Water (H_2O)	0.55509	58.5	83.3	36.08	1.992 1	.000(0.756)	273.1	373.1	1.33
Silica aerogel	0.50093	65.0	97.3	27.25	1.740	0.200	(0.03 H ₂	O, 0.97 Si	O ₂)

Lucia Di Ciaccio - ESIPAP IPM - January 2015

71

Neutron interactions

Electric charge of the neutron $n : q_n = 0$

 \implies The n interacts via « strong interaction » with nuclei (short range force ~ 10⁻¹³ cm)

Classification of neutrons:

Cold or ultracold neutrons	E _n < 0.025 eV
Thermal or slow neutrons	E _n ~ 0.025 eV
Intermediate neutrons	$E_n \simeq 0.025 \text{ eV} \div 0.1 \text{ MeV}$
Fast neutrons	E _n ~ 0.1 ÷ 10-20 MeV
High energy neutrons	E _n > 20 MeV

Main interaction processes of n: scattering (elastic and inelastic), absorption, fission hadron shower production depending on the neutron energy

Sometimes:Slow neutrons (slow neutrons) $E_n < \sim 0.5 \text{ MeV}$ Fast neutrons (fast neutrons) $E_n > \sim 0.5 \text{ MeV}$ E = 0.5 MeV = 'cadmium cutoff'

Neutron interactions

Important for detector: Deposited energy

- Deposited energy is what generates the signal in a particle detector
- The energy loss is never equal to the deposited energy as the radiated photons or the secondary particles may escape the medium
- Deposited energy is subjected to large stochastic fluctuations. (stopping power is the mean energy loss)
- If the medium is thin and the number of interactions is small, the deposited energy distribution is asymmetric : it is sometimes called a Landau distribution.
- If the medium is thick or the number of interactions is large, the deposited energy distribution tends to a Gaussian.
- There are no simple and exact analytical formulae to compute deposited energy.
- Nowadays, to estimate the energy deposited in a detector or more generally in a medium we use a Monte-Carlo program which simulates the propagation of the particle through matter : e.g. Geant4

Important for detection: Creation of electron-ion pairs

When the measured signal is a current or a charge liberated through ionizing interactions, it is useful to compute the **mean number of created electron-ion pairs**

$$n = \frac{\Delta E_{deposited}}{W}$$

where : W is the required mean energy to produce an e-ion pair

W > I (mean excitation and ionization potential)

In many gas W ~ 30 eV.

In semiconductor detectors (Ge, Si), W is much lower : e.g. W=3.6 eV for Si and W=2.85 eV for Ge

Better statistics \rightarrow better resolution

Lucia Di Ciaccio - ESIPAP IPM - January 2015

77

END

