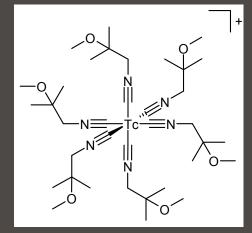


^{99m}Tc Production Development at TRIUMF


Paul Schaffer | Head, Nuclear Medicine | TRIUMF

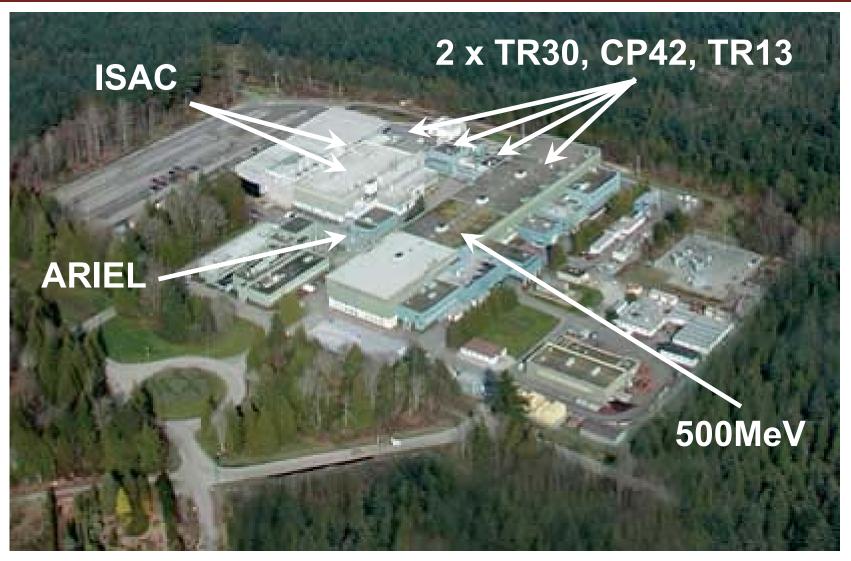
In Partnership with:

BC Cancer Agency; University of British Columbia; Lawson Health Research Institute; Centre for Probe Development and Commercialization

TRIUMF: A National Laboratory

Members

University of Alberta University of BC Carleton University University of Guelph University of Manitoba Université de Montréal Queen's University Simon Fraser University University of Toronto University of Victoria York University


Associate Members

University of Calgary McGill University McMaster University University of Northern BC University of Regina Saint Mary's University University of Winnipeg Western University

TRIUMF is owned and operated by a consortium of 19 universities Founded 47 years ago in Vancouver

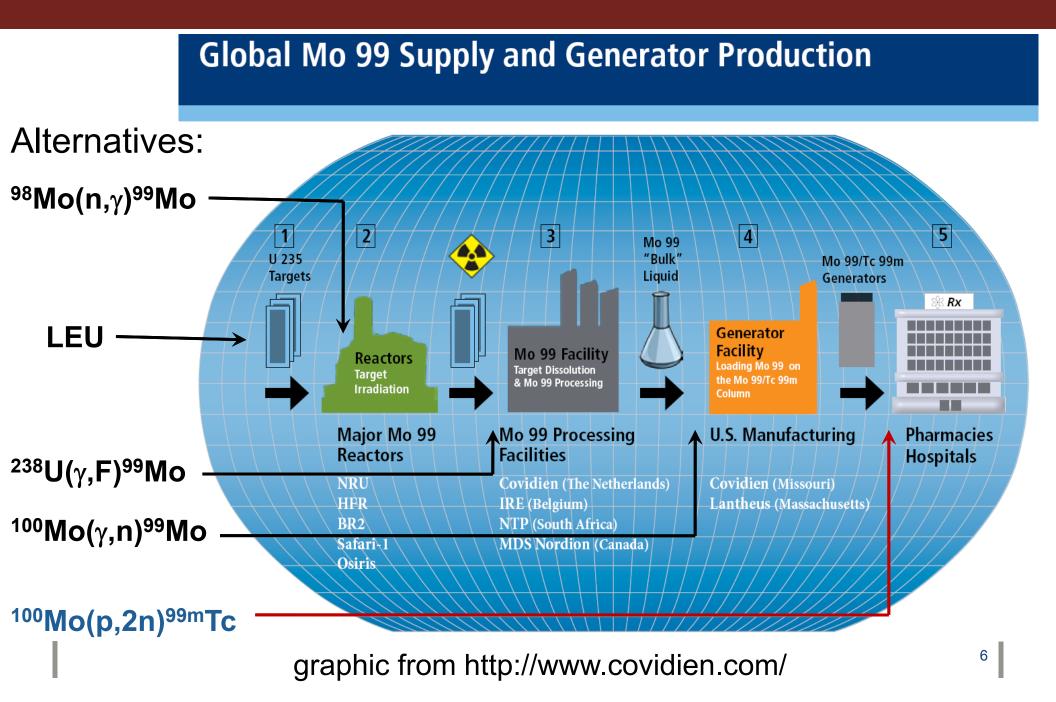
TRIUMF accelerators

- Deep expertise in: cyclotrons, targetry, radiochemistry
- Knowledge of large-scale production: i.e. Nordion (⁸²Rb, ¹²³I, ²⁰¹TI, ¹⁰³Pd...)
 - Vision: To implement multi-site ^{99m}Tc production

- Global demand for ⁹⁹Mo/^{99m}Tc ~ 40 million doses/yr
- 76,000 scans/day (>1 scan/second)
- \$1-3B industry

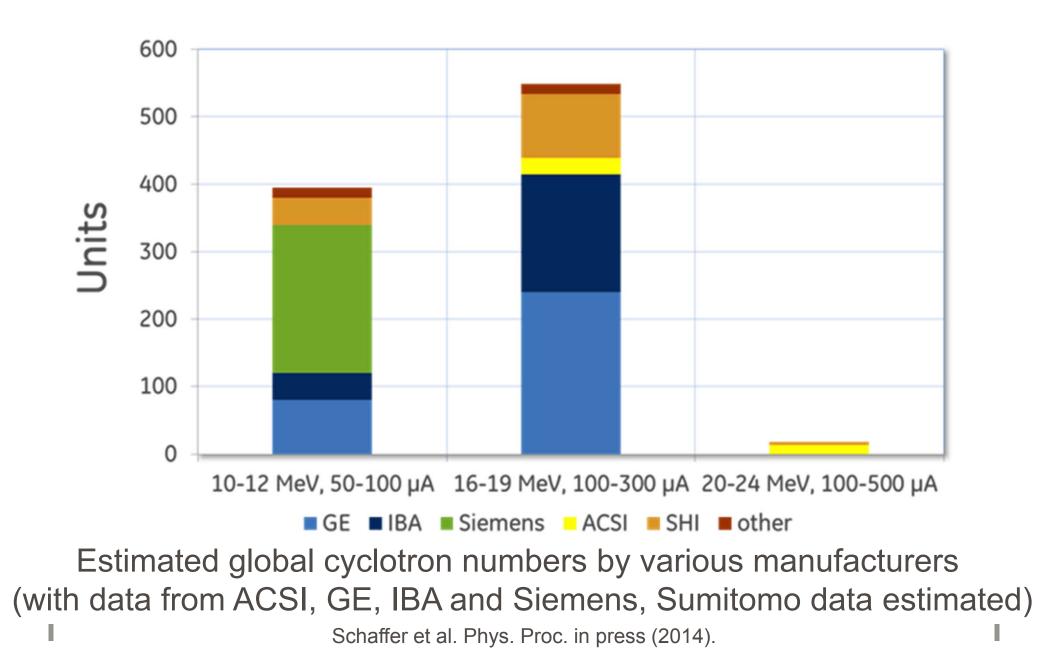
TRIUMF

- Overall, ~5 gov't owned reactors supply >95% of global demand
- 30-40% of global ⁹⁹Mo obtained from NRU in Canada
- Recent reactor outages: widespread shortages, cost fluctuations
- Technical and regulatory challenges for new suppliers
- Perceived issues with production capacity issues ceding to greater likelihood of processing capacity issues (2017)
- Future demands to increase (difficult to quantify)

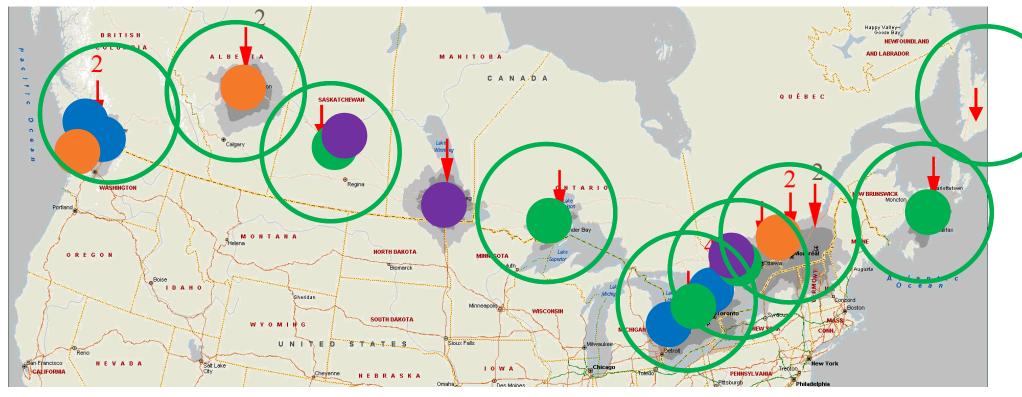


Ongoing Challenges with Reactor-Sourced ⁹⁹Mo/^{99m}Tc

- Ageing fleet, high maintenance/replacement cost (OSIRIS, NRU shutdown), PALLAS timeline
- Single point of failure vulnerability need reserve capacity
- Need to reduce reliance on HEU (downstream effects on yield, process and waste)
- Current economic model is insufficient for longterm sustainability
 - Requirement for full-cost recovery to allow market forces to exert themselves on supply chain



Tc-99m Alternatives: Many options



Cyclotrons By the Numbers

Decentralized ^{99m}Tc Production in Canada

- NRCan-funded ITAP* 4 years (ending 2016), \$25M, 3 proponents
- TRIUMF consortium,
- ERC consortium,
- CLS/PIPE effort ($^{100}Mo(\gamma,n)^{99}Mo$)
- Future cyclotron-^{99m}Tc sites

* cont. of NRCan-funded NISP – 2 years (ending 2012), \$35M

Team Equipment/Capabilities

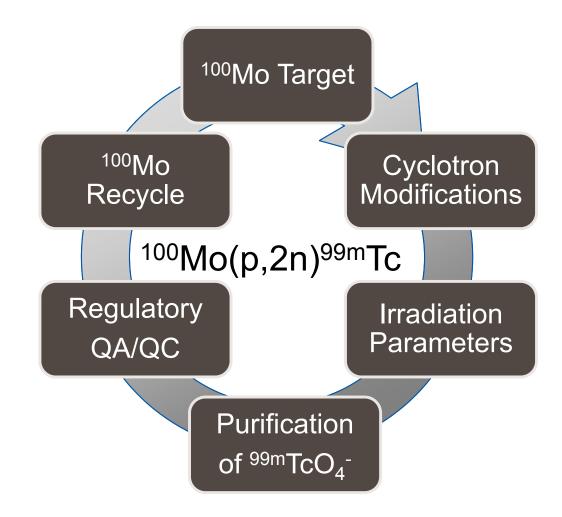
TR19 (vaulted), PETtrace (self-shielded, vaulted)

TR19 13-19 MeV, ≤200µA Upgraded to: 300 µA

GE PETtrace 16 MeV, ≤100 µA Upgraded to: 130 µA 2 x TR30 ≤30 MeV, ≤1mA

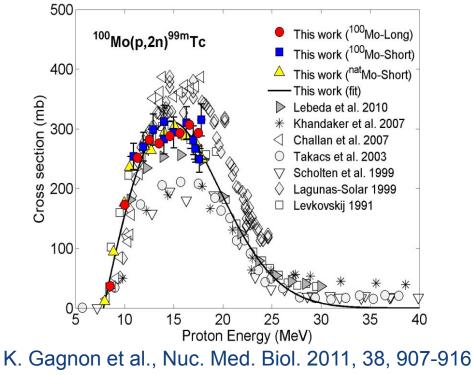
* Machines owned by Nordion, Inc., used under special agreement ⁹

RIVMF NRCan-funded Isotope Acceleration Technology Program (ITAP) - Project Goals


Goals

- Demonstrate routine, reliable, commercial-scale production of ^{99m}Tc via ¹⁰⁰Mo(p,2n) at each site;
- On multiple cyclotron brands found in Canada;
- To obtain regulatory approval for such ^{99m}Tc to be used in humans;
- Use the resulting production data to validate the business plan;
- Disseminate production information and commercialize the technology

Hypothesis: Future production will be from variety of sources (neutron, proton, electron) and market driven



Direct Production of ^{99m}**Tc**

1971-2009 Focus: Development, Uncertainty in ¹⁰⁰Mo(p,2n)

- First reported by Beaver and Hupf:
 - Foils, pressed powders at low current; natural and enriched Mo J. Beaver, H. Hupf, J Nucl Med 1971;12:739-741
- No motivation to pursue given avail. of ²³⁵U(n,F)⁹⁹Mo
- Progress limited to data refinement in subsequent years
 - Lagunas-Solar, Challan, Takács, Lebeda, Gagnon...

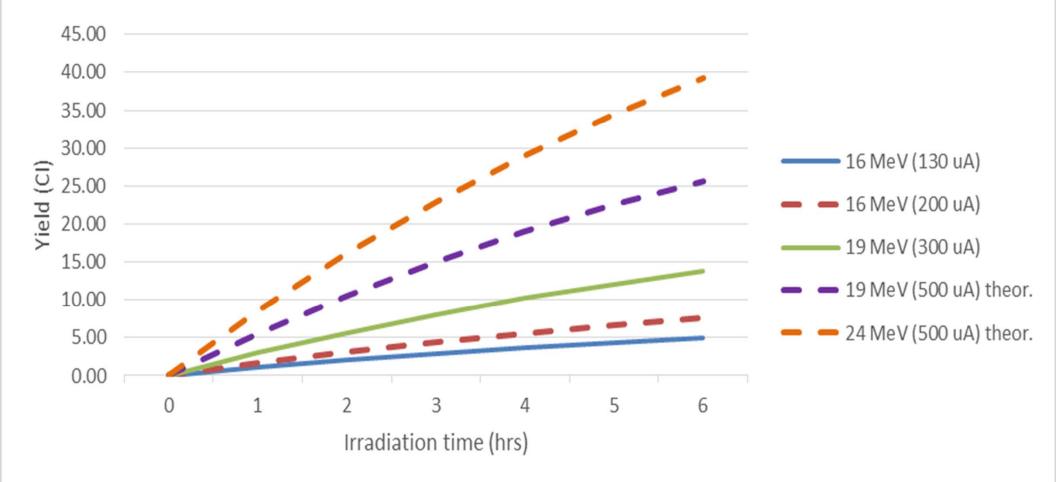
Consider also contributions from (p,x) on ¹⁰⁰Mo and ^{9x}Mo, etc.

TRIUMF Consortium Results Achieved to Date

- Production yields of ^{99m}Tc
 - GE PETTrace (16.5 MeV, 130 µA): 4.7 Ci in 6 hours
 - ACSI TR19 (18 MeV, 240 µA): 9.4 Ci in 6 hours
 - ACSI TR30 (24 MeV, 450 µA): 34 Ci in 6 hours
- Dual beam irradiation for concurrent ¹⁸F production demonstrated successfully
- Targets for all cyclotrons withstand prolonged (6h) irradiations without degradation at stated beam current
- Purification efficiency: 93%
- Molybdenum recycling efficiency: >95%

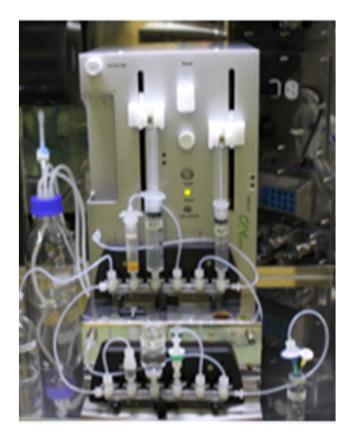
^{99m}Tc Production Targets for Multiple Cyclotrons

GE PETtrace 16.5 MeV, 130 μA Theoretical 4.9 Ci (6h) Achieved 4.7 Ci Satⁿ: 75.6 mCi/μA **TR19** 18 MeV, 300 μA Theoretical 15.4 Ci (6h) Achieved 9.4 Ci (@ 240 μA) Satⁿ: 103 mCi/μA **TR30 (@24 MeV)** 24 MeV, 500 μA Theoretical 39 Ci (6h) Achieved ~32 Ci (@ 450 μA) Satⁿ: TBD


Schaffer et al. Phys. Proc. in press (2015).

Bénard et al., J. Nucl. Med. 2014, 55, 1017-1022

Yield Comparison: Energy, Current Considerations


Production Yields

Automated Isotope Purification

Remote-operated separation system

SPE-based method:

- original work: Dowex[™] vs ABEC
- new alternative resin: ChemMatrix[™]
- Process Time: complete in <90 min.
- Efficiency Range: $92.7 \pm 1.1\%$
- Radiochemical Purity: >99.99% TcO₄
- **Trace analysis:** <10 Bq Mo-99, <5 ppm Al³⁺
- non-Tc impurities removed

Disposable fluid path for GMP

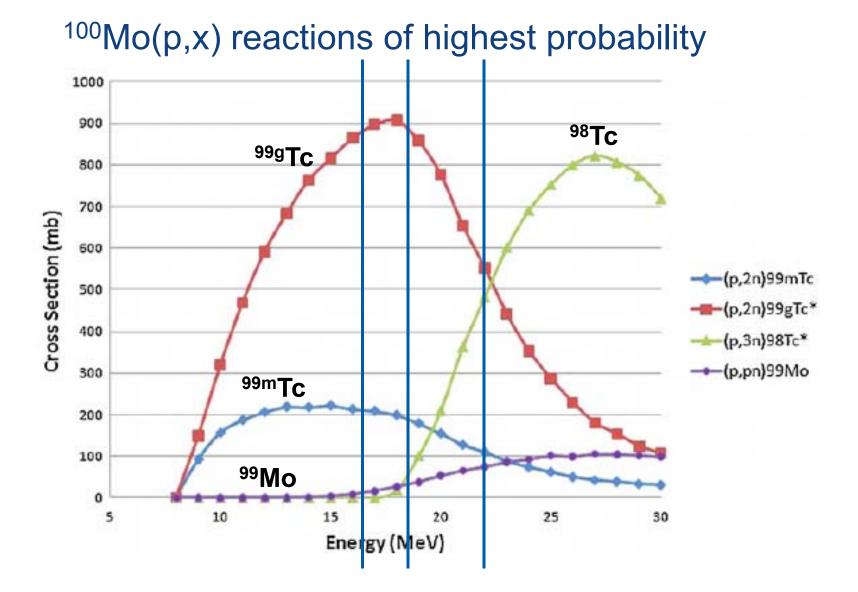
Inherent Resin Versatility: Vendor Agnostic

Morley et al. Nuc. Med. Biol. 2012, 551-559 Bénard et al., J. Nucl. Med. 2014, 55, 1017-1022

REGULATORY Aspects of Cyclotron-Produced ^{99m}TcO₄ – Ongoing Work

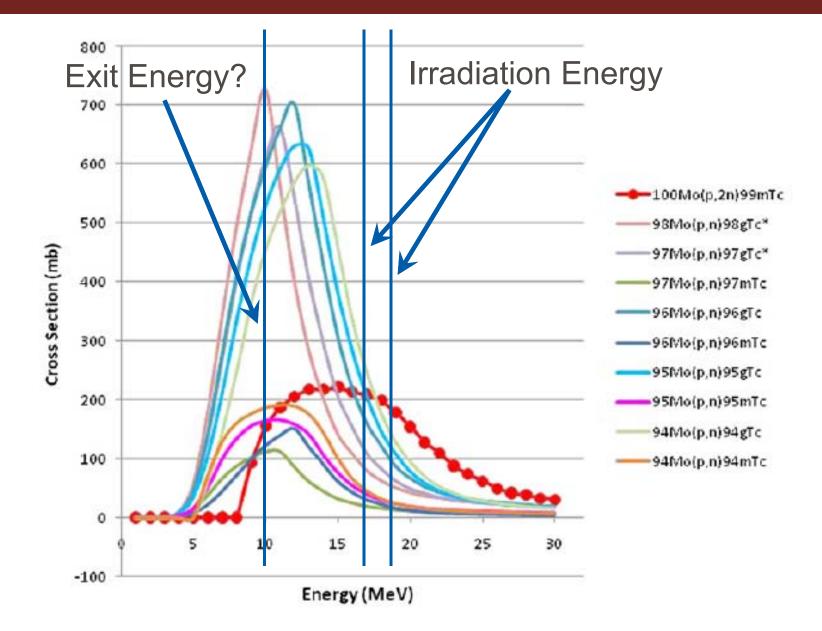
- GLP preclinical rodent data (complete)
- Finalize GMP production process (complete)
- Set acceptance for molybdenum enrichment and irradiation parameters (underway)
 - Shelf life, irradiation parameters are based on projected patient dose (objective <10% add'l vs. pure ^{99m}Tc)
 - Enrichment and irradiation parameters are interrelated and should not be considered independently
- Fall 2014 Clinical trial application (underway)
- June Aug. 2015 Collect clinical trial data
 - Na^{99m}TcO₄ 60 patient trial
 - Recent guidance: look at two kit formulations
- Fall 2015 NDS submission

- Quality Control: Decentralized production inherently leads to a greater likelihood of product variability, dose uncertainty
- Regulatory: Considerations need to include target isotopic enrichment, but also batch-tobatch target consistency, irradiation energy/duration, shelf-life (patient dose)
- Economic: Arguments in one region may not apply in others but FCR must apply
- Availability: A viable alternative/backup needs to be used regularly

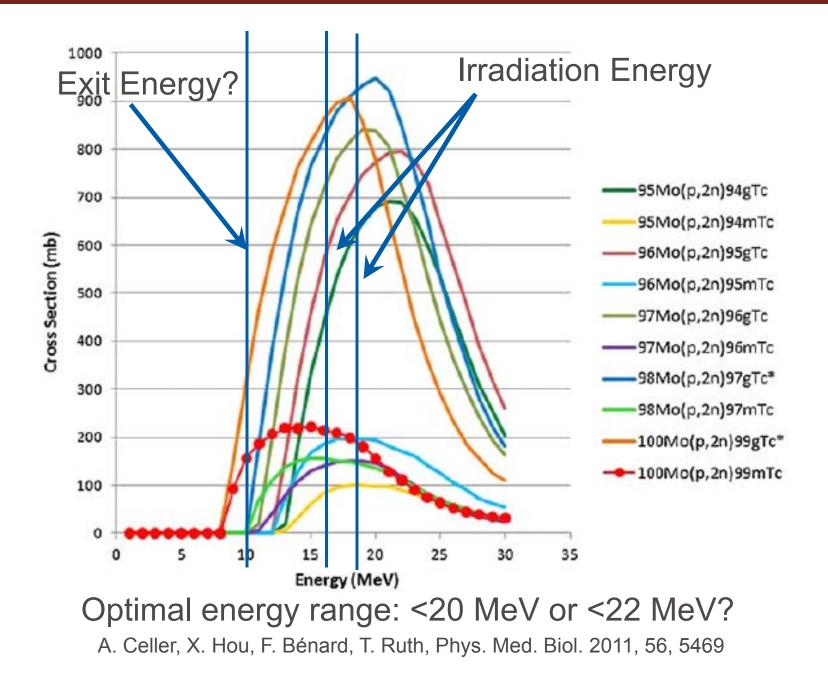

Regulatory Approach

• Path to CTA, NDS in Canada

- Despite acknowledgement of GPP and CPP from toxicology standpoint, ANDS not possible due to lack of reference product
- Downward pressure on patient dose limits
- Supported CPP monograph statements regarding kit useage with appropriate data
- Request by Health Canada for pre-CTA meetings
- 3 meetings to date:
 - Approval of pre-clinical study approach (rodent) for CTA and commercial registration
 - Approval of clinical trial design 60 patients
 - will examine consistency across sites
 - Agreement that toxicology study not necessary for CTA or commercial registration

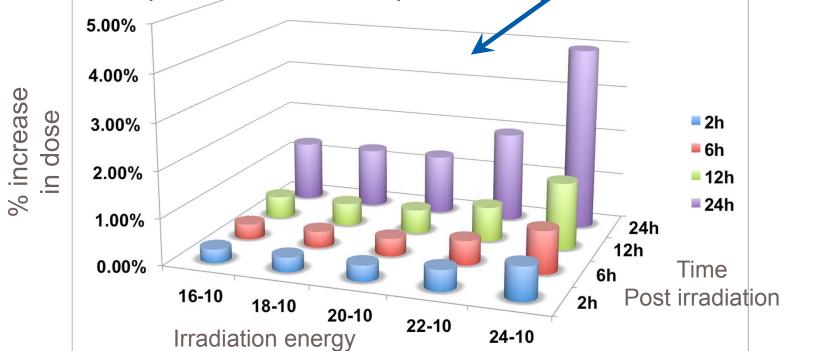

Consistent Products/Yields

A. Celler, X. Hou, F. Bénard, T. Ruth, Phys. Med. Biol. 2011, 56, 5469 K Gagnon et al. Nuc. Med. Biol. 2011, 38, 907


Side Reactions: 94-97 Mo(p,n)

A. Celler, X. Hou, F. Bénard, T. Ruth, Phys. Med. Biol. 2011, 56, 5469

Side Reactions: ⁹⁴⁻⁹⁷Mo(p,2n)



TRIUMF_

Target Enrichment and issues with Mo isotopic contamination

lantono		Enriched					
Isotope	Α	В	С	D	Natural		
⁹² Mo	0.005	0.006	0.09	0.003	14.85		
⁹⁴ Mo	0.005	0.0051	0.06	0.003	9.25		
⁹⁵ Mo	0.005	0.0076	0.1	0.003	15.92		
⁹⁶ Mo	0.005	0.0012	0.11	0.003	16.68		
⁹⁷ Mo	0.01	0.0016	0.08	0.003	9.55		
⁹⁸ Mo	2.58	0.41	0.55	0.17	24.13		
¹⁰⁰ Mo	97.39	99.54	99.01	99.815	9.63		

% increase in patient radiation exposure vs. pure ^{99m}Tc-Sestamibi

23

	Measured radionuclidic content at EOB for Tc Isot ¹⁰⁰ Mo after 1.5 hr, 100µA 18-10 MeV irradiation							
		,	•		93			
final product			waste	stream	93			
	radionuclide	% activity	radionuclide	% activity	94			
	Tc-99m	99.940(4)	Mo-99	0.78(42)	94			
		0.002(4)		0.00(2)				

Tc-99m	99.940(4)	Mo-99	0.78(42)
Tc-97m	0.003(4)	Nb-96	0.06(3)
Tc-96g	0.002(1)	Nb-97	4.0(2.9)
Tc-95m	<0.0001		
Tc95g	0.009(5)		
Tc-94m	0.044(12)		
Tc-94g	0.012(4)		
Tc-93g	0.007(4)		

Radionuclidic purity: HPGe gamma spectrometer

• 3, 24, 145 and >720 hrs EOB

TRIUMF

• Waste vials were taken at 4-6 hours after EOB

	Estimated effective				
otope	dose				
	mSv/MBq				
^{93m} Tc	0.00873				
^{93g} Tc	0.00782				
^{94m} Tc	0.051				
^{94g} Tc	0.0966				
^{95m} Tc	0.187				
^{95g} Tc	0.0777				
^{96m} Tc	0.00179				
^{96g} Tc	0.446				
^{97m} Tc	0.0145				
^{99m} Tc	0.00925				

*Calculated with OLINDA/EXM for a 70-kg adult patient using bio-distribution data from ICRP publication 53. 24

Target /Cyclotron Consistency

- Method for quantifying relationships between random variations in production parameters, including ¹⁰⁰Mo target thicknesses and proton beam currents, and reproducibility of absolute ^{99m}Tc yields
- Achieving less than 20% variability in ^{99m}Tc yields will require highly-reproducible target thicknesses and cyclotron performance.
- achieving service rates of 84.0%, 97.5%, and 99.9% with 20% variations in target thicknesses requires producing on average 1.2, 1.5, and 1.9 times the minimum daily activity requirement

Graphical User Interface (GUI) for Yield and Dose Projections

<mark>8</mark> СрҮД_1	_	_	_	_						
Cyc	otron Prod	ducts' Yi	ields & Dose	s						
Yield Calculation	Spectru	m Analysi	s Dosimetry	Estimation						
Reaction Inputs Reaction Conditions Current (µA) : 100	Current: 1.00E+02		Advanced	Features	.					
Irradiation Time (h) : 3 Time after EOB (h) : 0 - 10 Incident Energy (MeV): 18	EOB Time: 1.00E+ Energy: 1.80E+01 Target: 99.01% Mc Products= all Tc		Cyclot	ron Products	s' Yield	s & Doses				
Target Information	Results of Yie	Yield	Calculation	Spectrum Ana	alysis	Dosimetry E	stimation			
Choose Target Display Name: 99.01% Mo-100 target	0 hc Tc91m	MIBI 👻	Isotope Activities	Yield Calculations	Dose Resu	pure Tc99m	mix Tc di	fference(%)		
Eff. Thickness (g/cm2): 0.439572 Or Exit Energy (MeV) : 10	Tc91g Tc92 7.22 Tc93m 3.66	Residence	3h after EOB		Adrenals Brain	4.0904e+02 1.6081e+02	4.4671e+02 1.7571e+02	9.21 9.27		
Exit Energy (MeV) : 10 Calculate Yields for : O All Products	Tc93g 1.25 Tc94m 2.11	Time	half-life(h) Tc91m 0.0550	Activity(GBq) at3h after EO	Breasts GB Wall LLI Wall	1.3895e+02 5.6516e+02 1.4363e+03	1.5384e+02 6.1421e+02 1.5404e+03	10.72 8.68 7.24		
All Products All Technetium All Impurities	Tc94g 3.51 Tc95m 6.19 Tc95g 1.54;	S-Factor	Tc91 0.0517 Tc92 0.0780	1.9090e-1	SI StomWall ULI Wall	1.1397e+03 3.4971e+02 1.9749e+03	1.2160e+03 3.8389e+02 2.0887e+03	6.70 9.77 5.76		
Output Display	Tc96m 2.91 Tc96g 3.58 Tc97m 1.30	RUN	Tc93m 0.7250 Tc93 2.7500 Tc94m 0.8667	0.002 0.063 0.019	Hrt Wall Kidneys	4.2309e+02 2.6541e+03 5.7843e+02	4.5430e+02 2.7903e+03 6.2309e+02	7.38		
Activities (GBq) Number of Nuclei	Tc97g Tc98 Tc99m 1.102	All	Tc94 4.8833 Tc95m 1464 Tc95 20	0.229 6.1886e-0 0.139	Liver Lun Mus	Target_sel		7.72		
RUN CLEAR	Tc99g Tc100 1.732	Results	Tc96m 0.8583 Tc96 102.7000 Tc97m 2194	0.025 0.037 0.001	Ovar Panci RedN		Targe	t Select	ion	
	Tc101 3.42		Tc97 3.7000e+10 Tc98 3.7000e+10	0.001	Ostec Ski	Target	List	Та	rget Com	positions
All Results			Tc99m 6 Tc99 1.8396e+09	78.061	Test 9	Create a new targ 19.01% Mo-100 ta 17.39% Mo-100 ta	rget		42 92	
			Tc100 0.0043 Tc101 0.2334	5.3488e-20 4.6260e-0	Thyr N	Vatural Mo target 19.815% Mo-100 t		3	42 94 42 95	0.1000
					Uter Totali			5	42 96 42 97	0.0800
						Save to Tar	aet List		42 98 42 100	
	Deve	loped		ler, X. Hou	L et al	Clear Selete		Sav	e Data	Quit

Economics

- Assessments of 16, 19 and 24 MeV operations
- Activitiy-based costing model with 3 phases:
 - i) plate manufacturing and Mo-100 recycling
 ii) irradiation, dissolution and purification
 iii) target plate and Tc-99m distribution + indirect
- Activities: Materials, salaries/benefits, power/utilities, equipment, waste, process failure and training.
- Indirect costs: wages, admin(sales, general), regulatory and capital.
- Amortization for most lab equipment was 3 to 7 years (usually 7), except cyclotron (25 years) and building (40 years)
- Production rate: 2.8 GBq/uA at saturation
- Injected doses: 20 mCi;
- ¹⁰⁰Mo: \$0.50/mg
- Activity losses: 65%, average wait time of 9hrs between EOB and injection

Acknowledgements

The Team:

Pls: F. Bénard, T. Ruth, A. Celler, J. Valliant, M. Kovacs,

Ken Buckley, Stuart McDiarmid, Anne Goodbody, Tom Morley, Milan Vuckovic, Guillaume Langlois, Wade English, Jesse Tanguay, Frank Prato,

TRIUMF and BCCA machine shops

Vicky Hanemaayer, Stefan Zeisler, Joe McCann, Julius Klug, Patrick Ruddock, Jeff Corsault, Constantinos Economou

Brian Hook, Frank Prato, Conny Hoehr, Philip Tsao, Maurice Dodd, Xinchi Hou, Ross Harper,

Canada

Natural Resources Ressources naturelles Canada

anada

Finances/Admin •

Henry Chen, Francis Pau, Jenny Song, Steven Foster, Frank Gleeson, James Schlosser, Jim Hanlon, Ann Fong, Neil McLean, Kevin McDuffie, Niki Martin, Karen Young

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Thank you!Matral Resources
CanadaMatural Resources
CanadaMatural Resources
CanadaMatural Resources
Canada

With support from: GE, Nordion, AAPS, others

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada TRIUMF: Alberta | British Columbia | Calgary Carleton | Guelph | Manitoba | McMaster Montréal | Northern British Columbia | Queen's Regina | Saint Mary's | Simon Fraser | Toronto Victoria | Winnipeg | York

