

A compact, low-energy accelerator for medical radioisotope production — yields and isotopic purity

W. Webstera, G.T. Parksa, D. Titovb, P. Beasleyc, O. Heidd

- ^a Engineering Design Centre, University of Cambridge
- ^b Siemens OOO, Power Generation Services DGC PM, Moscow
- ^c Siemens PLC, Business Development R&D, Oxford
- ^D Siemens AG, Corporate Technology NTF HTC, Erlangen

Contents

- The needs of nuclear medicine
- The challenges
- A low-energy, compact solution
- Current findings
- Future prospects

Radionuclides in nuclear medicine

A large range of radionuclides are utilised in nuclear medicine (NM)

Diagnostic imaging		
SPECT	⁶⁷ Ga, ^{81m} Kr, ^{99m} Tc, ¹¹¹ In, ¹²³ I, ¹³³ Xe, ²⁰¹ TI, ¹³¹ I, ¹⁷⁷ Lu	
PET	Short-lived	Long-lived
	¹¹ C, ¹³ N, ¹⁵ O, <u>¹⁸F</u> , ⁶⁸ Ga, ⁸² Rb	⁴⁴ Sc, ⁶⁴ Cu, ⁷⁶ Br, ⁸⁶ Y, ⁸⁹ Zr, ¹²⁴ I
Radiotherapy		
β ⁻ emitters	³² P, ⁸⁹ Sr, ⁹⁰ Y, ¹³¹ I, ¹⁵³ Sm, ¹⁶⁶ Ho, ¹⁷⁷ Lu, ¹⁶⁹ Er, ¹⁸⁶ Re, ¹⁸⁸ Re	
α emitters	²¹² Pb, ^{212,213} Bi, ²¹¹ At, ^{223,224} Ra, ²²⁵ Ac, ²²⁷ Th, ²³⁰ U	

- Nuclear medicine is dominated by 99mTc
 - Used in approximately 75-85% of all diagnostic scans in NM
 - Its dominance arose from its availability and utility

The challenges

- There have been serious shortages in supply
 - Unexpected shut-downs of the National Research Universal (NRU) reactor in Canada and the High Flux Reactor (HFR) in the Netherlands (2008-2010)
 - Reduced available ^{99m}Tc supply by ~70%
 - Nuclear medicine 'brought to a standstill overnight!'
 - More shortages are expected, as aging research reactors are closing with uncertainty still surrounding their replacement

The industry needs **security of supply** to continue growing confidently

- As the uptake and needs of nuclear medicine expand and diversify
 - Production of current isotopes must increase
 - Range of available isotopes must expand

How can we provide this increased availability?

A low-energy, compact solution?

- In collaboration with the STFC, Siemens are developing a particle accelerator for radionuclide production
 - A novel, compact DC electrostatic accelerator based on the original Cockcroft-Walton design
 - High current (10 MeV protons, 5 MeV deuterons, ~5 mA)
 - Spatial foot print of < 2 m²
 - Multiple beam lines

A localised production system?

- Rather than rely solely on a centralised production system, could we produce more radionuclides locally?
 - One production facility would provide for a small number of hospitals
 - Radionuclides could be produced on-site, on-demand, minimal transportation
 - Easier to obtain new and novel radionuclides
 - Shorter-lived radionuclides to increase patient throughput
 - Offer new diagnostic and therapeutic techniques

- What would be the requirements on such a system?
 - Produces sufficient quantities of medically important radionuclides
 - High elemental and isotopic purity
 - Ease of operation
 - Low cost of ownership

Computational methods for assessing low-energy production

 Programs such as TALYS, EMPIRE and ALICE/ASH can be used to generate 'excitation functions' or cross-sections

- In this work TALYS (v1.6), and SRIM have been used
- Estimates have been made of the radionuclidic yields from a reaction
 - Target isotope
 - Isotopic and elemental impurities

Theoretical calculations – some words of caution...

- TALYS is not always accurate
 - Cross-sections usually compare well to experimental data
 - Experimental data not always available
 - Unwanted side-reaction e.g. p,2n or p,3n, reactions are particularly problematic
 - Sometimes considerable conflict between experimental data sets e.g. ¹⁰⁰Mo(p,2n)
 - Predicted yields—even those based on experimental cross-sections—still vary from experimental yields
 - Some have commented that "yield does not scale linearly with current"
 - Sometimes TALYS does strange things....

What radionuclides have been assessed?

■ The production of several different isotopes have been considered, with a main focus on the following

89**Z**r

- PET isotope, half-life of 78.41 hrs
 - Longer half-life makes it ideal for labelling monoclonal antibodies (mAbs) for immunoPET

- Considered the ⁸⁹Y(p,n) reaction
 - Ep = 10→4 MeV, 1 hr irradiation at 1 mA
- Could produce up to 320 mCi
- Avoids production of long-lived ⁸⁸Zr, recently identified as a significant impurity at higher energies

64**C***u*

- Decays by β⁻ (38.5%) and β⁺ (17.6%), half-life of 12.7 hrs
 - Dual functionality radioisotope
 - PET and radiotherapy

- Considered the ⁶⁴Ni(p,n) reaction
 - Ep = 10→3 MeV, 1 hr irradiation at 1 mA
 - 99.32% target enrichment
- Could produce up to 8000 mCi
- Avoids co-production of the stable ⁶³Cu

¹⁰³Pd

- Radiotherapy isotope, half-life of 16.991 days
 - Decays primarily by electron capture

- Considered the ¹⁰³Rh(p,n) reaction
 - Ep = 10→5 MeV, 1 hr irradiation at 1 mA
- Can produce up to 98 mCi
- Some co-production of the stable ¹⁰²Pd which reduces the radioisotopic purity
 - Reduction in beam energy can reduce/eliminate production, at the cost of activity

^{99m}**Tc**

SPECT isotope, half-life of 6 hrs

- Considered the ¹⁰⁰Mo(p,2n) reaction
 - Ep = 10→8 MeV, 1 hr irradiation at 1 mA
- Can produce up to 900 mCi
- Avoid co-production of long-lived ⁹⁸Tc
- Primary impurity is the isomeric state 99gTc
 - 2:1 ratio of ^{99g}Tc to ^{99m}Tc
 - Better than at higher energy irradiation

What other radionuclides do we know can be produced?

- Short-lived PET radionuclides
 - ¹⁸F, ¹⁵O, ¹³N, ¹¹C
 - Are already/can be produced from accelerators using protons and deuterons in the applicable energy range

What does this mean for the Siemens accelerator?

- These yields would be suitable for a localised radionuclide production system
 - Sufficient for supplying a small hospital/nuclear medicine facility
 - Longer irradiation times/higher currents can cater for larger/more facilities
 - Beam splitting would allow for production of multiple nuclides simultaneously
- Localised production can offer
 - Simplified infrastructure
 - Greater nuclear medicine flexibility
 - Increased patient throughput through use of shorter half-life isotopes

Acknowledgements

Dr Geoff Parks

Siemens – Prof. Paul Beasley, Prof. Oliver Heid, Dmitry Titov

RAL and the STFC

Any questions?

Alternatively...

William Webster: wdw24@cam.ac.uk