A compact, low-energy accelerator for medical radioisotope production — yields and isotopic purity # W. Webstera, G.T. Parksa, D. Titovb, P. Beasleyc, O. Heidd - ^a Engineering Design Centre, University of Cambridge - ^b Siemens OOO, Power Generation Services DGC PM, Moscow - ^c Siemens PLC, Business Development R&D, Oxford - ^D Siemens AG, Corporate Technology NTF HTC, Erlangen # **Contents** - The needs of nuclear medicine - The challenges - A low-energy, compact solution - Current findings - Future prospects ### Radionuclides in nuclear medicine A large range of radionuclides are utilised in nuclear medicine (NM) | Diagnostic imaging | | | |-------------------------|--|---| | SPECT | ⁶⁷ Ga, ^{81m} Kr, ^{99m} Tc, ¹¹¹ In, ¹²³ I, ¹³³ Xe, ²⁰¹ TI, ¹³¹ I, ¹⁷⁷ Lu | | | PET | Short-lived | Long-lived | | | ¹¹ C, ¹³ N, ¹⁵ O, <u>¹⁸F</u> , ⁶⁸ Ga, ⁸² Rb | ⁴⁴ Sc, ⁶⁴ Cu, ⁷⁶ Br, ⁸⁶ Y, ⁸⁹ Zr, ¹²⁴ I | | Radiotherapy | | | | β ⁻ emitters | ³² P, ⁸⁹ Sr, ⁹⁰ Y, ¹³¹ I, ¹⁵³ Sm, ¹⁶⁶ Ho, ¹⁷⁷ Lu, ¹⁶⁹ Er, ¹⁸⁶ Re, ¹⁸⁸ Re | | | α emitters | ²¹² Pb, ^{212,213} Bi, ²¹¹ At, ^{223,224} Ra, ²²⁵ Ac, ²²⁷ Th, ²³⁰ U | | - Nuclear medicine is dominated by 99mTc - Used in approximately 75-85% of all diagnostic scans in NM - Its dominance arose from its availability and utility # The challenges - There have been serious shortages in supply - Unexpected shut-downs of the National Research Universal (NRU) reactor in Canada and the High Flux Reactor (HFR) in the Netherlands (2008-2010) - Reduced available ^{99m}Tc supply by ~70% - Nuclear medicine 'brought to a standstill overnight!' - More shortages are expected, as aging research reactors are closing with uncertainty still surrounding their replacement The industry needs **security of supply** to continue growing confidently - As the uptake and needs of nuclear medicine expand and diversify - Production of current isotopes must increase - Range of available isotopes must expand How can we provide this increased availability? # A low-energy, compact solution? - In collaboration with the STFC, Siemens are developing a particle accelerator for radionuclide production - A novel, compact DC electrostatic accelerator based on the original Cockcroft-Walton design - High current (10 MeV protons, 5 MeV deuterons, ~5 mA) - Spatial foot print of < 2 m² - Multiple beam lines # A localised production system? - Rather than rely solely on a centralised production system, could we produce more radionuclides locally? - One production facility would provide for a small number of hospitals - Radionuclides could be produced on-site, on-demand, minimal transportation - Easier to obtain new and novel radionuclides - Shorter-lived radionuclides to increase patient throughput - Offer new diagnostic and therapeutic techniques - What would be the requirements on such a system? - Produces sufficient quantities of medically important radionuclides - High elemental and isotopic purity - Ease of operation - Low cost of ownership # Computational methods for assessing low-energy production Programs such as TALYS, EMPIRE and ALICE/ASH can be used to generate 'excitation functions' or cross-sections - In this work TALYS (v1.6), and SRIM have been used - Estimates have been made of the radionuclidic yields from a reaction - Target isotope - Isotopic and elemental impurities ### Theoretical calculations – some words of caution... - TALYS is not always accurate - Cross-sections usually compare well to experimental data - Experimental data not always available - Unwanted side-reaction e.g. p,2n or p,3n, reactions are particularly problematic - Sometimes considerable conflict between experimental data sets e.g. ¹⁰⁰Mo(p,2n) - Predicted yields—even those based on experimental cross-sections—still vary from experimental yields - Some have commented that "yield does not scale linearly with current" - Sometimes TALYS does strange things.... #### What radionuclides have been assessed? ■ The production of several different isotopes have been considered, with a main focus on the following #### 89**Z**r - PET isotope, half-life of 78.41 hrs - Longer half-life makes it ideal for labelling monoclonal antibodies (mAbs) for immunoPET - Considered the ⁸⁹Y(p,n) reaction - Ep = 10→4 MeV, 1 hr irradiation at 1 mA - Could produce up to 320 mCi - Avoids production of long-lived ⁸⁸Zr, recently identified as a significant impurity at higher energies ## 64**C***u* - Decays by β⁻ (38.5%) and β⁺ (17.6%), half-life of 12.7 hrs - Dual functionality radioisotope - PET and radiotherapy - Considered the ⁶⁴Ni(p,n) reaction - Ep = 10→3 MeV, 1 hr irradiation at 1 mA - 99.32% target enrichment - Could produce up to 8000 mCi - Avoids co-production of the stable ⁶³Cu ## ¹⁰³Pd - Radiotherapy isotope, half-life of 16.991 days - Decays primarily by electron capture - Considered the ¹⁰³Rh(p,n) reaction - Ep = 10→5 MeV, 1 hr irradiation at 1 mA - Can produce up to 98 mCi - Some co-production of the stable ¹⁰²Pd which reduces the radioisotopic purity - Reduction in beam energy can reduce/eliminate production, at the cost of activity ## ^{99m}**Tc** SPECT isotope, half-life of 6 hrs - Considered the ¹⁰⁰Mo(p,2n) reaction - Ep = 10→8 MeV, 1 hr irradiation at 1 mA - Can produce up to 900 mCi - Avoid co-production of long-lived ⁹⁸Tc - Primary impurity is the isomeric state 99gTc - 2:1 ratio of ^{99g}Tc to ^{99m}Tc - Better than at higher energy irradiation # What other radionuclides do we know can be produced? - Short-lived PET radionuclides - ¹⁸F, ¹⁵O, ¹³N, ¹¹C - Are already/can be produced from accelerators using protons and deuterons in the applicable energy range ### What does this mean for the Siemens accelerator? - These yields would be suitable for a localised radionuclide production system - Sufficient for supplying a small hospital/nuclear medicine facility - Longer irradiation times/higher currents can cater for larger/more facilities - Beam splitting would allow for production of multiple nuclides simultaneously - Localised production can offer - Simplified infrastructure - Greater nuclear medicine flexibility - Increased patient throughput through use of shorter half-life isotopes # **Acknowledgements** **Dr Geoff Parks** Siemens – Prof. Paul Beasley, Prof. Oliver Heid, Dmitry Titov RAL and the STFC # Any questions? Alternatively... William Webster: wdw24@cam.ac.uk