

Laser-acceleration of protons for the production of radioisotopes

Compact Accelerators for Isotope Production

Rob Clarke Central Laser Facility STFC Rutherford Appleton Laboratory

Science & Technology Facilities Council Central Laser Facility

Talk Outline

- Proton acceleration through Target Normal Sheath Acceleration (TNSA)
- Prior work on radioisotope production from laser-accelerated protons
- Recent ^{99m}Tc investigations & potential issues
- · Technologies required for realisation
- Future work
- Conclusions

Goals for laser-accelerated ions

Primary research area is towards oncology:

High E – 250 MeV Small energy spread Low divergence High uniformity

Currently achievable:

Low E – up to 60MeV Broad energy spread high divergence – 10's degrees Moderate uniformity

K. Leddingham et al 2004 J. Phys. D: Appl. Phys. 37 2341

Production of radioisotopes

Previous studies have investigated laser-accelerated protons for PET isotope production (¹¹C, ¹³N, ¹⁵O, ¹⁸F)....

Several groups report calculations for patient level PET doses (GBq) which could be achieved with laser repetition rates of ~10Hz (operating at 50-100J).

EXPERIMENTAL PRODUCTION OF 99M-TC

- In early 2013 we were approached by the UK's Dept of Health (now NHS England) following OECD (Organisation for Economic Co-operation and Development) reports.
 - Could Lasers offer a potential source of radioisotopes specifically ^{99m}Tc
 - What could the REAL deliverables be on a 5yr timescale
 - Competitiveness to alternate technologies
 - Medium / long term options

Experiment

Protons incident upon a 1mm thick Nat Mo sample 50mm from target.

Nat Mo sample extracted and measured in a Ge detector for both emission spectrum and half life

Clear 140keV ^{99m}Tc emission observed from the ¹⁰⁰Mo (p,2n) ^{99m}Tc reaction & excellent half-life match. Single shot irradiation on NAT Mo.

Based on a 10Hz system (technology exists now) operating at the levels produced, saturation yields of 25GBq can be achieved using ~95% enriched ¹⁰⁰Mo.

0.8GBq patient doses exceeded after <20 min exposure times.

Optimisation of proton beam could improve these figures, as would an increase in rep rate or delivered energy

Science & Technology Facilities Council Central Laser Facility

Contaminants

Sample enrichment, irradiation E, irradiation time, elapsed time from Irradiation all contribute to Contaminants

Primary (p,n) reactions

Primary (p,2n) reactions

Science & Technology Facilities Council Central Laser Facility

Overall contaminants

A. Celler et al 2011 Phys. Med. Biol. 56 5469

For cyclotron use, 16-19MeV has been identified as the optimal energy range and has been demonstrated* with enriched targets.

How do the contaminants favour with broad-band? Is there an acceptable ΔE ?

Need to look at this in more detail.

F Benard *et al*; Implementation of Multi-Curie production of 99mTc by Conventional Medical Cyclotrons; J Nucl Med 2014; 55:1017-1022

Planned measurements

Modify existing CLF ion spectrometers with adjustable slits for energy and bandwidth selection

Can then measure the relative cross sections & generated contaminants in single shot mode as a function of E and ΔE

TECHNOLOGIES

THE LASER

Existing / in-build (relevant) laser systems

Commercial...
Research institutes...
National Labs....

Peak Power requirements

Average Power Requirements

100J DiPOLE concept

100J DiPOLE reality

TARGETS

High Reteption Targetry

Tape drives not ideal

Colliding Liquid droplets show the potential to form thin targets with limited debris

Pergamalis H 2002 PhD Thesis, Imperial College

Cryogenic Hydrogen

Continuously extruded Cryo H target 100µ and 50µ thick (1mm wide) extruded over 7hr period

Working towards thinner targets

S. GARCIA, D. CHATAIN, AND J. P. PERIN Laser and Particle Beams (2014), 32, 569–575.

Liquid crystals

Liquid crystals laid using "wiper blade". Potential for high repetition rate Very new!!

- Continued technology developments
- Modelling of contaminants with broad-band source
 - Impact
 - Modified spectrum & subsequent impact?
 - Looking for collaboration.....

- Cross section & contaminant measurements
 - Assess single-shot flux available as function of bandwidth

Conclusions

- First demonstration of 99mTc generation from laser systems.
- Scaling to 10Hz could derive patient doses
- Contaminants are the primary issue:
 - Modelling & experimental verification required
 - Other isotopes? 18F already demonstrated
- Technologies for implementation?
 - Progressing on their own but still a few years.....
 - Main issue is funding for technology developments
- Competitiveness to Cyclotrons?
 - Not yet...