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Proton acceleration through Target Normal Sheath
Acceleration (TNSA)

Prior work on radioisotope production from laser-accelerated
protons

Recent ?°MTc investigations & potential issues
Technologies required for realisation
Future work

Conclusions
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Primary research area is towards oncology:
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Previous studies have investigated laser-accelerated protons for PET isotope
production (11C, 13N, 1°0, 18F)....

Several groups report calculations for patient level
PET doses (GBq) which could be achieved with laser

(b) o repetition rates of “10Hz (operating at 50-100)).
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EXPERIMENTAL
PRODUCTION OF 99M-TC
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- In early 2013 we were approached by the UK’s Dept of
Health (now NHS England) following OECD (Organisation
for Economic Co-operation and Development) reports.

- Could Lasers offer a potential source of radioisotopes -
specifically 22MTc

- What could the REAL deliverables be on a 5yr timescale
- Competitiveness to alternate technologies

- Medium / long term options



& Science & Technology Facilities Council Ex p e r i m e n t
—

Central Laser Facility

* Vulcan Petawatt beamline
» Sub-apertured to 200mm diameter

« 50J on target, 500fs pulse

« Mid 1029W/cm?

» Primary use as a fundamental plasma physics
research platform

Primary amplifier technology is
glass-based (circa 1976)



& Science & Technology Facilities Council

Central Laser Facility

Laser production of 2°MTc

Protons incident upon a 1mm thick NatMo sample 50mm from

target.
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Clear 140keV °°MTc emission observed from the Mo (p,2n) %*°*™Tc
reaction & excellent half-life match. Single shot irradiation on NATMo.

Other isomers present include
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(offscale) Tc, Tc, Tc, °*Tc, Y°Tc, 2°Tc
Calculations derive a 9¥™Tc activity of ~ 8 kBq.
871keV
- - ~ 1.E+07
{1405keV.!
. LE+06 e
766keV : en
g = = 99mTc fit
2 1.E+05 ,l
204keV |
.’
702keV 1.E+04 : :
0 200 400 600
1522keV 1869keV Elapsed time (min)

Jluu_hl [ TY AR PR T} ol l "




T P— 99mTc Scaling to 10 Hz
—

Central Laser Facility

30 1 - Based on a 10Hz system (technology
exists now) operating at the levels

# f produced, saturation yields of 25GBq can
56 be achieved using ~95% enriched °Mo.
15 0.8GBq patient doses exceeded after

o / <20 min exposure times.
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Sample enrichment, irradiation E, irradiation time, elapsed time from Irradiation all
contribute to Contaminants
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*

F Benard et al; Implementation of Multi-Curie production of 99mTc
by Conventional Medical Cyclotrons; J Nucl Med 2014; 55:1017-1022

Overall contaminants

For cyclotron use, 16-19MeV has been
identified as the optimal energy range
and has been demonstrated” with
enriched targets.

How do the contaminants favour with
broad-band?
|s there an acceptable AE ?

Need to look at this in more detail....
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Modify existing CLF ion spectrometers with adjustable slits for energy and
bandwidth selection

Can then measure the relative cross sections & generated contaminants in
single shot mode as a function of E and AE
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Commercial...
L0 Research institutes...
National Labs....
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Route forward
(ke
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100J concept, 10ns, 10Hz
Could be compressed for 5-10ps interaction

Could be used to pump a short-pulse system
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“Compact” ??
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DiPOLE 100
100J, 10 Hz, long-pulse

Vulcan single beamline
100J, 1x10-3 Hz, long-pulse
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Tape drives not ideal

Colliding Liquid droplets show the potential to
form thin targets with limited debris
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Continuously extruded Cryo H target 100p
and 50y thick (1mm wide) extruded over

7hr period

Working towards thinner targets

S. GARCIA, D. CHATAIN, axp J. P. PERIN
Laser and Particle Beams (2014), 32, 569-575.
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Liquid crystals laid using “wiper blade”.
Potential for high repetition rate
Very new !!
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Continued technology developments

Modelling of contaminants with broad-band source
- Impact

- Modified spectrum & subsequent impact?

- Looking for collaboration.....

Cross section & contaminant measurements
- Assess single-shot flux available as function of bandwidth
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First demonstration of 99mTc generation from laser systems.
Scaling to TOHz could derive patient doses

Contaminants are the primary issue:
- Modelling & experimental verification required
- Other isotopes? - '8F already demonstrated

Technologies for implementation?
- Progressing on their own but still a few years......
- Main issue is funding for technology developments

Competitiveness to Cyclotrons?
- Not yet...



