Search for Pair Production of New Light Bosons Decaying into Boosted Dimuons: $h \rightarrow 2a + X \rightarrow 4\mu + X$

Yuriy Pakhotin on behalf of CMS Collaboration

2015 Mitchell Workshop on Collider and Dark Matter Physics

https://indico.cern.ch/event/366470

Friday, 22 May 2015

Large Hadron Collider (LHC)

Yuriy Pakhotin (Texas A&M)

2015 Mitchell Workshop on Collider and Dark Matter Physics, 22 May 2015

CMS Experiment

2015 Mitchell Workshop on Collider and Dark Matter Physics, 22 May 2015

Search for h: ATLAS and CMS Combined Results

ATLAS and CMS

Combined measurement

- mass from $h \rightarrow \gamma \gamma$ and
- $h \rightarrow ZZ \rightarrow 4l$ analyses
- $m_h = 125.09 \frac{\pm 0.11(syst)}{\pm 0.21(stat)} \text{GeV}$
- **Consistency with SM**

0.5

2.5

Signal strength (u)

PhysRevLett.114.191803

Stat

H Tota

Syst

✓ Next question after discovery: Is it SM Higgs?

- 1. Answer by precise measurements of its couplings and branching ratios
 - may take many years requiring $\sim 100 f b^{-1}$
 - current combination of the CMS results sets the λ_{wz} limits at 95% C.L.:

 $0 \leq BR_{BSM} \leq 0.32$

- 2. Answer by direct search for non-SM Higgs decays
 - In case of observation: non-SM Higgs!
 - In case of no signal: restrict broad class of non-SM scenarios

✓ Searches for non-SM decays are very important!

Non-SM Higgs Decay to Two Light Bosons

- We explore non-SM decay modes of the Higgs boson (*h*), which include production of two new light bosons (*a*), that can decay to pairs of muons (dimuons): $h \rightarrow 2a + X \rightarrow 4\mu + X$
 - Analysis is designed to minimize dependence on the details of specific models
 - Complementary to direct SM Higgs searches
- ✓ Two specific scenarios as benchmark models:
 - Next-to-Minimal Supersymmetric
 Standard Model (NMSSM)

- SUSY with hidden sector (Dark SUSY)
- ✓ Results of the analysis:
 - Recipe for simple future interpretations using other models with similar signature
 - Limits on the production rate, examples for benchmark models

Benchmark Model: NMSSM

NMSSM — well motivated minimal extension of MSSM

- Modified superpotential with a singlet: $\mu H_u H_d \rightarrow \lambda S H_u H_d + \frac{1}{3} \kappa S^3$
- Requires less fine tuning and solves μ-problem:
 - μ is generated by singlet field VEV and naturally has EW scale
- More complex Higgs sector:3 CP–even: $h_{1,2,3}$, 2 CP-odd: $a_{1,2}$
- ✓ In this analysis we explore signature
 - $h_{1,2} \rightarrow 2a_1 \rightarrow 4\mu$
 - $0.25 < m_{a_1} < 3.55 \text{ GeV}$ $(2m_{\mu} \leq m_{a_1} \leq 2m_{\tau})$

✓ Typical branching

- $Br(a_1 \rightarrow \mu^+ \mu^-) \approx 7.7\%$ at $m_{a_1} \approx 2$ GeV and $\tan \beta = 20$
- Benchmark Higgs masses
 - $90 \lesssim m_{h_1} \lesssim 125 \; {
 m GeV}$
 - $125 \leq m_{h_2}$

PhysRevD.81.075003

Benchmark Model: Dark SUSY

✓ SUSY model with hidden sector $U(1)_D$

- New γ_D (light dark boson) weakly couples to SM via kinetic mixing with photon
 - Depending on the value ε of the kinetic mixing, the γ_D may also be long-lived
- Satellite experiments rising positron fraction towards high energy: γ_D mediates an attractive long-distance force between slow WIMPs

✓ In this analysis we explore signature

- $h \rightarrow 2n_1 \rightarrow 2n_D + 2\gamma_D \rightarrow 2n_D + 4\mu$
- $0.25 < m_{\gamma_D} < 2 \text{ GeV}$ $(2m_\mu \leq m_{\gamma_D} \leq 2m_p)$
- Maximum branching
 - $Br(\gamma_D \to \mu^+ \mu^-) \approx 45\%$ at $m_{\gamma_D} \approx 0.4 \ GeV$
- Benchmark masses
 - $m_h=1$ 25 GeV, $m_{n_1}=10$ GeV, $m_{n_D}=1$ GeV

JHEP05(2010)077

Dark SUSY with $c \tau_{\gamma_D} > 0$

- ✓ The γ_D may also be long-lived depending on the value ε of the kinetic mixing: $c\tau_{\gamma_D} \sim \varepsilon^{-2}$
- Simulated benchmark Dark SUSY samples

Analysis Strategy: Select Events with Muons

- ✓ Data: 20.7 fb⁻¹ of 2012 LHC data
- ✓ Inclusive double muon trigger
 - p_{T1} > 17 GeV, p_{T2} > 8 GeV
- Identify muon candidates
 - Particle-flow muon reconstruction algorithm (maintains high efficiency for close by muons)
- ✓ We require at least 4 muons
 - $p_T > 8$ GeV, $|\eta| < 0.9$, good track quality
- Additionally, at least one muon is required
 - to be in the barrel region $|\eta| < 0.9$
 - have $p_T > 17 \text{ GeV}$
 - this requirement ensures that the trigger efficiency is high, flat and model independent

Analysis Strategy: Build Dimuons

- ✓ Cluster nearby muons into pairs
- of opposite charge muons with low invariant mass
 - $m_{\mu\mu} < 5 \ GeV$
 - good common vertex or $\Delta R_{\mu\mu} < 0.01$
 - call them *dimuons*
- Select events with exactly 2 distinct dimuons
 - reconstruct dimuon vertices and require dimuons to be produced in the same pp collision
 - no limit on the number of unpaired muons (call them *orphans*)

Analysis Strategy: Dimuons' Vertexes

- We require that the two dimuons are originating from the same pp collision: $\Delta Z = |z_{\mu\mu1} z_{\mu\mu2}| < 0.1$ cm
 - assuming that each dimuon is a decay product of a new light boson, we reconstruct $z_{\mu\mu}$
 - *z* coordinate of the boson trajectory at the point of the closest approach to the beam line
 - also essential for the proper definition of isolation, use the same 0.1 cm in the isolation requirement (see next page)
- ✓ Loose and safe requirement
 - Assuming highly luminous region is ~15 cm, for 30 pile-up collisions "average distance" between them ~0.5 cm

 Δ z, cm

Analysis Strategy: Fiducial Volume

- Effective fiducial volume of the analysis in (L_{xy}, L_z) space
 - at GEN level requirement: $L_{xy} < 4.4$ cm and $L_z < 34.5$ cm
 - corresponding to the distance from the center of the detector to the first layer in the pixel barrel (PXB) and the pixel endcap (PXF) respectively.
 - at RECO level requirement: a hit in the first pixel layer for at least one muon in each dimuon
- Main motivation for such fiducial constraint is trigger inefficiency outside first layer of pixel (barrel and endcaps)
 - Outside this region results become model dependent
- ✓ New displaced muon trigger for Run2 analysis to increase fiducial region Muon reconstruction efficiencies vs L_{xy}

Analysis Strategy: Dimuons' Isolation

To suppress one of the main background sources, $b\overline{b}$ events, we require each dimuon to be isolated:

$$lso = \sum_{tracks} p_{\rm T} < 2 \, {\rm GeV}$$

- Dimuon isolation *Iso* is sum over tracks in the silicon tracker with:
 - $p_T > 0.5 \text{ GeV}$
 - $\Delta R(trk,\mu\mu) < 0.4$
 - $|z_{trk} z_{\mu\mu}| < 0.1 \text{ cm}$
 - muons forming dimuon excluded
- ✓ We use absolute isolation
 - Relative isolation introduces unnecessary p_T -dependence that leads to model-dependency
- ✓ Isolation requirement reduces background by a factor of 50, while we loose only 20% of signal

Analysis Strategy: Diagonal Signal Region

- We search for events with 2 dimuons which are produced in decays of the same type of new light bosons
 - $m_{\mu\mu}$ is a good variable for getting limits on m_a
 - for relevant example compare with MET and m_{LSP} in SUSY searches
 - The masses of the two dimuons should be consistent with each other within five detector resolutions:

 $|m_{\mu\mu1} - m_{\mu\mu2}| < 5\sigma = 0.13 + 0.065 \cdot (m_{\mu\mu1} + m_{\mu\mu2})/2$

• Detector resolution studied using low-mass SM resonances in data decaying to pair of muons — ω , ϕ , J/ ψ , ψ'

Yuriy Pakhotin (Texas A&M)

Signal Selection Efficiency

✓ The analysis selection requirements are designed to keep ratio $r = \frac{\epsilon_{\text{data}}}{\alpha_{\text{gen}}}$ varying only weakly

m_{h_1} [GeV]	90	125	125	11111221
m_{a_1} [GeV]	2	0.5	3.55	
ϵ_{sim} [%]	11.0 ± 0.1	21.1 ± 0.1	17.3 ± 0.1	
α _{gen} [%]	15.9 ± 0.1	32.0 ± 0.1	26.3 ± 0.1	
$\epsilon_{\rm sim}/\alpha_{\rm gen}$	0.69 ± 0.01	0.66 ± 0.01	0.66 ± 0.01	

$m_{\gamma D}$ [GeV]		0.25			1.0	
$c\tau_{\gamma_{\rm D}}$ [mm]	0	0.5	2	0	0.5	2
$\epsilon_{\rm sim}$ [%]	8.85 ± 0.12	1.76 ± 0.05	0.23 ± 0.03	6.13 ± 0.23	4.73 ± 0.07	1.15 ± 0.04
α _{gen} [%]	14.32 ± 0.14	2.7 ± 0.06	0.31 ± 0.03	8.89 ± 0.28	6.98 ± 0.09	1.68 ± 0.05
$\epsilon_{\rm sim}/\alpha_{\rm gen}$	0.62 ± 0.01	0.65 ± 0.02	0.74 ± 0.13	0.69 ± 0.03	0.68 ± 0.01	0.68 ± 0.03

$$r = \frac{\epsilon_{data}}{\alpha_{gen}} = \frac{\epsilon_{data}}{\epsilon_{sim}} \times \frac{\epsilon_{sim}}{\alpha_{gen}} = 0.63 \pm 0.07$$

✓ This allows us to provide the simple model independent recipe for 95% CL upper limit depending only on α_{gen}

applies to models with the same signature

Yuriy Pakhotin (Texas A&M)

Dark SUS

SM Backgrounds

The background contribution from the SM to a signature with two light dimuons after final selections:

• *bb*

- both b-quarks decay to dimuons + X via double semileptonic decays or resonances, e.g. ω , ρ , ϕ , J/ ψ
- expected number of events in signal region: 2.0 ± 0.7
- prompt double J/ψ
 - two prompt J/ψ 's can be produced in double parton scattering (DPS) or single parton scattering (SPS)
 - expected number of events in signal region: 0.05 ± 0.03
- $pp \rightarrow 4\mu$
 - estimated with MC simulation (COMPHEP)
 - expected number of events in signal region: 0.15 ± 0.03

✓ Total expected number of SM background events in signal region is 2.2 ± 0.7

- ✓ Background contribution from $b\overline{b}$ events modeled by 2D template $B_{b\overline{b}}(m_1, m_2)$
 - m_1 refers to the dimuon containing a muon with $p_T > 17$ GeV and $|\eta| < 0.9$
 - if both dimuons have such muons, m_1 and m_2 labels assigned randomly
- ✓ The shape of the dimuon invariant mass distribution depends on p_T thresholds used to select muons and whether muons are in the barrel or in the endcap
 - Need to measure shapes independently for each of two dimuons
 - The shapes are measured using orthogonal sample of $b\overline{b}$ events with exactly one dimuon and one orphan muon
- As each b-quark fragments independently, 2D template is constructed as a Cartesian product of 1D templates of both dimuon invariant mass distributions

$$B_{b\bar{b}}(m_1, m_2) = B_{17}(m_1) \times B_8(m_2)$$

Modeling of the $b\overline{b}$ Background Shape (2)

- Background templates obtained from events with exactly one dimuon and one orphan muon
 - no isolation requirement applied

✓ Background shapes are fitted with analytical functions:

- resonances ρ , ω , η , ϕ fitted with Gauss; J/ ψ with Crystal Ball
- bulk shape is series of Bernstein polynomial

✓ Once 1D shapes are constructed, the 2D template is fixed

Modeling of the $b\overline{b}$ Background Shape (3)

✓ Once 1D shapes are constructed, the 2D template is fixed $B_{b\bar{b}}(m_1, m_2) = B_{17}(m_1) \times B_8(m_2)$

✓ Switch to a signal-like sample

- use two dimuon data sample with the standard selections
- drop isolation requirements on both dimuons
- exclude diagonal part (could be signal there!)
- sum up projections on m_1 and m_2 axes (to have 1 plot instead of 2)
- compare these sums in data and in the template

Diagonal Signal Region

✓ In the signal region: <u>one event observed</u>

Run #	Event #	mass of the triggered	mass of the other	isolation of the triggered	isolation of the other
		di-muon (GeV/c ²)	di-muon (GeV/c ²)	di-muon (GeV/c)	di-muon (GeV/c)
202045	159896605	0.33	0.22	0.00	0.00

Model Independent Result (1)

✓ The result of the analysis is the 95% CL upper limit on the production rate calculated using CL_S approach: $\sigma(pp \rightarrow 2a + X) \times Br^2(a \rightarrow 2\mu) \times \epsilon_{data} \times L = N(m_{\mu\mu})$ where ϵ_{data} - is event selection efficiency and $L = 20.7 f b^{-1}$ - is

integrated luminosity collected by CMS

The obtained limit as a function of dimuon mass $m_{\mu\mu}$ can be conveniently approximated as a constant everywhere except the vicinity of the observed event, where it follows a Gaussian distribution:

$$N(m_{\mu\mu}) \leq 3.1 + 1.2 \times \exp\left[\frac{1}{2}\right]$$

$$\left[\frac{m_{\mu\mu} - 0.32\right)^2}{2 \times 0.03^2}\right]$$

Model Independent Result (2)

✓ The generic model independent result is the 95% C.L. upper limit on the production rate

$$\sigma(pp \to 2a + X) \times Br^2(a \to 2\mu) \times \alpha_{gen} = \frac{N(m_{\mu\mu})}{L \times \bar{r}}$$

or

 $\sigma(pp \to 2a + X) \times Br^2(a \to 2\mu) \times \alpha_{gen} \le 0.24 + 0.09 \times \exp\left[-\frac{\left(m_{\mu\mu} - 0.32\right)^2}{2 \times 0.03^2}\right]$

- easily applicable to an arbitrary non-SM scenario predicting the similar signature
 - two muon pairs coming from light bosons of the same type
 - light boson mass $0.25 < m_a < 2 \text{ GeV}$
 - light boson is typically isolated
 - light boson decays within $L_{xy} < 4.4$ cm and $L_z < 34.5$ cm
- α_{gen} is the geometric and kinematic acceptance calculated using generator level information only
- \bar{r} is central value of the ratio $r = \epsilon_{data}/\alpha_{gen} = 0.63 \pm 0.07$ with data/MC scale factor (0.93 ± 0.07) included

Exclusion Limit: NMSSM

- ✓ 95% CL upper limit on the product of Higgs boson production cross section times branching fractions in NMSSM as a function of h_{1/2} mass
 - Masses: m_{a_1} = 0.25 GeV, 2 GeV and 3.55 GeV
 - Two scenarios:
 - 1. $m_{h_1} < m_{h_2} = 125 \ GeV$
 - 2. $125 \ GeV = m_{h_1} \le m_{h_2}$
 - Simplified reference model:

•
$$\sigma(pp \rightarrow h_{1/2} \rightarrow 2a_1) = 0.08\sigma_{SM}$$

• $B(a_1 \to \mu \mu) = 7.7\%$

Exclusion Limit: Dark SUSY

- ✓ 95% CL upper limit on the product of Higgs boson production cross section times branching fractions in dark SUSY as a function of γ_D mass and kinetic mixing parameter ε
 - Masses: $m_h = 125~{
 m GeV},\,m_{n_1} = 10~{
 m GeV},\,m_{n_D} = 1~{
 m GeV}$
 - Branching fraction varies $B(h \rightarrow 2\gamma_D + X) = 0.1 - 40\%$
- ✓ Results are compared with complimentary search at ATLAS (90%CL limit JHEP11(2014)088), searches at a range of low energy e⁺e⁻ colliders, fixed target experiments, and cosmological measurements

Conclusion

- ✓ The search for pairs of new light bosons, each of which decays into the $\mu^+\mu^-$ boosted final state is reported
 - Direct search for motivated non-SM Higgs boson decay
 - Explored mass range of new light boson: $2m_{\mu} < m_a < 2m_{ au}$
 - Sensitivity range of new light boson lifetime: up to $c\tau_{\gamma_D} < 20 \ mm$
 - One event in signal region observed with 20.7 fb⁻¹ of data recorded by the CMS in 2012 at $\sqrt{s} = 8$ TeV
 - 95% CL model independent upper limit for signal rate is set
 - Results are applicable to a broad spectrum of non-SM scenarios predicting the analysis signature
 - Recipe is provided
 - Results are interpreted for two benchmark models
 - NMSSM and dark SUSY

 The paper with results is approved by CMS Collaboration and will appear at arXiv shortly

✓ The search will be continued in Run 2 with improved trigger

Backup

Pileup at $\sqrt{s} = 8 \text{ TeV}$

- Multiple proton-proton interactions in one bunch crossing
 - ~21 interactions per crossing in 2012 at $\sqrt{s} = 8 \text{ TeV}$
 - trigger almost insensitive to pileup
 - reconstruction of leptons and MET almost insensitive to pileup

2015 Mitchell Workshop on Collider and Dark Matter Physics, 22 May 2015

Higgs Production at LHC

Cross section of the Higgs production in pp

arXiv:1101.0593

collisions at $\sqrt{s} = 8 \text{ TeV}$ is calculated with high precision

Standard Model Higgs Decay Channels

✓ Five most sensitive channels studied

- High yield: $h \to WW/\tau \overline{\tau} / b\overline{b}$
- High mass resolution: $h \rightarrow \gamma \gamma / ZZ$

arXiv:1101.0593

@ 125GeV	signature	S/B	Mass Resol.	N events in 20fb ⁻¹	Good For
H→bb	two b-jets, Z or W, bb inv. mass	low O(0.1)	10%	~10 ⁵ ~50 (sel)	couplings to fermions
Η→ττ	had tau, leptons, MET	low O(0.1)	15%	~10 ⁴ ~40 (sel)	couplings to fermions
H→WW	two leptons with opposite charge MET	medium O(1)	-	~10 ³ ~120 (sel)	cross section, BR, couplings to V
Н→үү	two photons peak in inv. mass	low O(0.1)	2%	800 ~400 (sel)	H mass, couplings K _v K _F , discovery
H→ZZ	four leptons with right charge peaks in inv. mass (Z1 and Higgs)	high >1	1-2%	40 ~12 (sel)	H mass, discovery

Benchmark Models Simulation

- All events in the benchmark signal samples are processed through a detailed simulation of the CMS detector based on Geant4 and are reconstructed with the same algorithms used for data analysis
 - ~100k events per sample
 - pile up included
- ✓ NMSSM
 - Pythia6 MSSM Model: gg $\rightarrow H^0_{MSSM} \rightarrow 2A^0_{MSSM} \rightarrow 4\mu$
 - $m(H_{MSSM}^0) = m(h_{NMSSM})$ within the range 90 150 GeV
 - $m(A_{MSSM}^0) = m(a_{NMSSM})$ within the range 0.25 3.55 GeV
- ✓ Dark SUSY
 - Madgraph4 SM Higgs production: gg $\rightarrow h_{SM}^0$
 - $m(h_{SM}^0) = m(h_{NMSSM})$ within the range 90 150 GeV
 - BRIDGE new model: $h^0 \rightarrow 2n_1 \rightarrow 2n_D + 2\gamma_D$
 - $m(n_1) = 10 \text{ GeV}, m(n_D) = 1 \text{ GeV} \text{ and } m(\gamma_D) = 0.4 \text{ GeV}$

Validation of $b\overline{b}$ Background Shape (2)

✓ Normalization of the J/psi peak in control sample

- 118.6 events predicted from fit (area below red curve between 2.95 and 3.20 GeV divided by 2)
- 108 events observed in data (area below solid dots histogram between 2.95 and 3.20 GeV divided by 2)

• Significance is 1.0 sigma: Good agreement!

Group oppositely charged muons into dimuons:

- **if** their pairwise invariant mass $m_{\mu\mu}$ < 5 GeV **and**
- **either** the fit of two muon tracks for a common vertex has the probability $P_{\text{vertex}} > 1\%$
 - this vertex is not required to match any primary vertex of the event or any vertex of another dimuon
- or two muon tracks satisfy $\Delta R(\mu^+, \mu^-) < 0.01$
 - compensates for reduced efficiency of common vertex probability requirement for dimuons with very low mass $(m_{\mu\mu} \sim 2m_{\mu})$, in which muons tracks are nearly parallel to each other

Any muon may be shared between several dimuons

- Select events with exactly two dimuons not sharing any common muons
 - no restriction on number of ungrouped ("orphan") muons

Dimuon Isolation Optimization

- The analysis value of the dimuon isolation Iso < 2 GeV is compared to several alternatives
 - Signal acceptance efficiencies are calculated with MC sample
 - NMSSM with $m_{h_1} = 125 \ GeV$, $m_{a_1} = 2 \ GeV$
 - Background efficiencies are evaluated per dimuon with background enriched data sample (1dimuon + 1orphan) and recalculated per event
 - Average weighted 95% C.L. upper limit on the rate of signal events within 0.25 < m < 3.55 GeV is calculated to test different values of the isolation

Average weighted 95% C.L. upper limit

- ✓ R_{95% C.L.} average weighted expected 95% C.L. upper limit on the rate of signal events is used to test optimal values of the analysis requirements (e.g. dimuon isolation or signal region width)
 - assumes a counting experiment
 - Input #1: ϵ_S signal acceptance efficiency of the requirement
 - Input #2: v_B expected background rate in the signal region after the requirement is applied

 $R_{95\% \ C.L.} = 1/\epsilon_S \times [3 \times P(N = 0, \nu_B) + 4.74 \times P(N = 1, \nu_B) + 6.3 \times P(N \ge 2, \nu_B)]$

This expression is a slight simplification of the true limit calculation where the numerical factors are the Bayesian upper 95% C.L. exclusions in terms of the rate of signal events for experiments with observed 0, 1 and 2 events, which are weighted by the Poisson probabilities to observe 0, 1, or 2 and more events

Modeling of the $b\overline{b}$ Background Shape (1)

- Each b-quark in background events decays independently
- Naively, we can measure 1D mass background template B for one b-quark
- ✓ 2D mass background template can be modeled as Cartesian product of 2 di-muons mass distributions: $B(m_1) \times B(m_2)$

Modeling of the $b\overline{b}$ Background Shape (2)

- However, invariant mass shape of dimuon candidates in bbbar events depends on pt tresholds of its muons
- At least one of the di-muons required to have barrel muon with pt > 17 GeV, while the second not:
 - "high pt" di-muon --- contains barrel muon with pt > 17 GeV
 - "low pt" di-muon --- doesn't contain it
- ✓ All events may have:
 - one "high pt" di-muon and one "low pt" di-muon
 - m₁ = mass of "high pt" di-muon
 - m₂ = mass of "low pt" di-muon
 - two "high pt" di-muons
 - masses of di-muons randomly assigned to m₁ and m₂

✓ No isolation requirement on dimuons applied

 $B(m_1, m_2) - 2D$ background shape

- B_{17} 1D shape of "high pt" di-muon
- $B_8 1$ D shape of "low pt" di-muon

 $N_{17,8}$ — number of events with one "high pt" di-muon and one "low pt" di-muon

 $N_{17,17}$ — number of events with two "high pt" di-muons

Events with one "high pt" di-muonEvents with twoand one "low pt" di-muon"high pt" di-muons

$$B(m_1, m_2) \sim B_{17}(m_1) \times B_{mix}(m_2)$$

Prompt Double J/ψ Background

✓ 2D Crystal Ball shape is used to model the prompt double J/ψ background

✓ Approximately 1500 events in the region of low invariant mass of the two J/ ψ candidates were used for template normalization: 2.0 ± 2.0 events

• MC samples were used to extrapolate normalization factor from low- p_T (control) to high- p_T (analysis) regions

Systematic Uncertainties

Table of systematic uncertainties

Source of uncertainty	Error, %
Lumi	2.6%
Muon HLT	1.5%
Muon ID	$4 \times 1\%$
Muon tracking	$4 \times 0.2\%$
Overlapping in tracker	$2 \times 1.2\%$
Overlaping in muon system	$2 \times 1.3\%$
Dimuon mass consistency	1.5%
Theory (PDF+ α_S) (not included in model independent)	3%
Total	7%

Uncertainties on backgrounds:

- $b\overline{b} = 2.0 \pm 0.7$
 - estimation is fully data driven ; normalized to off-diagonal region in $(m_{\mu\mu_1}, m_{\mu\mu_2})$ plane
- prompt $2J/\psi = 0.050 \pm 0.031(SPS) + 0.008 \pm 0.008(DPS) = 0.058 \pm 0.032$
 - shape is data driven
 - for normalization data events from background enriched area scaled to signal region using MC. Uncertainty on the scale factor is 20%
 - two contributions: SPS single parton scattering and DPS double parton scattering
- EWK $pp \rightarrow 4\mu = 0.15 \pm 0.03$ (stat)
 - estimation is based on MC: 7% systematic uncertainty as in signal applied

Model Independent Results (2011 data)

The result of the analysis is the 95% C.L. upper limit on the production rate

$$\sigma(pp \to 2a + X) \times Br^2(a \to 2\mu) \times \epsilon_{full} <$$

Zero events observed in signal region

Limit with

2011 data

where ϵ_{full} - is event selection efficiency

✓ The analysis selection requirements are designed to keep ratio $r = \frac{\epsilon_{full}}{\epsilon_{full}} = 0.74 \pm 0.05$ constant the ratio was checked with

NMSSM and Dark SUSY MC

- α_{gen} is the geometric and kinematic acceptance calculated using generator level information only
- flatness of the ratio is checked for several benchmark samples
- ✓ The generic model independent result:

$$\sigma(pp \to 2a + X) \times Br^2(a \to 2\mu) \times \alpha_{gen} < \frac{3}{\mathcal{L} \cdot r} = 0.77 \text{ fb}$$

 easily applicable to an arbitrary non-SM scenario predicting the signature of two boosted isolated dimuons with consistent masses

 α_{gen}

NMSSM Exclusion Limits (2011 data)

 ✓ 95% CL Upper limit on the Higgs boson production in NMSSM as function of Higgs boson a₁ mass for a few masses of h

- $\sigma(pp \rightarrow h_1 \rightarrow 2a_1) \times \mathcal{B}^2(a_1 \rightarrow 2\mu) \times \alpha(m_{h_1}, m_{a_1}) + \sigma(pp \rightarrow h_2 \rightarrow 2a_1) \times \mathcal{B}^2(a_1 \rightarrow 2\mu) \times \alpha(m_{h_2}, m_{a_1}) < 3/\mathcal{L}$
- Since $\alpha(m_{h_1}, m_{a_1}) < \alpha(m_{h_2}, m_{a_1})$, we use $\alpha(m_{h_1}, m_{a_1})$ to set conservative limit on

$$\sigma(pp \to h_{1,2} \to 2a_1) \times \mathcal{B}^2(a_1 \to 2\mu) < 3/\mathcal{L}/\alpha(\boldsymbol{m_{h_1}}, \boldsymbol{m_{a_1}})$$

NMSSM and Dark SUSY Exclusion Limits (2011 data)

- ✓ Set 95% CL Upper limit on the Higgs boson production in NMSSM and SUSY with hidden sector as functions of h₁ or h Higgs boson mass
 - NMSSM:
 - $m(a_1) = 2m_{\tau}$
 - m(a₁) = 0.25 GeV
 - NMSSM prediction:
 - $\sigma(h_1) = \sigma(h_{SM})$
 - $Br(h_1 \rightarrow 2a_1) = 3\%$
 - Br $(a_1 \to 2\mu) = 7.7\%$
 - Dark SUSY: $m(\gamma_D) = 0.4 \text{ GeV}$
 - Dark SUSY prediction:
 - $\sigma(h) = \sigma(h_{SM})$
 - Br($h \rightarrow 2n_1$) = 1%
 - Br($n \rightarrow n_D + \gamma_D$) = 50%
 - Br($\gamma_D \rightarrow 2\mu$) = 45%

