

### Light Nonthermal Dark Matter and the Collider Monotop Chirality

(work in progress)

Mykhailo Dalchenko

# Reference Physics motivation





## Nonthermal scenario

 $\begin{array}{c} \blacksquare Add a minimal extension to the SM: \\ \blacksquare scalar color triplet(s), \\ \square n h can digate \\ \blacksquare fermionic \\ \square h h can digate \\ \blacksquare h \\ \square n h \\ \square h \\ \blacksquare h \\ \square h \\ \square$ 

 $\mathcal{L}_{int} = \lambda_1^{\alpha,\rho\delta} \mathcal{A}^{ijk} e^{ijk} e$ 

At  $\mathbf{W}$  at  $\mathbf{W}$  and  $\mathbf{W}$  are also as a set of the transmitted with the transmitted with the transmitted with the transmitted with transmitted wit

 $\overrightarrow{o}DM$  isn't protected by parity  $\longrightarrow |m_{DM} - m_p| < m_e$ 

 $\begin{array}{l} \overbrace{} \mathcal{P} \text{ New interaction}_{D} \overbrace{} \text{terms and production mechanism} \\ \text{ are implemented in } \mathbf{MadGraph 5} \\ \lambda_{2} \sim 0.1 \qquad m_{X} \sim \text{TeV} \\ \mathcal{L}_{int} = \overline{m} \sum_{M}^{\alpha, \rho \delta} \epsilon^{ijk} X_{\alpha,i} \overline{d}_{\rho,j}^{c} \overbrace{} \mathbf{P}_{R} d_{\delta,k} + \lambda_{2}^{\alpha,\rho} X_{\alpha}^{*} \overline{n}_{DM} \mathbf{P}_{R} u_{\rho} + C.C. \\ \hline{\lambda_{1}^{\alpha, \rho \delta} = \lambda_{1} \times \lambda_{1X}^{\alpha} \times \lambda_{1R}^{\rho \delta}} \\ \hline{\lambda_{2}^{\alpha, \rho} = \lambda_{2} \times \lambda_{2X}^{\alpha} \times \lambda_{2R}^{\rho}} \end{array}$ 

## A minimal parametrization



 $\ensuremath{\mathnormal{O}}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1,1}\xspace{1,1$ 

 $\mathbf{V}$  Suppose  $X_1$  be lighter then  $X_2$ 

Make a flavor-blind coupling structure for simplicity

$$0.001 \begin{bmatrix} M_{\text{eff}} < 1 \,\text{TeV} \\ \lambda_1 = \lambda_2 \sim 1 \end{bmatrix}$$



#### **Possible final states:**

 $s_{s}$  whigh METe+µb+jet + lepton s\_s dHigh MET + b-jet + 2 other (preferably light) jets Naive sensitivity estimation gives ~1event/fb for 50% efficiency

and  $\lambda_1 \approx \lambda_2 \sim 0.1, \ m_X \sim 1 TeV$ 

# Events generation and detector simulation

Generate parton level events with Madgraph 1.5

- Madronize events with Pythia 8
- Simulate the detector with Delphes:

  - Reconstruct jets with FastJet package using anti-Kt
  - $\mathbf{V}$  B-tagging efficiency ~70(60)% in the barrel(endcaps)
  - $\blacksquare$  Apply  $p_T(b) > 60 \ GeV$  and  $p_T(jet) > 20 \ GeV$  selection

for jets in hadronic final state

If Apply  $p_T(b) > 30 \ GeV$  and  $p_T(\ell) > 30 \ GeV$  selection in leptonic final state





We have quite promising model with well recognizable final state, but how can we distinguish it from other similar models?





### An example of similar model

Let's use isospin doublet instead of isospin singlet  $\mathcal{L}_{\mathrm{D}} \supset y_{1}^{\alpha,i} \bar{Q}_{i} n X_{\alpha} + y_{2}^{\alpha,i} X_{\alpha}^{\dagger} \bar{Y} d_{i} + y_{3}^{\alpha,i} X_{\alpha} \bar{Y} u_{i}^{c} + \mathrm{C.C.}$ 

u  $y_1$  n u  $y_1$   $y_1$   $y_1$  u  $y_1$   $y_1$   $y_1$  n



The reconstructable final state is the same as in case of isospin singlet model

However, top quark chirality from X decay is opposite between the singlet and doublet cases.



#### FastSim with Delphes Hadronic top quark decay

#### Flip the chirality and analyze the pT spectrum



There's a visible discrimination!

#### FastSim with Delphes Leptonic top quark decay

#### Flip the chirality and analyze the pT spectrum



There's a visible discrimination!

# Summary

- Ic Light non-thermal DM model is well motivated by barion asymmetry and current LHC bounds
- Good sensitivity with LHC Run II data is expected
- Top quark chirality reconstruction allows to distinguish between different NP models with single top quark in the final state
- Works for both hadronic and leptonic decay modes of the top quark
- Allows search for the anomalous weak couplings in SM events with single top quark in the final state