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Introduction

• Black holes are the most fundamental objects in any theory
of gravity, and as such they can provide powerful probes for
investigating some of the subtle global features of the theory.

• In ordinary Einstein gravity, by itself or coupled to “stan-
dard” matter, there are powerful no-hair theorems or unique-
ness theorems which imply strong restrictions on the param-
eter space of possible black-hole solutions. For example, in
Einstein-Maxwell theory the most general black hole is char-
acterised by its mass, angular momentum and charge.

• More general theories of gravity comprise Einstein gravity
with higher-order curvature terms, such as arise in the low-
energy limit of string theory. In string theory, there are an in-
finite number of higher-order terms, involving arbitrarily large
powers of the curvature and its covariant derivatives.

• We may first consider a theory with just a finite number of
higher-order terms. Of particular interest is the case of Ein-
stein gravity with additional quadratic curvature terms only,
since this is actually renormalisable (Stelle 1977), albeit at
the price of having ghosts.



• Perhaps there are ways to live with ghosts (Smilga,...), or
otherwise find a regime where quadratic curvatures dominate
over yet higher order terms (Starobinsky,...). In any case,
since it turns out that one can (semi) explicitly probe some
of the detailed properties of black holes in Einstein gravity
with quadratic curvatures, it is of interest to do so.

• For simplicity, we consider spherically-symmetric black holes.
In four dimensions, unlike higher dimensions, any solution of
of Einstein gravity remains a solution when quadratic curva-
ture terms are added. Thus the Schwarzschild black hole is
a solution in the quadratic theory. The question is whether
there exist any other acceptable spherically-symmetric black-
hole solutions.

• For example, can there exist non-standard black holes in a
regime where cubic and higher terms can be neglected? If
so, these solutions would be representative of new solutions
even in string theory.

• As we shall see, there in fact exists a second branch of such
black holes in Einstein plus quadratic gravity, but only pro-
vided the horizon radius is sufficiently large, and the curvature
is large.

• The new features of the higher-derivative theory are associ-
ated with additional modes in the spectrum of the theory;
the massive spin-2 and spin-0 modes. The new black holes
involve condensates of the (ghostlike) massive spin-2 modes.



General Expectations in Quadratic Gravity

• Since the Gauss-Bonnet combination of quadratic curvatures
is a total derivative in four dimensions, the most general ac-
tion for the quadratic theory (without cosmological constant)
can be taken to be

I =
∫
d4x
√
−g (R− αCµνρσCµνρσ + β R2) .

If one linearises the theory around a Minkoswki background,
the fluctuations will obey equations which can be separated
into a factorised fourth-order spin-2 equation and a second-
order spin-0 equation:

�(�−m2
2)hµν = 0 , (�−m2

0)φ = 0 ,

where m2
2 = 1/(2α) and m2

0 = 1/(6β).

• The massive spin-2 and spin-0 modes will lead to terms with
Yukawa-type behaviour 1/r e±mr at large distances. Generi-
cally, terms with both signs in the exponential will occur, and
the terms with the rising exponentials will give rise to fatal
pathological behaviour in the asymptotic region.

• The real question, therefore, is whether it is possible to fine
tune the parameters in the general solutions so as to be able
to remove the rising Yukawa terms.

• Are there any such fine tunings, aside from Schwarzschild?



A Partial No-Hair Theorem

• We can study the static solutions of the theory by considering
metrics of the form ds2 = −λ2 dt2 + hijdx

idxj, where λ and

hij depend only on the spatial coordinates xi.

• The equations of motion for the quadratic theory are

Rµν − 1
2
Rgµν − 4αBµν + 2β R(Rµν − 1

4
Rgµν) + 2β(gµν�−∇µ∇ν)R = 0 ,

where Bµν = (∇ρ∇σ + 1
2
Rρσ)Cµρνσ is the Bach tensor. Taking the

trace gives

β (�−m2
0)R = 0 .

• Multiplying by λR and integrating over the spatial domain
outside the putative horizon of the black hole gives∫

d3x
√
h

[
Di(λRDiR)− λ(DiR)2 −m2

0 λR
2
]

= 0 ,

where Di are covariant derivatives in the spatial metric hij.
Since by definition λ goes to zero on the horizon, it follows
that if DiR goes to zero sufficently rapidly at infinity then
the surface term gives no contribution and hence the non-
positivity of the remaining integrand implies

R = 0 .



• This partial no-hair theorem (due to W. Nelson) provides
a considerable simplification of the problem. It means we
immediately have a second-order equation of motion, and in
fact if we use the spherically-symmetric ansatz

ds2 = −h(r) dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θ dφ2) ,

we can reduce the equations of motion to two second-order
ODEs for h(r) and f(r).

• Nelson tried to go further, by applying a similar technique to
the trace-free part of the equations of motion, and claiming
this led to a complete no-hair theorem, namely that Rµν = 0.
This would have meant that the Schwarzschild metric was
the only spherically-symmetric static black hole solution in
the quadratic theory.

• However, we found that Nelson had some crucial sign errors
in his calculation, and what he had thought to be a strictly
non-positive integrand actually had a mix of terms with both
signs. Thus no definite conclusion could be reached.

• On the basis that “what is not forbidden is allowed,” this
raises the possibility of non-Schwarzschild spherically-symmetric
static black holes in the quadratic theory. With the simplifi-
cation of knowing that they must satisfy R = 0, this means
we can wolog drop the R2 term in the action and just consider
Einstein-Weyl gravity.



Numerical Solution of the Equations

• Although simplified by the R = 0 condition, the equations
for h(r) and f(r) unfortunately appear not to be analytically
solvable, and we therefore resort to numerical analysis.

• We begin by making Taylor expansions of h(r) and f(r) near
to a putative horizon at r = r0:

h = c
[
(r − r0) + h2 (r − r0)2 + h3 (r − r0)3 + · · ·

]
,

f = f1 (r − r0) + f2 (r − r0)2 + f3 (r − r0)3 + · · · .
The constant c is a trivial, absorbable into a rescaling of

the time coordinate. Plugging into the equations of motion,
one can solve for all the coefficients hi and fi with i ≥ 2
in terms of the two non-trivial parameters r0 and f1. The
Schwarzschild solution itself corresponds to f1 = 1/r0, so if
we write

f1 =
1 + δ

r0
,

then non-vanishing δ characterises the extent to which the
near-horizon solution deviates from Schwarzschild.



• We can now use the shooting method to construct solutions
numerically. Namely, we set initial conditions just outside the
horizon, by choosing values for r0 and δ and making use of
the near-horizon Taylor expansions. We then integrate the
equations out numerically to large r.

• It is convenient to fix the scale size in the problem by making
a choice for the coupling constant α for the Weyl-squared
term in the action. We take α = 1

2. The parameters r0 and
δ are then both non-trivial.

• For generic r0 and δ, the outward integration runs into a
singularity, in which the metric functions h(r) and f(r) rapidly
diverge either to +∞ or −∞. By very delicate fine tuning of
the parameters, one can systematically extend outwards the
limit rmax before which the singularity is reached. Increasing
the precision allows integrating out further–ad infinitum.

• The functions h(r) and f(r) asymptotically approach con-
stants, with f(r) → 1. The asymptotic constant value for
h(r) can be adjusted by choosing the trivial parameter c so
that h(∞) = 1. Thus we obtain well behaved asymptotically
flat black hole solutions.



• We picked a value for r0, and then fine tuned δ to get asymp-
totically Minkowskian behaviour. For any r0 there is always
at least one such solution, with δ = 0 (to within numerical
rounding errors), corresponding to the Schwarzschild black
hole.

• In addition, if r0 is greater than a certain minimum value
rmin

0 ≈ 0.876, we find that there exists a second choice of
δ = δ∗ that gives a second, non-Schwarzschild, black hole.

• Here are two examples, showing the f(r) (blue) and h(r)
(red) metric functions for the non-Schwarzschild black hole,
for r0 = 1 (LHS), and r0 = 2 (RHS). In order to avoid an
asymptotic overlay of the h and f curves, we have made use
of the trivial scaling c so that the function h asymptotically
approaches 3

4 rather than 1.

10 20 30 40 50 60
r

0.2

0.4

0.6

0.8

1.0

8 f , h<

10 20 30 40 50 60
r

0.5

1.0

1.5

2.0

8 f , h<

• The metric functions in the r0 = 1 case are looking very like
those in Schwarzschild. In the r0 = 2 case they aproach their
asymptotic values from above, suggesting negative mass.



Properties of the Non-Schwarzschild Black Holes

• The mass of the non-Schwarzschild black hole is indeed given
by the usual ADM formula for asymptotically flat spacetimes,
which amounts to 1

2 the coefficient of the 1/r term in gtt
(assuming a canonical normalisation for t so that gtt → −1 at
infinity).

• The mass of the Schwarzschild (dotted line) and the non-
Schwarzschild (solid line) black holes as a function of horizon
radius r0 are shown below:
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• The solid curve for the non-Schwarzschild black hole termi-
nates at its left-hand end at r0 = rmin

0 . In fact the non-
Schwarzschild and Schwarzschild branches coalesce here, at
this minimum r0 for which the non-Schwarzschild branch ex-
ists.



Negative Mass?

• The negative mass of the non-Schwarzschild black holes for
r0 > rm=0

0 clearly violates the normal behaviour seen for black
holes in general relativity, for which the positive energy theo-
rem guarantees the non-negativity of the mass for any system
of physically reasonable matter coupled to gravity.

• In fact the behaviour we are seeing here is very like what would
happen if we looked at ordinary Schwarzschild black holes in
pure Einstein gravity, but with a minus sign in front of the
Einstein-Hilbert action. The mass, calculated as a Noether
charge for the sign-reversed action, would be negative, and
it would become more and more negative as the radius r0 of
the black hole was increased.

• The negativity of the mass for large non-Schwarzschild black
holes can be understood as being a consequence of the ghost-
like nature of the massive spin-2 modes in quadratic gravity:

m2

� (�−m2)
=

1

�
−

1

(�−m2)
.

Effectively, we are seeing that whereas a condensation of
massless spin-2 gravitons in a normal black hole gives rise to
a spacetime with positive energy, a condensation of massive
spin-2 modes, which are ghostlike, can give rise to a space-
time with negative energy.



• The non-Schwarzschild black holes form a distinct branch
that only meets the Schwarzschild branch at r0 = rmin

0 . They
have positive mass only when r0 is in the interval

0.876 ≈ rmin
0 ≤ r0 ≤ rm=0

0 ≈ 1.143 .

• For r0 just a little greater than rmin
0 , the non-Schwarzschild

black hole is perturbatively close to the Schwarzschild black
hole. Apart from this case, the non-Schwarzschild black holes
cannot in general be obtained by a linearised analysis around
Schwarzschild.

• By plotting the mass versus the Hawking temperature for the
non-Schwarzschild and Schwarzschild black holes, we can see
that they both have negative specific heat C = ∂M/∂T , but
that of the non-Schwarzschild black hole (solid line) is always
more negative, at any given mass:
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Conclusions

• Even though Einstein plus quadratic gravity generically has
rising as well as falling Yukawa terms in the asymptotic so-
lutions, one can fine tune the parameters in static spheri-
cally symmetric solutions and thereby find a second branch
of solutions, over and above Schwarzschild. They exist for
r0 > 0.876

√
2α, with positive mass for r0 < 1.143

√
2α.

• Knowing what the black hole solutions in the theory are al-
lows us to see what one should or should not try to prove
analytically.

• For example, it is pointless to try to prove in general that non-
Schwarzschild black holes can’t exist in Einstein + quadratic
gravity.

• It also shows that black holes can exist that are not per-
turbatively close to Schwarzschild. They have masses M ≤
0.438

√
2α. Thus if α is “small,” their masses are small and

the curvature is large on the horizon, implying cubic and
higher curvatures would generically be equally important.

• It seems that one ought to be able to prove the non-existence
of non-Schwarzschild black holes whose curvatures are small
enough to make the neglect of yet higher-order curvature
terms legitimate. If true, this could mean that a no-hair
theorem might in fact hold for black holes in string theory.



Final Remarks...

• I came to Texas A&M in 1988, entirely because of Dick
Arnowitt’s vision for building up a high-energy theory group.

• In the earlier years Dick’s guiding hand played a crucial role
in the development and the functioning of the group.

• In later years, his wisdom and common sense was invaluable,
and will be much missed.

• He had a dry and sardonic sense of humour. I recall a fac-
ulty meeting in the early days when a dean or provost was
addressing us, and extolling the virtues of branching out into
“interdisciplinary research.” Knowing that he was speaking
to physicists, he reinforced his point by observing: “If you
take contributions N and N and multiply them together you
get N2...”

• ...Immediately, speaking sotto voce, and audible only to those
of us nearby, Dick made the remark: “and if you take ε and
ε and multiply them together, you get ε2.”

• Thank you, Dick, for your legacy of immortal contributions
to physics, for your insights, and for your humour!


