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FIG. 11: Flavor (red solid) and charge (blue dashed) correlations are shown for topologies in strawman models.

FIG. 12: Flavor (red solid) and charge (blue dashed) correlations are shown for τFDM. Final state lepton charge
ambiguities for Majorana dark matter models do not affect the charge correlation.

Dataset
Event rate after cuts at 100 fb−1

Lepton cuts Jet cuts Z veto MET
τFDM1 46.73 42.83 38.41 35.01
τFDM2 75.39 69.30 63.26 57.04
ℓ+ℓ−ℓ+ℓ− 1617.94 1582.42 140.30 13.32
tt̄ ℓ+ℓ− 89.57 19.45 4.92 4.70
WW ℓ+ℓ− 14.70 13.98 2.51 2.51

TABLE I: Signal and SM background event rates for
processes yielding 4-lepton final states after each set of
cuts is progressively applied (note that ℓ = e, µ). All
numbers are reported for the 14 TeV LHC run and

include detector effects.

use this approach in the next section where we consider
how the FDM model could be distinguished from more
conventional DM models where the DM particle is a
flavor singlet.

While ATLAS [30] and CMS [31] have already per-
formed searches in multilepton final states, considering
the low cross section of the FDM benchmark model, they
are not yet expected to have exclusion level sensitivity to
this scenario.

IV. DISTINGUISHING τFDM

Multi-lepton events with large missing energy are fairly
common signals in theories with neutral stable particles
and partners to the SM leptons, which include a variety
of dark matter models. We would to like understand
whether it is possible to distinguish at the LHC the
model of τFDM that we studied in the previous section
from models with similar signatures but where the dark
matter does not carry flavor quantum numbers. Clearly,
this question is very difficult in general. Therefore, we
focus on a more restricted question. We investigate
whether it is possible to distinguish τFDM from a specific
‘strawman’ model, where the dark matter does not carry
flavor.

The strawman model we choose is related to supersym-
metric theories where the bino constitutes dark matter.
The form of the lepton-slepton-bino vertex is very similar
to the defining vertex of a theory of lepton FDM, except
that in the supersymmetric case it is the slepton that
carries flavor, not the bino. The strawman model we
choose therefore consists of the bino, which we label by χ,
along with the three right-handed sleptons, Ẽc

i . The bino
constitutes dark matter. To mimic the collider signals
of τFDM, we add to the strawman model an additional
‘neutralino’ χ′, which is heavier than the bino. χ′ is an
admixture of a SM SU(2) doublet and singlet, so that
it can be pair-produced through the Z, and is chosen to
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FIG. 5. The region in the (��h,��) plane for the asymmetric
fermion DM case consistent with the LUX bound. (Left) m�

fixed at 500 GeV while m� is varied. (Right) m� is fixed at
200 GeV while m� is varied. For m� = 40 GeV, the allowed
region is limited to small values of ��h because of the invisible
Higgs decay bound.

bounds from CREEST, CDMS-Si, and SuperCDMS [40–
42], but we find that the LUX bound dominates as long
as m� ⇠> 5 GeV. Such low values of m� are not very inter-
esting however, as ��h has to be very small in order to be
consistent with the invisible Higgs decay bounds [43, 44],
namely BRh!�̄� < 0.58. We only plot �� > 0 since the
cross section depends only on �2

�, whereas the sign of ��h

is physical. We restrict ourselves to |��h| < 0.25 in the
fermion DM case, since the �-Higgs coupling in this case
arises from a higher-dimensional operator which is gener-
ated at ⇤ ⇠> TeV (see equation 7). Note that the allowed
parameter regions lie in a band around a curve of max-
imal interference. The curve of maximal interference is
a parabola since the Higgs exchange amplitude scales as
��h while the photon exchange amplitude scales as �2

�. In

fact, the e↵ective DM-photon coupling scales as �2

�/m
2

�,
which explains why in the right plots the parabola moves
toward the vertical axis with increasing m�. While many
features are similar for the scalar and fermion DM cases,
one di↵erence stands out: as can be seen the left plots,
for scalar DM both the shape of the curve of maximal in-
terference as well as the size of the allowed region around
this curve depend sensitively onm� while for fermion DM
the allowed region is much less sensitive to m�. This is
due to the di↵erence between equations 20 and 33, where
in the scalar DM case the scaling of the Higgs-exchange
and photon-exchange nuclear matrix elements with m�

is di↵erent, while the scaling is the same in the fermion
DM case.

Next, we contrast the regions in the parameter space
that can be consistent with the LUX bound for symmet-
ric and antisymmetric lepton-flavored DM as a function
of the masses m� and m�. In the left plot of figures 6 and
7 (for scalar and fermion DM, respectively), we start by
calculating for any point in the m�-m� plane the value of
�� that gives rise to the correct relic density in the sym-
metric DM case (for details of the relic abundance calcu-
lation, see appendix A). For the symmetric DM case, we
then check whether this parameter point is excluded by
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FIG. 6. The excluded region in the m�-m� plane for scalar
DM. For the left plot, �� is calculated point by point to give
the correct relic abundance for symmetric DM. The orange re-
gion includes points where this calculated value exceeds 1.5.
The green region then shows the points excluded by direct de-
tection for symmetric DM using this value of ��. The blue re-
gion shows points where direct detection also excludes asym-
metric DM for the same value of ��, and for any value of ��h

(subject to |��h| < 1.5; for 2m� < mh, consistency with the
invisible Higgs decay bound is also required). For the right
plot, the roles of �� and ��h are reversed, and both signs of
��h are used in plotting the blue region. See the main text
for further details.

Excluded Region in Fermion FDM
Excluded Region in this model
Region lf > 1.5
LEP Exclusion Region

0 100 200 300 400 500
0

100

200

300

400

500

mf @GeVD

m
c
@Ge

VD

m c
>
m f
No
t A
llo
we
d

Excluded Region in Higgs Portal
Excluded Region in this model
Region »lch» > 0.5
LEP Exclusion Region

0 100 200 300 400 500
0

100

200

300

400

500

mf @GeVD

m
c
@Ge

VD

m c
>
m f
No
t A
llo
we
d

FIG. 7. The excluded region in the m�-m� plane for fermion
DM. For the left plot, �� is calculated point by point to give
the correct relic abundance for symmetric DM. The orange re-
gion includes points where this calculated value exceeds 1.5.
The green region then shows the points excluded by direct
detection for symmetric DM using this value of ��. The
blue region shows points where direct detection also excludes
asymmetric DM for the same value of ��, and for any value
of |��h| < 0.5 (for 2m� < mh, consistency with the invisible
Higgs decay bound is also required). For the right plot, the
roles of �� and ��h are reversed, and both signs of ��h are
used in plotting the blue region. See the main text for further
details.

direct detection, keeping ��h = 0, since for the symmet-
ric case the two channels add incoherently so any finite
value of ��h only strengthens the direct detection con-
straint. Next, for the same value of ��, we check whether
there is any value of ��h (within the interval [-1.5, 1.5] for
scalar DM and [-0.5, 0.5] for fermion DM, and consistent
with the invisible Higgs decay bound if 2m� < mh) for
which asymmetric DM can be consistent with the direct
detection bound. In the second plot (right), we exchange
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Figure 4: Constraints on the mass of dark matter, m
�

and the mediator, m
�

when the X-ray line
is at 3.5 keV. The contours show the value of coupling �, and the red band shows the region where
correct relic abundance is obtained. The blue and purple-shaded regions show the exclusion from LUX
and from AMS respectively.

line. Fixing the splitting to be 3.5 keV, we show the direct detection and the AMS positron constraint
in figure 4 along with the region of parameter space consistent with the requirement of correct relic
abundance.

This scenario further predicts that closer inspection of such a line will reveal two closely spaced
lines corresponding to the �

⌧

! �
µ

and �
⌧

! �
e

transitions. As noted in eq. (1.5), the ratio of the
line energies in this couplet are set by the charged lepton masses. Therefore,

�! = !(�
⌧

! �
e

)� !(�
⌧

! �
µ

) (3.14)

⇡ !0
m2

µ

m2
⌧

= 12.4 eV (3.15)

where !0 = 3.5 keV is the average frequency of the two �
⌧

decay lines. The broadening of the line
due to the kinetic energy of the DM scales with its velocity. For typical astrophysical sources, the DM
velocity ranges from (1–3)⇥10�3, resulting in a broadening of O(1–10) eV. Whether the double line
feature gets washed out by the thermal broadening thus depends on the astrophysical source. While
this splitting is not currently measurable, it is within the design resolution of upcoming experiments
like ASTRO-H [119, 120]. The couplet constitutes a “smoking gun” signal of lepton FDM scenarios
at these experiments.

The lifetime for a decaying dark matter candidate to be consistent with the observed signal is
given by (see for instance [93]),

⌧
DM

' (1028 sec)
7 keV

m
�

. (3.16)

For m
�

= 150 GeV, one obtains ⌧
DM

⇡ 1020 s. For m
�

= 500 GeV and � ' 1, this would require
�� ' 10�8. The additional mass splittings introduced by this level of flavor violation are subdominant
to the MFV contributions calculated above.
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The Standard Model

Works extremely well!
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Direct Detection

Schumann, arXiv: 1501.01200
Figure 1. Results on spin-independent (scalar) WIMP-nucleon interactions as derived from direct detection experiments. The results
from DAMA/LIBRA [16, 21] and CDMS-Si [19] (closed contours, see text), which could be interpreted as being induced by interactions
of light-mass WIMP dark matter, are challenged by the exclusion limits (at 90% CL, lines) from many other experiments. The parameter
space is currently dominated by the dual-phase liquid xenon time projection chambers (TPCs) XENON100 [11] and LUX [12]. Some
results discussed in the text are not plotted to increase the readability of the plot.

3 Status direct WIMP Searches

In this Section we present the current status of direct
searches for WIMP dark matter. The discussion is sep-
arated into spin-independent (scalar) and spin-dependent
(axial-vector) interactions. No convincing sign of WIMP
dark matter has been observed so far.

3.1 Spin-independent Interactions

The current situation concerning spin-independent WIMP-
nucleon interactions is summarized in Figure 1. The
most sensitive exclusion limits from 6 GeV/c2 up to
>10 TeV/c2 still come from the liquid xenon experiments
XENON100 [11] and LUX [12]. At lower WIMP masses,
the best limits are new results from SuperCDMS (3.5–
6 GeV/c2) [13] and CRESST-II (below 3.5 GeV/c2) [14].
A few more competitive results from new players in the
field have been added as well and will be discussed be-
low, however, the most striking di↵erence compared to the
status of 2013 [15] is that the number of “anomalies” has
been reduced.

Out of the previously reported four anomalies from
DAMA/LIBRA [16], CoGeNT [17], CRESST-II [18]
and CDMS-Si (silicon detectors of the CDMS-II exper-
iment) [19], which could all be interpreted as possible
hints for the detection of WIMPs with masses around
10 GeV/c2, only DAMA/LIBRA and CDMS-Si remain.

Low-mass region, scintillators and cryogenic detectors

The DAMA/LIBRA experiment running at the Gran Sasso
National Laboratory (LNGS) in Italy searches for a dark
matter-induced annual modulation [20] of the background
rate in a massive high-purity NaI(Tl) scintillator target.
The collaboration observed such a signal over now 14 an-
nual cycles at 9.3� significance, exploiting a cumula-
tive exposure of 1.33 t⇥ y [16]. The measured phase is
is agreement with the expectation of a standard galac-
tic WIMP halo. If this observation is interpreted as be-
ing due to WIMP scatters [21], it leads to two preferred
regions in the spin-independent parameter space, around
10 GeV/c2 and 70 GeV/c2 for interactions with Na or I,
respectively. Even though the NaI-crystals are of unprece-
dented radio-purity, the DAMA/LIBRA background is sig-
nificantly higher compared to other experiments, and there
is no discrimination between ER and NR signals.

The preferred region derived from data taken with
the silicon detectors of the CDMS-II experiment [19],
acquired 2007/8 at the Soudan mine (USA), also cov-
ers low WIMP masses, however, at considerably lower
cross sections compared to DAMA/LIBRA. Three events
were observed in this measurement, with an expectation
of ⇠0.5 background events for the 140 kg⇥d exposure. A
profile likelihood analysis yields only a small probabil-
ity of 0.2% for the background-only hypothesis and ob-
tains the highest likelihood for a 8.6 GeV/c2 WIMP at
�

n

= 1.9 ⇥ 10�41 cm2. Both hints for a WIMP signal are
in conflict with various other results.



Indirect Detection
Planck Collaboration: Cosmological parameters
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Fig. 40. 2-dimensional marginal distributions in the pann–ns
plane for Planck TT+lowP (red), EE+lowP (yellow), TE+lowP
(green), and Planck TT,TE,EE+lowP (blue) data combinations.
We also show the constraints obtained using WMAP9 data (light
blue).

We then add pann as an additional parameter to those of the base
⇤CDM cosmology. Table 6 shows the constraints for various
data combinations.

Table 6. Constraints on pann in units of cm3 s�1 GeV�1.

Data combinations pann (95 % upper limits)

TT+lowP . . . . . . . . . . . . . . . . . < 5.7 ⇥ 10�27

EE+lowP . . . . . . . . . . . . . . . . . < 1.4 ⇥ 10�27

TE+lowP . . . . . . . . . . . . . . . . . < 5.9 ⇥ 10�28

TT+lowP+lensing . . . . . . . . . . . < 4.4 ⇥ 10�27

TT,TE,EE+lowP . . . . . . . . . . . . < 4.1 ⇥ 10�28

TT,TE,EE+lowP+lensing . . . . . . < 3.4 ⇥ 10�28

TT,TE,EE+lowP+ext . . . . . . . . . < 3.5 ⇥ 10�28

The constraints on pann from the Planck TT+lowP spec-
tra are about 3 times weaker than the 95 % limit of pann <
2.1 ⇥ 10�27 cm3 s�1 GeV�1 derived from WMAP9, which in-
cludes WMAP polarization data at low multipoles. However, the
Planck T E or EE spectra improve the constraints on pann by
about an order of magnitude compared to those from Planck TT
alone. This is because the main e↵ect of dark matter annihila-
tion is to increase the width of last scattering, leading to a sup-
pression of the amplitude of the peaks both in temperature and
polarization. As a result, the e↵ects of DM annihilation on the
power spectra at high multipole are degenerate with other param-
eters of base ⇤CDM, such as ns and As (Chen & Kamionkowski
2004; Padmanabhan & Finkbeiner 2005). At large angular scales
(` . 200), however, dark matter annihilation can produce an
enhancement in polarization caused by the increased ionization
fraction in the freeze-out tail following recombination. As a re-
sult, large-angle polarization information is crucial in breaking
the degeneracies between parameters, as illustrated in Fig. 40.
The strongest constraints on pann therefore come from the full
Planck temperature and polarization likelihood and there is little
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Fig. 41. Constraints on the self-annihilation cross-section at re-
combination, h�3iz⇤ , times the e�ciency parameter, fe↵ (Eq. 81).
The blue area shows the parameter space excluded by the Planck
TT,TE,EE+lowP data at 95 % CL. The yellow line indicates the
constraint using WMAP9 data. The dashed green line delineates
the region ultimately accessible by a cosmic variance limited ex-
periment with angular resolution comparable to that of Planck.
The horizontal red band includes the values of the thermal-relic
cross-section multiplied by the appropriate fe↵ for di↵erent DM
annihilation channels. The dark grey circles show the best-fit
DM models for the PAMELA/AMS-02/Fermi cosmic-ray ex-
cesses, as calculated in Cholis & Hooper (2013) (caption of their
figure 6). The light grey stars show the best-fit DM models for
the Fermi Galactic centre gamma-ray excess, as calculated by
Calore et al. (2014) (their tables I, II, and III), with the light
grey area indicating the astrophysical uncertainties on the best-
fit cross-sections.

improvement if other astrophysical data, or Planck lensing, are
added.30

We verified the robustness of the Planck TT,TE,EE+lowP
constraint by also allowing other extensions of ⇤CDM (Ne↵ ,
dns/d ln k, or YP) to vary together with pann. We found that the
constraint is weakened by up to 20 %. Furthermore, we have ver-
ified that we obtain consistent results when relaxing the priors
on the amplitudes of the Galactic dust templates or if we use the
CamSpec likelihood instead of the baseline Plik likelihood.

Figure 41 shows the constraints from WMAP9, Planck
TT,TE,EE+lowP, and a forecast for a cosmic variance limited
experiment with similar angular resolution to Planck31. The hor-
izontal red band includes the values of the thermal-relic cross-
section multiplied by the appropriate fe↵ for di↵erent DM anni-
hilation channels. For example, the upper red line corresponds to
fe↵ = 0.67, which is appropriate for a DM particle of mass m� =
10 GeV annihilating into e+e�, while the lower red line corre-
sponds to fe↵ = 0.13, for a DM particle annihilating into 2⇡+⇡�
through an intermediate mediator (see e.g., Arkani-Hamed et al.
2009). The Planck data exclude at 95 % confidence level a ther-

30It is interesting to note that the constraint derived from Planck
TT,TE,EE+lowP is consistent with the forecast given in Galli et al.
(2009), pann < 3 ⇥ 10�28 cm3 s�1 GeV�1.

31We assumed that the cosmic variance limited experiment would
measure the angular power spectra up to a maximum multipole of
`max = 2500, observing a sky fraction fsky = 0.65.
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FIG. 8. DM annihilation cross-section constraints derived from the combined 15-dSph analysis for various channels.



Searching for SUSY at the LHC

Lots of associated states, strong bounds
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Why Flavored Dark Matter?
The particle nature of DM is unknown. 

All SM matter appears in three copies and the origin of 
the flavor structure is also unknown. 

It is interesting to explore the phenomenological 
consequences if DM also transforms under flavor. 

Can existing experiments probe this scenario while 
continuing to push deeper into WIMP parameter space? 

Can FDM be experimentally distinguished from a single 
DM species?



FDM : Basic Setup
Consider non-flavor blind coupling to SM. 

Coupling to light quarks is ruled out by direct detection 

3rd generation quarks OK, but leptons present additional 
interesting features.

SMi
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φ
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φj vs.
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Choose     and     to be SU(2) singlets. 

    carries hypercharge, electric charge. 

One of    and    spin-0, the other is spin-1/2 

Random flavor structure will lead to LFV processes. 

                                  (global U(1) keeps     stable)
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FIG. 2: Potential contribution to µ → eγ from lepton
flavored dark matter.

our focus to the case where χ couples to the SU(2) singlet
lepton field Ec, as in Eq. 2. The generalization to the
other cases is straightforward, and is left for future work.

1. Flavor Structure

In general the matrix λ will contain both diagonal and
off-diagonal elements, thereby giving rise to lepton flavor
violation. The experimental bounds on such processes
are satisfied if all the elements in λ <

∼ 10−3 for mφ ∼ 200
GeV, even in the absence of any special flavor structure.
In spite of these small couplings such a theory can still
lead to interesting collider signals, since φ can be pair
produced through SM gauge interactions, and will emit
charged leptons as it decays down to the dark matter
particle. Unfortunately, however, couplings of this size
are by themselves too small to generate the correct
abundance for χ, if it is to be a thermal relic. This
is not necessarily a problem if χ transforms under the
SU(2) gauge interactions of the SM, or more generally if
the theory has additional vertices of the form shown in
Fig. 1(b), since these other couplings can play a role in
determining the relic abundance. However, if χ is a SM
singlet and has no sizable couplings beyond those in Eq.
2, the elements in λ must be of order unity to generate
the observed amount of dark matter, and aligned with
the lepton Yukawa couplings to avoid flavor bounds.
The matrix λ can naturally be aligned with the SM

Yukawa couplings if this interaction preserves a larger
subgroup of the SM flavor group than just overall lepton
number. For example, if we identify the three flavors
of dark matter with the electron, muon and tau flavors
in the SM, alignment is obtained if λ, and the dark
matter mass matrix, respects the U(1)3 symmetry of
lepton sector of the SM. In other words, the U(3)χ×
U(3)2 symmetry is explicitly broken by λ, and by the
SM Yukawa couplings, down to the diagonal U(1)3. This
larger symmetry forbids lepton flavor violating processes.
A more restrictive possibility is that the only source

of flavor violation in the theory is the SM Yukawa
matrix, which then constrains the coupling matrix λ to be
consistent with minimal flavor violation (MFV) [12]. In
this scenario, the dark matter flavor symmetry U(3)χ is
identified with either U(3)E or U(3)L of the SM, and the
matrix λ respects these symmetries up to effects arising

from the SM Yukawa couplings.
If we write the lepton Yukawa couplings of the SM as

yA
iLAEc

iH + h.c., (3)

then the Yukawa matrix yAi can be thought of as
a spurion transforming as (3, 3̄) under the SU(3)L×
SU(3)E subgroup of U(3)L× U(3)E . Consider first the
case where U(3)χ is identified with U(3)E . Then

λα
iχαEc

i φ + h.c. → λj
iχjEc

i φ + h.c. (4)

If the theory respects MFV the matrix λ is restricted to
be of the form

λj
i =

(
α1+ β y†y

)
j

i
. (5)

Here α and β are constants, and we are keeping only the
first non-trivial term in an expansion in powers of the
SM Yukawa couplings. We write the dark matter mass
term schematically as

[mχ] β
αχ̄αχ

β , (6)

In this case MFV restricts mχ to have the form

[mχ] i
j =

(
m01+∆m y†y

)
i

j
. (7)

where m0 and ∆m are constants. Since the SM Yukawa
couplings are small, the various dark matter flavors have
small splittings and couple in a flavor diagonal way
with approximately equal strength to leptons of the SM.
Either the tau flavored or the electron flavored state will
be the lightest, depending on the sign of ∆m.
We now turn to the case where U(3)χ is identified with

U(3)L. Then

λα
iχαEc

iφ + h.c. → λA
iχAEc

i φ + h.c. (8)

MFV restricts the matrix λ to be of the form

λA
i = α yA

i , (9)

where again we are working only to the leading non-
trivial order in an expansion in the SM Yukawa couplings.
The dark matter mass term now takes the form

[mχ]A
B =

(
m01+∆m yy†

)
A

B
. (10)

We see that in this case the three dark matter flavors
are again close in mass, but their couplings to the SM
fields, though still flavor-diagonal, are now hierarchical.
In particular, if the relic abundance is determined by
λ, we expect that only the tau flavor can constitute
dark matter, since the couplings of the other flavors are
relatively small.
In the two Higgs doublet extension of the SM where one

doublet gives mass to the up-type quarks, and the other
to the down-type quarks and leptons, the coupling matrix
λ and the dark matter mass matrix are constrained by
MFV to be of the same form as in the SM. Therefore the
formulas above continue to apply. However, since the
lepton Yukawa couplings can be significantly larger in
two Higgs doublet models, the tau flavored dark matter
state may be somewhat split from the electron and muon
flavored states, which remain nearly degenerate.
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Flavor Structure
In the Minimal Flavor Violation framework, the SM 
Yukawas are the only source of flavor breaking. 
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are consistent with MFV and LFV processes are 
eliminated. 
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Spectrum

Only the lightest     is stable, however when            
the splittings are too small for tree-level 
decays, the heavier states can have 

� � (1)

⇠†⇠(= 1) ! SI ⇠†~�⇠ ! SD (2)

�
tot

= A2�
0

(3)

p±,e±,�,⌫

L � �i
↵�

↵eci� + h.c. (4)

M ⇠ �2e

16⇡2m2

�

(5)

�µ!e� ⇠
✓

�2e

16⇡2

◆
2 m5

µ

m4

�

(6)

LSM � yiA`
AeciH + h.c. (7)

Gµ⌫G̃µ⌫ (8)

d� =
1

2M
d⇧n ⇥ |M|2 (9)

d⇧n(P ! {pi})

=
nY

i=1

d 3pi
(2⇡)32Ei

(2⇡)4�4(P �
X

i

pi)

=

Z
d 4pX
(2⇡)4

mY

k=1

d 3pk
(2⇡)32Ek

(2⇡)4�4(P �
X

k

pk � pX)
nY

j=m+1

d 3pj
(2⇡)32Ej

(2⇡)4�4(pX �
X

j

pj)

=

Z
dm2

X

2⇡

d3pX
(2⇡)32EX

mY

k=1

d 3pk
(2⇡)32Ek

(2⇡)4�4(P �
X

k

pk � pX) d⇧n�m(pX ! {pj})

=

Z
dm2

X

2⇡
d⇧m(P ! {pk, pX})d⇧n�m(pX ! {pj})

Z =

0

BB@

...
. . . pi · pj . . .

...

1

CCA (10)

P ! {p
1

, . . . , pn} (11)

1

� � �⌧ < �e,µ (1)

SU(3)eR ⇥ SU(3)� (2)

|H|2|�|2 (3)

⌧ � H�1

0

(4)

LX = µXH†HX + gX�̄� (5)

⇠†⇠(= 1) ! SI ⇠†~�⇠ ! SD (6)

�
tot

= A2�
0

(7)

p±,e±,�,⌫

L � �i
↵�

↵eci� + h.c. (8)

M ⇠ �2e

16⇡2m2

�

(9)

�µ!e� ⇠
✓

�2e

16⇡2

◆
2 m5

µ

m4

�

(10)

LSM � yiA`
AeciH + h.c. (11)

Gµ⌫G̃µ⌫ (12)

d� =
1

2M
d⇧n ⇥ |M|2 (13)

d⇧n(P ! {pi})

=
nY

i=1

d 3pi
(2⇡)32Ei

(2⇡)4�4(P �
X

i

pi)

=

Z
d 4pX
(2⇡)4

mY

k=1

d 3pk
(2⇡)32Ek

(2⇡)4�4(P �
X

k

pk � pX)
nY

j=m+1

d 3pj
(2⇡)32Ej

(2⇡)4�4(pX �
X

j

pj)

=

Z
dm2

X

2⇡

d3pX
(2⇡)32EX

mY

k=1

d 3pk
(2⇡)32Ek

(2⇡)4�4(P �
X

k

pk � pX) d⇧n�m(pX ! {pj})

=

Z
dm2

X

2⇡
d⇧m(P ! {pk, pX})d⇧n�m(pX ! {pj})

1

m�e m�µ m�⌧ m�e,µ (1)

m�u,c �m�t < mW +mb (2)

mW +mb < m�u,c �m�t < mt (3)

�� � � �⌧ < �e,µ �̄ (4)

˜̀
i

¯̀
i

¯̀
j `i `j �i �j (5)

SU(3)eR ⇥ SU(3)� (6)

|H|2|�|2 (7)

⌧ � H�1

0

(8)

m� (9)

LX = µXH†HX + gX�̄� (10)

⇠†⇠(= 1) ! SI ⇠†~�⇠ ! SD (11)

�
tot

= A2�
0

(12)

p±,e±,�,⌫

L � �i
↵�

↵eci� + h.c. (13)

M ⇠ �2e

16⇡2m2

�

(14)

�µ!e� ⇠
✓

�2e

16⇡2

◆
2 m5

µ

m4

�

(15)

LSM � yiA`
AeciH + h.c. (16)

Gµ⌫G̃µ⌫ (17)

d� =
1

2M
d⇧n ⇥ |M|2 (18)

1

m�e m�µ m�⌧ m�e,µ (1)

m�u,c �m�t < mW +mb (2)

mW +mb < m�u,c �m�t < mt (3)

�� � � �⌧ < �e,µ �̄ (4)

˜̀
i

¯̀
i

¯̀
j `i `j �i �j (5)

SU(3)eR ⇥ SU(3)� (6)

|H|2|�|2 (7)

⌧ � H�1

0

(8)

m� (9)

LX = µXH†HX + gX�̄� (10)

⇠†⇠(= 1) ! SI ⇠†~�⇠ ! SD (11)

�
tot

= A2�
0

(12)

p±,e±,�,⌫

L � �i
↵�

↵eci� + h.c. (13)

M ⇠ �2e

16⇡2m2

�

(14)

�µ!e� ⇠
✓

�2e

16⇡2

◆
2 m5

µ

m4

�

(15)

LSM � yiA`
AeciH + h.c. (16)

Gµ⌫G̃µ⌫ (17)

d� =
1

2M
d⇧n ⇥ |M|2 (18)

1

m�e m�µ m�⌧ m�e,µ (1)

m�u,c �m�t < mW +mb (2)

mW +mb < m�u,c �m�t < mt (3)

�� � � �⌧ < �e,µ �̄ (4)

˜̀
i

¯̀
i

¯̀
j `i `j �i �j (5)

SU(3)eR ⇥ SU(3)� (6)

|H|2|�|2 (7)

⌧ � H�1

0

(8)

m� (9)

LX = µXH†HX + gX�̄� (10)

⇠†⇠(= 1) ! SI ⇠†~�⇠ ! SD (11)

�
tot

= A2�
0

(12)

p±,e±,�,⌫

L � �i
↵�

↵eci� + h.c. (13)

M ⇠ �2e

16⇡2m2

�

(14)

�µ!e� ⇠
✓

�2e

16⇡2

◆
2 m5

µ

m4

�

(15)

LSM � yiA`
AeciH + h.c. (16)

Gµ⌫G̃µ⌫ (17)

d� =
1

2M
d⇧n ⇥ |M|2 (18)

1

m�e m�µ m�⌧ m�e,µ (1)

m�u,c �m�t < mW +mb (2)

mW +mb < m�u,c �m�t < mt (3)

�� � � �⌧ < �e,µ �̄ (4)

˜̀
i

¯̀
i

¯̀
j `i `j �i �j (5)

SU(3)eR ⇥ SU(3)� (6)

|H|2|�|2 (7)

⌧ � H�1

0

(8)

m� (9)

LX = µXH†HX + gX�̄� (10)

⇠†⇠(= 1) ! SI ⇠†~�⇠ ! SD (11)

�
tot

= A2�
0

(12)

p±,e±,�,⌫

L � �i
↵�

↵eci� + h.c. (13)

M ⇠ �2e

16⇡2m2

�

(14)

�µ!e� ⇠
✓

�2e

16⇡2

◆
2 m5

µ

m4

�

(15)

LSM � yiA`
AeciH + h.c. (16)

Gµ⌫G̃µ⌫ (17)

d� =
1

2M
d⇧n ⇥ |M|2 (18)

1

m�e m�µ m�⌧ m�e,µ (1)

m�u,c �m�t < mW +mb (2)

mW +mb < m�u,c �m�t < mt (3)

�� � � �⌧ < �e,µ �̄ (4)

˜̀
i

¯̀
i

¯̀
j `i `j �i �j (5)

SU(3)eR ⇥ SU(3)� (6)

|H|2|�|2 (7)

⌧ � H�1

0

(8)

m� (9)

LX = µXH†HX + gX�̄� (10)

⇠†⇠(= 1) ! SI ⇠†~�⇠ ! SD (11)

�
tot

= A2�
0

(12)

p±,e±,�,⌫

L � �i
↵�

↵eci� + h.c. (13)

M ⇠ �2e

16⇡2m2

�

(14)

�µ!e� ⇠
✓

�2e

16⇡2

◆
2 m5

µ

m4

�

(15)

LSM � yiA`
AeciH + h.c. (16)

Gµ⌫G̃µ⌫ (17)

d� =
1

2M
d⇧n ⇥ |M|2 (18)

1

m�e m�µ m�⌧ m�e,µ (1)

m�u,c �m�t < mW +mb (2)

mW +mb < m�u,c �m�t < mt (3)

�� � � �⌧ < �e,µ �̄ (4)

˜̀
i

¯̀
i

¯̀
j `i `j �i �j (5)

SU(3)eR ⇥ SU(3)� (6)

|H|2|�|2 (7)

⌧ � H�1

0

(8)

m� (9)

LX = µXH†HX + gX�̄� (10)

⇠†⇠(= 1) ! SI ⇠†~�⇠ ! SD (11)

�
tot

= A2�
0

(12)

p±,e±,�,⌫

L � �i
↵�

↵eci� + h.c. (13)

M ⇠ �2e

16⇡2m2

�

(14)

�µ!e� ⇠
✓

�2e

16⇡2

◆
2 m5

µ

m4

�

(15)

LSM � yiA`
AeciH + h.c. (16)

Gµ⌫G̃µ⌫ (17)

d� =
1

2M
d⇧n ⇥ |M|2 (18)

1

or



Additional Couplings
When      is a scalar, it can also have a marginal 
coupling to the SM Higgs 

The cross-term can have either sign. Potential is well 
behaved as long as 

Non-universal couplings also possible. Would lead to 
additional mass splittings after EWSB.

� � (1)

⇠†⇠(= 1) ! SI ⇠†~�⇠ ! SD (2)

�
tot

= A2�
0

(3)

p±,e±,�,⌫

L � �i
↵�

↵eci� + h.c. (4)

M ⇠ �2e

16⇡2m2

�

(5)

�µ!e� ⇠
✓

�2e

16⇡2

◆
2 m5

µ

m4

�

(6)

LSM � yiA`
AeciH + h.c. (7)

Gµ⌫G̃µ⌫ (8)

d� =
1

2M
d⇧n ⇥ |M|2 (9)

d⇧n(P ! {pi})

=
nY

i=1

d 3pi
(2⇡)32Ei

(2⇡)4�4(P �
X

i

pi)

=

Z
d 4pX
(2⇡)4

mY

k=1

d 3pk
(2⇡)32Ek

(2⇡)4�4(P �
X

k

pk � pX)
nY

j=m+1

d 3pj
(2⇡)32Ej

(2⇡)4�4(pX �
X

j

pj)

=

Z
dm2

X

2⇡

d3pX
(2⇡)32EX

mY

k=1

d 3pk
(2⇡)32Ek

(2⇡)4�4(P �
X

k

pk � pX) d⇧n�m(pX ! {pj})

=

Z
dm2

X

2⇡
d⇧m(P ! {pk, pX})d⇧n�m(pX ! {pj})

Z =

0

BB@

...
. . . pi · pj . . .

...

1

CCA (10)

P ! {p
1

, . . . , pn} (11)

1

2

for both the symmetric and asymmetric cases in section
IV. We will conclude in section V and comment on future
directions. Detailed formulae related to the calculation
of the relic density in the symmetric case and to the scat-
tering amplitude for direct detection can be found in the
appendices.

II. THE MODEL

The FDM setup has been described in detail in ref. [19]
so we will only give a brief summary here. The DM is
taken to be a singlet under the gauge symmetries of the
standard model (SM) but it belongs to a multiplet that
transforms nontrivially under the flavor symmetries of
the SM, which we will denote by �i. There is also a
mediator particle � which is a flavor singlet, but which
carries SM hypercharge. Assuming that the � mass is
heavier than at least one of the � masses, the lightest of
the �i is rendered stable by a global U(1) under which
only the �i and � are charged. We will refer to this U(1)
as �-number.

It was shown in ref. [19] that FDM is compatible with
constraints arising from flavor observables in a Minimal
Flavor Violation (MFV) [34] setup, such that the SM
Yukawa couplings are the only source of flavor violation.
With this assumption, the minimal choice in terms of
the number of degrees of freedom is for �i to be a flavor
triplet.

Which SM flavor symmetry �i transforms under de-
termines the SM fermions it can couple to at the renor-
malizable level. For the rest of this paper we will focus
our attention on the specific case of lepton-flavored DM,
where �e,µ,⌧ transform as a triplet under SU(3)eR . As
in ref. [19], we will work with a benchmark model where
�⌧ is the lightest state, but the main conclusions of this
paper are insensitive to this choice. A renormalizable
coupling to the SM fermions requires one of � and � to
be a fermion, and the other to be a scalar. If the DM is
a scalar, the interaction term is

L
scalar

� �ij�i�̄eR,j + h.c., (1)

while for a fermionic DM it has the form

L
fermion

� �ij�̄i�eR,j + h.c.. (2)

As discussed in ref. [19], within the MFV formalism the
flavor structure of �ij is

�ij = (↵1 + �y†y)ij . (3)

In order to reduce clutter, we will assume that ↵ � �,
such that we can define �ij ⌘ ���ij . It should be noted
however that this is mainly a choice of convenience and
that the main conclusions of this paper are not sensitive
to this choice.

In the scalar DM case, the only other renormalizable
interaction of the dark sector with the SM allowed by
the symmetries of the model is a coupling to the Higgs

doublet. Including this interaction, the scalar potential
can be written as

V
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= �h(H
†H � 1

2
v2)2 + µ2
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i�i

+ ��h�
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i�iH

†H + �s(�
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This potential is bounded from below even for ��h < 0,
provided that

�h > 0, �s > 0, �h�s >
1

4
�2

�h. (5)

Note that negative value ��h does not present a problem
as long as �s is positive and large. After electroweak
symmetry breaking, the DM inherits a �-�-h coupling.
This will contribute to direct detection through tree-level
Higgs exchange.
In order to study similar phenomenological features in

the fermion DM case, we will also include a dimension-5
term in the Lagrangian

L
fermion

� � 

⇤
�̄i�iH

†H. (6)

To have consistency between the scalar and fermion DM
cases, we will adopt a convention such that



⇤
⌘ ��h

v
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where v is the electroweak scale, and with the under-
standing that ��h is small in the fermionic DM case. In
other words, the dimension-5 term is assumed to have
arisen by integrating out additional degrees of freedom
at the scale ⇤ (close to TeV scale), such as a heavy SM
singlet scalar with couplings to �̄-�, and to the SM Higgs.
Note that the scalar potential in this case can also include
a renormalizable |�|2|H|2 term, but the presence of this
term will have no e↵ect for the rest of the paper, and for
this reason we will not dwell on it any further.
Let us now turn our attention to the generation of a

� asymmetry. We will demonstrate this explicitly in the
fermion DM case; it is straightforward to implement the
same mechanism in the scalar DM case as well. We as-
sume that a primordial lepton asymmetry is generated
via the decay of right-handed neutrinos at a high scale
within a few orders of magnitude of the GUT scale. The
right handed neutrinos NR couple to the SM leptons
through

L
lepton

=
1

2
(MN )ijN

c
R,iNR,j

+
⇣
yLijL̄iHeR,j + yNij L̄iH̃NR,j

⌘
+ h.c., (8)

where Li are the SU(2) doublet SM lepton fields, H̃ =
✏H⇤ and the first term is a Majorana mass for the
right-handed neutrinos. The mechanism by which non-
thermal decays of the right-handed neutrinos generate a
nonzero lepton asymmetry, and later a nonzero baryon
asymmetry through sphaleron processes, is well known
(see [32, 33] and references therein). This mechanism re-
lies on CP violating phases in the cross-terms between
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at the scale ⇤ (close to TeV scale), such as a heavy SM
singlet scalar with couplings to �̄-�, and to the SM Higgs.
Note that the scalar potential in this case can also include
a renormalizable |�|2|H|2 term, but the presence of this
term will have no e↵ect for the rest of the paper, and for
this reason we will not dwell on it any further.
Let us now turn our attention to the generation of a

� asymmetry. We will demonstrate this explicitly in the
fermion DM case; it is straightforward to implement the
same mechanism in the scalar DM case as well. We as-
sume that a primordial lepton asymmetry is generated
via the decay of right-handed neutrinos at a high scale
within a few orders of magnitude of the GUT scale. The
right handed neutrinos NR couple to the SM leptons
through

L
lepton
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2
(MN )ijN

c
R,iNR,j

+
⇣
yLijL̄iHeR,j + yNij L̄iH̃NR,j

⌘
+ h.c., (8)

where Li are the SU(2) doublet SM lepton fields, H̃ =
✏H⇤ and the first term is a Majorana mass for the
right-handed neutrinos. The mechanism by which non-
thermal decays of the right-handed neutrinos generate a
nonzero lepton asymmetry, and later a nonzero baryon
asymmetry through sphaleron processes, is well known
(see [32, 33] and references therein). This mechanism re-
lies on CP violating phases in the cross-terms between
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the tree-level and one-loop contributions to the ampli-
tude for NR decay.

At first, it may seem that the interaction of equation 2
is su�cient to transfer any lepton asymmetry generated
in the decays of NR to the �i. However, �-number is
still an exact symmetry at this point, which makes it im-
possible to generate a � asymmetry from an asymmetry
in a di↵erent species with no �-number. Therefore, the
crucial ingredient for transferring the lepton asymmetry
into the DM sector is breaking �-number (down to Z

2

such that the stability of DM is not lost). For this pur-
pose we add one more degree of freedom to the model, a
real scalar field S, with the interaction

LS = ySij�̄iSNR,j + h.c.. (9)

Since S is real, this interaction breaks �-number, but
there is still a Z

2

under which S, � and all three �
are odd. This interaction makes it possible for out-
of-equilibrium decays of the right-handed neutrino to
generate a � asymmetry through interference between
tree-level and one-loop contributions with CP violating
phases, in the exact same way that the same decays also
generate a lepton asymmetry. The couplings in L

fermion

which are assumed to be of order one will lead to e�cient
annihilation of the symmetric component of �. Note that
there is no hierarchy problem associated with the scalar
S, because it need not be light. The only requirement for
this mechanism to work is for S to not be heavier than
the near-GUT scale right-handed neutrinos.

Note that while the same mechanism generates the lep-
ton and � asymmetries, the phases that determine the
size of the generated asymmetry are di↵erent. In par-
ticular, the lepton asymmetry will depend on the phys-
ical combinations of phases in the matrices yLij and yNij ,
whereas the � asymmetry will depend on the phases in
the matrices �ij and ySij . This means that if the phases
that are relevant for the � asymmetry are smaller than
those that are relevant for the lepton asymmetry, the �
asymmetry will be smaller, and therefore m� must be
chosen so that the � energy density will be a factor of
5-6 larger than the baryon energy density. We will not
assume any particular relation between the phases in the
lepton and � sectors, treating m� as a free parameter
that is chosen such that � has an energy density com-
patible with the DM density we observe in the universe
today.

The collider phenomenology of asymmetric FDM is
identical to the symmetric case, which was studied in
ref. [19], and we will not go into this in any further de-
tail (See Section V for further comments). Any indirect
detection signals for the symmetric case are of course
non-existent for the asymmetric case, so we will not have
anything further to say about constraints from indirect
detection either. In the rest of the paper we will con-
centrate on direct detection searches, where asymmetric
FDM can have very di↵erent prospects compared to the
symmetric case, due to the presence of interference, as
we will study in detail in the next section.

III. DIRECT DETECTION

In this section we will calculate the cross section for �
to scatter o↵ of an atomic nucleus, keeping interference
terms. As mentioned in the introduction, when the DM
is symmetric, the interference terms will cancel once the
scattering of both � and �̄ are taken into account, but for
asymmetric DM, they will be crucial. Based on the model
of section II, it is easy to see that scattering can happen
at tree-level through Higgs exchange. At tree-level, the
FDM interaction of equations 1 and 2 (for the scalar and
fermion DM cases, respectively) does not contribute to
the scattering, however as was studied in ref. [19], it does
give rise to vector exchange at loop order. The exchanged
vector boson can be either the photon or the Z-boson,
but of course the latter is strongly suppressed compared
to the former due to the Z-mass. Therefore we will only
consider the photon exchange for the rest of the paper.

A. Scalar DM
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FIG. 1. The Feynman diagrams that contribute to direct
detection in the scalar DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.

After electroweak symmetry breaking, the interaction
term in equation 4 contains the interaction

Lh � �v��h�
⇤�h, (10)

which leads to the tree-level Higgs exchange. The loop-
induced coupling of the DM to the photon is calculated
in appendix B and in the zero external momentum limit
it has the form

b�@
µ�⇤@⌫�Fµ⌫ , (11)
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and m` is the mass of the tau lepton since we have as-
sumed �⌧ to be the DM.
Combining this with the Higgs and photon propaga-

tors, we can write the e↵ective operators that give rise to
the DM-nucleus scattering:

L
e↵

= cq��
⇤$

@
µ

�q�µq + cqh�
⇤�qq, (13)
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S, because it need not be light. The only requirement for
this mechanism to work is for S to not be heavier than
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Note that while the same mechanism generates the lep-
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that are relevant for the � asymmetry are smaller than
those that are relevant for the lepton asymmetry, the �
asymmetry will be smaller, and therefore m� must be
chosen so that the � energy density will be a factor of
5-6 larger than the baryon energy density. We will not
assume any particular relation between the phases in the
lepton and � sectors, treating m� as a free parameter
that is chosen such that � has an energy density com-
patible with the DM density we observe in the universe
today.

The collider phenomenology of asymmetric FDM is
identical to the symmetric case, which was studied in
ref. [19], and we will not go into this in any further de-
tail (See Section V for further comments). Any indirect
detection signals for the symmetric case are of course
non-existent for the asymmetric case, so we will not have
anything further to say about constraints from indirect
detection either. In the rest of the paper we will con-
centrate on direct detection searches, where asymmetric
FDM can have very di↵erent prospects compared to the
symmetric case, due to the presence of interference, as
we will study in detail in the next section.
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In this section we will calculate the cross section for �
to scatter o↵ of an atomic nucleus, keeping interference
terms. As mentioned in the introduction, when the DM
is symmetric, the interference terms will cancel once the
scattering of both � and �̄ are taken into account, but for
asymmetric DM, they will be crucial. Based on the model
of section II, it is easy to see that scattering can happen
at tree-level through Higgs exchange. At tree-level, the
FDM interaction of equations 1 and 2 (for the scalar and
fermion DM cases, respectively) does not contribute to
the scattering, however as was studied in ref. [19], it does
give rise to vector exchange at loop order. The exchanged
vector boson can be either the photon or the Z-boson,
but of course the latter is strongly suppressed compared
to the former due to the Z-mass. Therefore we will only
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FIG. 1. The Feynman diagrams that contribute to direct
detection in the scalar DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.
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for both the symmetric and asymmetric cases in section
IV. We will conclude in section V and comment on future
directions. Detailed formulae related to the calculation
of the relic density in the symmetric case and to the scat-
tering amplitude for direct detection can be found in the
appendices.

II. THE MODEL

The FDM setup has been described in detail in ref. [19]
so we will only give a brief summary here. The DM is
taken to be a singlet under the gauge symmetries of the
standard model (SM) but it belongs to a multiplet that
transforms nontrivially under the flavor symmetries of
the SM, which we will denote by �i. There is also a
mediator particle � which is a flavor singlet, but which
carries SM hypercharge. Assuming that the � mass is
heavier than at least one of the � masses, the lightest of
the �i is rendered stable by a global U(1) under which
only the �i and � are charged. We will refer to this U(1)
as �-number.

It was shown in ref. [19] that FDM is compatible with
constraints arising from flavor observables in a Minimal
Flavor Violation (MFV) [34] setup, such that the SM
Yukawa couplings are the only source of flavor violation.
With this assumption, the minimal choice in terms of
the number of degrees of freedom is for �i to be a flavor
triplet.

Which SM flavor symmetry �i transforms under de-
termines the SM fermions it can couple to at the renor-
malizable level. For the rest of this paper we will focus
our attention on the specific case of lepton-flavored DM,
where �e,µ,⌧ transform as a triplet under SU(3)eR . As
in ref. [19], we will work with a benchmark model where
�⌧ is the lightest state, but the main conclusions of this
paper are insensitive to this choice. A renormalizable
coupling to the SM fermions requires one of � and � to
be a fermion, and the other to be a scalar. If the DM is
a scalar, the interaction term is

L
scalar

� �ij�i�̄eR,j + h.c., (1)

while for a fermionic DM it has the form

L
fermion

� �ij�̄i�eR,j + h.c.. (2)

As discussed in ref. [19], within the MFV formalism the
flavor structure of �ij is

�ij = (↵1 + �y†y)ij . (3)

In order to reduce clutter, we will assume that ↵ � �,
such that we can define �ij ⌘ ���ij . It should be noted
however that this is mainly a choice of convenience and
that the main conclusions of this paper are not sensitive
to this choice.

In the scalar DM case, the only other renormalizable
interaction of the dark sector with the SM allowed by
the symmetries of the model is a coupling to the Higgs

doublet. Including this interaction, the scalar potential
can be written as

V
scalar
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2
v2)2 + µ2

�i
�⇤
i�i

+ ��h�
⇤
i�iH
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⇤
i�i)

2. (4)

This potential is bounded from below even for ��h < 0,
provided that

�h > 0, �s > 0, �h�s >
1

4
�2

�h. (5)

Note that negative value ��h does not present a problem
as long as �s is positive and large. After electroweak
symmetry breaking, the DM inherits a �-�-h coupling.
This will contribute to direct detection through tree-level
Higgs exchange.
In order to study similar phenomenological features in

the fermion DM case, we will also include a dimension-5
term in the Lagrangian

L
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⇤
�̄i�iH

†H. (6)

To have consistency between the scalar and fermion DM
cases, we will adopt a convention such that
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where v is the electroweak scale, and with the under-
standing that ��h is small in the fermionic DM case. In
other words, the dimension-5 term is assumed to have
arisen by integrating out additional degrees of freedom
at the scale ⇤ (close to TeV scale), such as a heavy SM
singlet scalar with couplings to �̄-�, and to the SM Higgs.
Note that the scalar potential in this case can also include
a renormalizable |�|2|H|2 term, but the presence of this
term will have no e↵ect for the rest of the paper, and for
this reason we will not dwell on it any further.
Let us now turn our attention to the generation of a

� asymmetry. We will demonstrate this explicitly in the
fermion DM case; it is straightforward to implement the
same mechanism in the scalar DM case as well. We as-
sume that a primordial lepton asymmetry is generated
via the decay of right-handed neutrinos at a high scale
within a few orders of magnitude of the GUT scale. The
right handed neutrinos NR couple to the SM leptons
through

L
lepton

=
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2
(MN )ijN

c
R,iNR,j

+
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yLijL̄iHeR,j + yNij L̄iH̃NR,j
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+ h.c., (8)

where Li are the SU(2) doublet SM lepton fields, H̃ =
✏H⇤ and the first term is a Majorana mass for the
right-handed neutrinos. The mechanism by which non-
thermal decays of the right-handed neutrinos generate a
nonzero lepton asymmetry, and later a nonzero baryon
asymmetry through sphaleron processes, is well known
(see [32, 33] and references therein). This mechanism re-
lies on CP violating phases in the cross-terms between
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the tree-level and one-loop contributions to the ampli-
tude for NR decay.

At first, it may seem that the interaction of equation 2
is su�cient to transfer any lepton asymmetry generated
in the decays of NR to the �i. However, �-number is
still an exact symmetry at this point, which makes it im-
possible to generate a � asymmetry from an asymmetry
in a di↵erent species with no �-number. Therefore, the
crucial ingredient for transferring the lepton asymmetry
into the DM sector is breaking �-number (down to Z

2

such that the stability of DM is not lost). For this pur-
pose we add one more degree of freedom to the model, a
real scalar field S, with the interaction

LS = ySij�̄iSNR,j + h.c.. (9)

Since S is real, this interaction breaks �-number, but
there is still a Z

2

under which S, � and all three �
are odd. This interaction makes it possible for out-
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generate a � asymmetry through interference between
tree-level and one-loop contributions with CP violating
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which are assumed to be of order one will lead to e�cient
annihilation of the symmetric component of �. Note that
there is no hierarchy problem associated with the scalar
S, because it need not be light. The only requirement for
this mechanism to work is for S to not be heavier than
the near-GUT scale right-handed neutrinos.

Note that while the same mechanism generates the lep-
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size of the generated asymmetry are di↵erent. In par-
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whereas the � asymmetry will depend on the phases in
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those that are relevant for the lepton asymmetry, the �
asymmetry will be smaller, and therefore m� must be
chosen so that the � energy density will be a factor of
5-6 larger than the baryon energy density. We will not
assume any particular relation between the phases in the
lepton and � sectors, treating m� as a free parameter
that is chosen such that � has an energy density com-
patible with the DM density we observe in the universe
today.
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identical to the symmetric case, which was studied in
ref. [19], and we will not go into this in any further de-
tail (See Section V for further comments). Any indirect
detection signals for the symmetric case are of course
non-existent for the asymmetric case, so we will not have
anything further to say about constraints from indirect
detection either. In the rest of the paper we will con-
centrate on direct detection searches, where asymmetric
FDM can have very di↵erent prospects compared to the
symmetric case, due to the presence of interference, as
we will study in detail in the next section.
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In this section we will calculate the cross section for �
to scatter o↵ of an atomic nucleus, keeping interference
terms. As mentioned in the introduction, when the DM
is symmetric, the interference terms will cancel once the
scattering of both � and �̄ are taken into account, but for
asymmetric DM, they will be crucial. Based on the model
of section II, it is easy to see that scattering can happen
at tree-level through Higgs exchange. At tree-level, the
FDM interaction of equations 1 and 2 (for the scalar and
fermion DM cases, respectively) does not contribute to
the scattering, however as was studied in ref. [19], it does
give rise to vector exchange at loop order. The exchanged
vector boson can be either the photon or the Z-boson,
but of course the latter is strongly suppressed compared
to the former due to the Z-mass. Therefore we will only
consider the photon exchange for the rest of the paper.
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FIG. 1. The Feynman diagrams that contribute to direct
detection in the scalar DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.
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under which S, � and all three �
are odd. This interaction makes it possible for out-
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generate a � asymmetry through interference between
tree-level and one-loop contributions with CP violating
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generate a lepton asymmetry. The couplings in L
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which are assumed to be of order one will lead to e�cient
annihilation of the symmetric component of �. Note that
there is no hierarchy problem associated with the scalar
S, because it need not be light. The only requirement for
this mechanism to work is for S to not be heavier than
the near-GUT scale right-handed neutrinos.

Note that while the same mechanism generates the lep-
ton and � asymmetries, the phases that determine the
size of the generated asymmetry are di↵erent. In par-
ticular, the lepton asymmetry will depend on the phys-
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whereas the � asymmetry will depend on the phases in
the matrices �ij and ySij . This means that if the phases
that are relevant for the � asymmetry are smaller than
those that are relevant for the lepton asymmetry, the �
asymmetry will be smaller, and therefore m� must be
chosen so that the � energy density will be a factor of
5-6 larger than the baryon energy density. We will not
assume any particular relation between the phases in the
lepton and � sectors, treating m� as a free parameter
that is chosen such that � has an energy density com-
patible with the DM density we observe in the universe
today.

The collider phenomenology of asymmetric FDM is
identical to the symmetric case, which was studied in
ref. [19], and we will not go into this in any further de-
tail (See Section V for further comments). Any indirect
detection signals for the symmetric case are of course
non-existent for the asymmetric case, so we will not have
anything further to say about constraints from indirect
detection either. In the rest of the paper we will con-
centrate on direct detection searches, where asymmetric
FDM can have very di↵erent prospects compared to the
symmetric case, due to the presence of interference, as
we will study in detail in the next section.
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In this section we will calculate the cross section for �
to scatter o↵ of an atomic nucleus, keeping interference
terms. As mentioned in the introduction, when the DM
is symmetric, the interference terms will cancel once the
scattering of both � and �̄ are taken into account, but for
asymmetric DM, they will be crucial. Based on the model
of section II, it is easy to see that scattering can happen
at tree-level through Higgs exchange. At tree-level, the
FDM interaction of equations 1 and 2 (for the scalar and
fermion DM cases, respectively) does not contribute to
the scattering, however as was studied in ref. [19], it does
give rise to vector exchange at loop order. The exchanged
vector boson can be either the photon or the Z-boson,
but of course the latter is strongly suppressed compared
to the former due to the Z-mass. Therefore we will only
consider the photon exchange for the rest of the paper.
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f or to the mediator � running in the loop.
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which are assumed to be of order one will lead to e�cient
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that is chosen such that � has an energy density com-
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ref. [19], and we will not go into this in any further de-
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non-existent for the asymmetric case, so we will not have
anything further to say about constraints from indirect
detection either. In the rest of the paper we will con-
centrate on direct detection searches, where asymmetric
FDM can have very di↵erent prospects compared to the
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we will study in detail in the next section.
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of section II, it is easy to see that scattering can happen
at tree-level through Higgs exchange. At tree-level, the
FDM interaction of equations 1 and 2 (for the scalar and
fermion DM cases, respectively) does not contribute to
the scattering, however as was studied in ref. [19], it does
give rise to vector exchange at loop order. The exchanged
vector boson can be either the photon or the Z-boson,
but of course the latter is strongly suppressed compared
to the former due to the Z-mass. Therefore we will only
consider the photon exchange for the rest of the paper.
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which are assumed to be of order one will lead to e�cient
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that is chosen such that � has an energy density com-
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today.
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but of course the latter is strongly suppressed compared
to the former due to the Z-mass. Therefore we will only
consider the photon exchange for the rest of the paper.

A. Scalar DM

h

� �

(a)

��

f

�, Z

� �

(b)

ff

�

�, Z

� �

(c)
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today.
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FIG. 1. The Feynman diagrams that contribute to direct
detection in the scalar DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.
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and m` is the mass of the tau lepton since we have as-
sumed �⌧ to be the DM.
Combining this with the Higgs and photon propaga-

tors, we can write the e↵ective operators that give rise to
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for both the symmetric and asymmetric cases in section
IV. We will conclude in section V and comment on future
directions. Detailed formulae related to the calculation
of the relic density in the symmetric case and to the scat-
tering amplitude for direct detection can be found in the
appendices.

II. THE MODEL

The FDM setup has been described in detail in ref. [19]
so we will only give a brief summary here. The DM is
taken to be a singlet under the gauge symmetries of the
standard model (SM) but it belongs to a multiplet that
transforms nontrivially under the flavor symmetries of
the SM, which we will denote by �i. There is also a
mediator particle � which is a flavor singlet, but which
carries SM hypercharge. Assuming that the � mass is
heavier than at least one of the � masses, the lightest of
the �i is rendered stable by a global U(1) under which
only the �i and � are charged. We will refer to this U(1)
as �-number.

It was shown in ref. [19] that FDM is compatible with
constraints arising from flavor observables in a Minimal
Flavor Violation (MFV) [34] setup, such that the SM
Yukawa couplings are the only source of flavor violation.
With this assumption, the minimal choice in terms of
the number of degrees of freedom is for �i to be a flavor
triplet.

Which SM flavor symmetry �i transforms under de-
termines the SM fermions it can couple to at the renor-
malizable level. For the rest of this paper we will focus
our attention on the specific case of lepton-flavored DM,
where �e,µ,⌧ transform as a triplet under SU(3)eR . As
in ref. [19], we will work with a benchmark model where
�⌧ is the lightest state, but the main conclusions of this
paper are insensitive to this choice. A renormalizable
coupling to the SM fermions requires one of � and � to
be a fermion, and the other to be a scalar. If the DM is
a scalar, the interaction term is

L
scalar

� �ij�i�̄eR,j + h.c., (1)

while for a fermionic DM it has the form

L
fermion

� �ij�̄i�eR,j + h.c.. (2)

As discussed in ref. [19], within the MFV formalism the
flavor structure of �ij is

�ij = (↵1 + �y†y)ij . (3)

In order to reduce clutter, we will assume that ↵ � �,
such that we can define �ij ⌘ ���ij . It should be noted
however that this is mainly a choice of convenience and
that the main conclusions of this paper are not sensitive
to this choice.

In the scalar DM case, the only other renormalizable
interaction of the dark sector with the SM allowed by
the symmetries of the model is a coupling to the Higgs

doublet. Including this interaction, the scalar potential
can be written as

V
scalar

= �h(H
†H � 1

2
v2)2 + µ2

�i
�⇤
i�i

+ ��h�
⇤
i�iH

†H + �s(�
⇤
i�i)

2. (4)

This potential is bounded from below even for ��h < 0,
provided that

�h > 0, �s > 0, �h�s >
1

4
�2

�h. (5)

Note that negative value ��h does not present a problem
as long as �s is positive and large. After electroweak
symmetry breaking, the DM inherits a �-�-h coupling.
This will contribute to direct detection through tree-level
Higgs exchange.
In order to study similar phenomenological features in

the fermion DM case, we will also include a dimension-5
term in the Lagrangian

L
fermion

� � 

⇤
�̄i�iH

†H. (6)

To have consistency between the scalar and fermion DM
cases, we will adopt a convention such that



⇤
⌘ ��h

v
, (7)

where v is the electroweak scale, and with the under-
standing that ��h is small in the fermionic DM case. In
other words, the dimension-5 term is assumed to have
arisen by integrating out additional degrees of freedom
at the scale ⇤ (close to TeV scale), such as a heavy SM
singlet scalar with couplings to �̄-�, and to the SM Higgs.
Note that the scalar potential in this case can also include
a renormalizable |�|2|H|2 term, but the presence of this
term will have no e↵ect for the rest of the paper, and for
this reason we will not dwell on it any further.
Let us now turn our attention to the generation of a

� asymmetry. We will demonstrate this explicitly in the
fermion DM case; it is straightforward to implement the
same mechanism in the scalar DM case as well. We as-
sume that a primordial lepton asymmetry is generated
via the decay of right-handed neutrinos at a high scale
within a few orders of magnitude of the GUT scale. The
right handed neutrinos NR couple to the SM leptons
through

L
lepton

=
1

2
(MN )ijN

c
R,iNR,j

+
⇣
yLijL̄iHeR,j + yNij L̄iH̃NR,j

⌘
+ h.c., (8)

where Li are the SU(2) doublet SM lepton fields, H̃ =
✏H⇤ and the first term is a Majorana mass for the
right-handed neutrinos. The mechanism by which non-
thermal decays of the right-handed neutrinos generate a
nonzero lepton asymmetry, and later a nonzero baryon
asymmetry through sphaleron processes, is well known
(see [32, 33] and references therein). This mechanism re-
lies on CP violating phases in the cross-terms between
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which are assumed to be of order one will lead to e�cient
annihilation of the symmetric component of �. Note that
there is no hierarchy problem associated with the scalar
S, because it need not be light. The only requirement for
this mechanism to work is for S to not be heavier than
the near-GUT scale right-handed neutrinos.

Note that while the same mechanism generates the lep-
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whereas the � asymmetry will depend on the phases in
the matrices �ij and ySij . This means that if the phases
that are relevant for the � asymmetry are smaller than
those that are relevant for the lepton asymmetry, the �
asymmetry will be smaller, and therefore m� must be
chosen so that the � energy density will be a factor of
5-6 larger than the baryon energy density. We will not
assume any particular relation between the phases in the
lepton and � sectors, treating m� as a free parameter
that is chosen such that � has an energy density com-
patible with the DM density we observe in the universe
today.

The collider phenomenology of asymmetric FDM is
identical to the symmetric case, which was studied in
ref. [19], and we will not go into this in any further de-
tail (See Section V for further comments). Any indirect
detection signals for the symmetric case are of course
non-existent for the asymmetric case, so we will not have
anything further to say about constraints from indirect
detection either. In the rest of the paper we will con-
centrate on direct detection searches, where asymmetric
FDM can have very di↵erent prospects compared to the
symmetric case, due to the presence of interference, as
we will study in detail in the next section.
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to scatter o↵ of an atomic nucleus, keeping interference
terms. As mentioned in the introduction, when the DM
is symmetric, the interference terms will cancel once the
scattering of both � and �̄ are taken into account, but for
asymmetric DM, they will be crucial. Based on the model
of section II, it is easy to see that scattering can happen
at tree-level through Higgs exchange. At tree-level, the
FDM interaction of equations 1 and 2 (for the scalar and
fermion DM cases, respectively) does not contribute to
the scattering, however as was studied in ref. [19], it does
give rise to vector exchange at loop order. The exchanged
vector boson can be either the photon or the Z-boson,
but of course the latter is strongly suppressed compared
to the former due to the Z-mass. Therefore we will only
consider the photon exchange for the rest of the paper.
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FIG. 1. The Feynman diagrams that contribute to direct
detection in the scalar DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.

After electroweak symmetry breaking, the interaction
term in equation 4 contains the interaction

Lh � �v��h�
⇤�h, (10)

which leads to the tree-level Higgs exchange. The loop-
induced coupling of the DM to the photon is calculated
in appendix B and in the zero external momentum limit
it has the form
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and m` is the mass of the tau lepton since we have as-
sumed �⌧ to be the DM.
Combining this with the Higgs and photon propaga-

tors, we can write the e↵ective operators that give rise to
the DM-nucleus scattering:

L
e↵

= cq��
⇤$

@
µ

�q�µq + cqh�
⇤�qq, (13)

with

3

the tree-level and one-loop contributions to the ampli-
tude for NR decay.

At first, it may seem that the interaction of equation 2
is su�cient to transfer any lepton asymmetry generated
in the decays of NR to the �i. However, �-number is
still an exact symmetry at this point, which makes it im-
possible to generate a � asymmetry from an asymmetry
in a di↵erent species with no �-number. Therefore, the
crucial ingredient for transferring the lepton asymmetry
into the DM sector is breaking �-number (down to Z

2

such that the stability of DM is not lost). For this pur-
pose we add one more degree of freedom to the model, a
real scalar field S, with the interaction

LS = ySij�̄iSNR,j + h.c.. (9)

Since S is real, this interaction breaks �-number, but
there is still a Z

2

under which S, � and all three �
are odd. This interaction makes it possible for out-
of-equilibrium decays of the right-handed neutrino to
generate a � asymmetry through interference between
tree-level and one-loop contributions with CP violating
phases, in the exact same way that the same decays also
generate a lepton asymmetry. The couplings in L

fermion

which are assumed to be of order one will lead to e�cient
annihilation of the symmetric component of �. Note that
there is no hierarchy problem associated with the scalar
S, because it need not be light. The only requirement for
this mechanism to work is for S to not be heavier than
the near-GUT scale right-handed neutrinos.

Note that while the same mechanism generates the lep-
ton and � asymmetries, the phases that determine the
size of the generated asymmetry are di↵erent. In par-
ticular, the lepton asymmetry will depend on the phys-
ical combinations of phases in the matrices yLij and yNij ,
whereas the � asymmetry will depend on the phases in
the matrices �ij and ySij . This means that if the phases
that are relevant for the � asymmetry are smaller than
those that are relevant for the lepton asymmetry, the �
asymmetry will be smaller, and therefore m� must be
chosen so that the � energy density will be a factor of
5-6 larger than the baryon energy density. We will not
assume any particular relation between the phases in the
lepton and � sectors, treating m� as a free parameter
that is chosen such that � has an energy density com-
patible with the DM density we observe in the universe
today.

The collider phenomenology of asymmetric FDM is
identical to the symmetric case, which was studied in
ref. [19], and we will not go into this in any further de-
tail (See Section V for further comments). Any indirect
detection signals for the symmetric case are of course
non-existent for the asymmetric case, so we will not have
anything further to say about constraints from indirect
detection either. In the rest of the paper we will con-
centrate on direct detection searches, where asymmetric
FDM can have very di↵erent prospects compared to the
symmetric case, due to the presence of interference, as
we will study in detail in the next section.

III. DIRECT DETECTION

In this section we will calculate the cross section for �
to scatter o↵ of an atomic nucleus, keeping interference
terms. As mentioned in the introduction, when the DM
is symmetric, the interference terms will cancel once the
scattering of both � and �̄ are taken into account, but for
asymmetric DM, they will be crucial. Based on the model
of section II, it is easy to see that scattering can happen
at tree-level through Higgs exchange. At tree-level, the
FDM interaction of equations 1 and 2 (for the scalar and
fermion DM cases, respectively) does not contribute to
the scattering, however as was studied in ref. [19], it does
give rise to vector exchange at loop order. The exchanged
vector boson can be either the photon or the Z-boson,
but of course the latter is strongly suppressed compared
to the former due to the Z-mass. Therefore we will only
consider the photon exchange for the rest of the paper.
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FIG. 1. The Feynman diagrams that contribute to direct
detection in the scalar DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.

After electroweak symmetry breaking, the interaction
term in equation 4 contains the interaction

Lh � �v��h�
⇤�h, (10)

which leads to the tree-level Higgs exchange. The loop-
induced coupling of the DM to the photon is calculated
in appendix B and in the zero external momentum limit
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and m` is the mass of the tau lepton since we have as-
sumed �⌧ to be the DM.
Combining this with the Higgs and photon propaga-

tors, we can write the e↵ective operators that give rise to
the DM-nucleus scattering:

L
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�q�µq + cqh�
⇤�qq, (13)
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At first, it may seem that the interaction of equation 2
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in the decays of NR to the �i. However, �-number is
still an exact symmetry at this point, which makes it im-
possible to generate a � asymmetry from an asymmetry
in a di↵erent species with no �-number. Therefore, the
crucial ingredient for transferring the lepton asymmetry
into the DM sector is breaking �-number (down to Z
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such that the stability of DM is not lost). For this pur-
pose we add one more degree of freedom to the model, a
real scalar field S, with the interaction

LS = ySij�̄iSNR,j + h.c.. (9)

Since S is real, this interaction breaks �-number, but
there is still a Z

2

under which S, � and all three �
are odd. This interaction makes it possible for out-
of-equilibrium decays of the right-handed neutrino to
generate a � asymmetry through interference between
tree-level and one-loop contributions with CP violating
phases, in the exact same way that the same decays also
generate a lepton asymmetry. The couplings in L

fermion

which are assumed to be of order one will lead to e�cient
annihilation of the symmetric component of �. Note that
there is no hierarchy problem associated with the scalar
S, because it need not be light. The only requirement for
this mechanism to work is for S to not be heavier than
the near-GUT scale right-handed neutrinos.

Note that while the same mechanism generates the lep-
ton and � asymmetries, the phases that determine the
size of the generated asymmetry are di↵erent. In par-
ticular, the lepton asymmetry will depend on the phys-
ical combinations of phases in the matrices yLij and yNij ,
whereas the � asymmetry will depend on the phases in
the matrices �ij and ySij . This means that if the phases
that are relevant for the � asymmetry are smaller than
those that are relevant for the lepton asymmetry, the �
asymmetry will be smaller, and therefore m� must be
chosen so that the � energy density will be a factor of
5-6 larger than the baryon energy density. We will not
assume any particular relation between the phases in the
lepton and � sectors, treating m� as a free parameter
that is chosen such that � has an energy density com-
patible with the DM density we observe in the universe
today.

The collider phenomenology of asymmetric FDM is
identical to the symmetric case, which was studied in
ref. [19], and we will not go into this in any further de-
tail (See Section V for further comments). Any indirect
detection signals for the symmetric case are of course
non-existent for the asymmetric case, so we will not have
anything further to say about constraints from indirect
detection either. In the rest of the paper we will con-
centrate on direct detection searches, where asymmetric
FDM can have very di↵erent prospects compared to the
symmetric case, due to the presence of interference, as
we will study in detail in the next section.

III. DIRECT DETECTION

In this section we will calculate the cross section for �
to scatter o↵ of an atomic nucleus, keeping interference
terms. As mentioned in the introduction, when the DM
is symmetric, the interference terms will cancel once the
scattering of both � and �̄ are taken into account, but for
asymmetric DM, they will be crucial. Based on the model
of section II, it is easy to see that scattering can happen
at tree-level through Higgs exchange. At tree-level, the
FDM interaction of equations 1 and 2 (for the scalar and
fermion DM cases, respectively) does not contribute to
the scattering, however as was studied in ref. [19], it does
give rise to vector exchange at loop order. The exchanged
vector boson can be either the photon or the Z-boson,
but of course the latter is strongly suppressed compared
to the former due to the Z-mass. Therefore we will only
consider the photon exchange for the rest of the paper.
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FIG. 1. The Feynman diagrams that contribute to direct
detection in the scalar DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.

After electroweak symmetry breaking, the interaction
term in equation 4 contains the interaction

Lh � �v��h�
⇤�h, (10)

which leads to the tree-level Higgs exchange. The loop-
induced coupling of the DM to the photon is calculated
in appendix B and in the zero external momentum limit
it has the form
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and m` is the mass of the tau lepton since we have as-
sumed �⌧ to be the DM.
Combining this with the Higgs and photon propaga-

tors, we can write the e↵ective operators that give rise to
the DM-nucleus scattering:

L
e↵

= cq��
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µ

�q�µq + cqh�
⇤�qq, (13)

and
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where the coe�cients are related to the couplings in the
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For the next step in calculating the scattering cross
section, we convert from quark-level operators to e↵ective
nucleon-level operators and we take the non-relativistic
limit of the matrix elements, which gives (N = p, n)

L
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The leading (spin-independent) contribution to the nu-
cleon matrix elements of the operators of equation 15 are

h�, N
����⇤$

@
µ

�N�µN
����, Ni = 4m�mN ,

h�, N
���⇤�NN

���, Ni = 2mN . (20)

Putting everything together, we define the dark matter-
nucleon e↵ective couplings

CN = 4m�mNcN� + 2mNcNh , (21)

in terms of which the total scattering cross section is
given by
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1
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[ZCp + (A� Z)Cn]2 . (22)

B. Fermion DM

The calculation of the scattering cross section for the
fermion DM case proceeds through the same steps as
in the scalar DM case. The tree-level Higgs exchange
arises from the interaction of equation 6 after electroweak
symmetry breaking

Lh � ���h�̄�h, (23)
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FIG. 2. The Feynman diagrams that contribute to direct
detection in the fermion DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.

while the loop induced coupling of the DM to the photon
is given by
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where b� and the magnetic dipole moment µ� are defined
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Note that this agrees with ref. [19]. The relativistic ef-
fective Lagrangian describing the interaction of the DM
with quarks is

L
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µ�q�µq + cq
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= eQqµ�. (28)

We next convert the quark-level operators to nucleon-
level operators and take the non-relativistic limit. De-
tails of the matching of operator coe�cients between the
quark and nucleon level operators can be found in ap-
pendix C. We thus arrive at the e↵ective Lagrangian at
the nucleon level (N = p, n)
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section, we convert from quark-level operators to e↵ective
nucleon-level operators and we take the non-relativistic
limit of the matrix elements, which gives (N = p, n)
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The leading (spin-independent) contribution to the nu-
cleon matrix elements of the operators of equation 15 are

h�, N
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����, Ni = 4m�mN ,
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Putting everything together, we define the dark matter-
nucleon e↵ective couplings

CN = 4m�mNcN� + 2mNcNh , (21)

in terms of which the total scattering cross section is
given by
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1
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B. Fermion DM

The calculation of the scattering cross section for the
fermion DM case proceeds through the same steps as
in the scalar DM case. The tree-level Higgs exchange
arises from the interaction of equation 6 after electroweak
symmetry breaking
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FIG. 2. The Feynman diagrams that contribute to direct
detection in the fermion DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.

while the loop induced coupling of the DM to the photon
is given by
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Note that this agrees with ref. [19]. The relativistic ef-
fective Lagrangian describing the interaction of the DM
with quarks is
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md

= eQqµ�. (28)

We next convert the quark-level operators to nucleon-
level operators and take the non-relativistic limit. De-
tails of the matching of operator coe�cients between the
quark and nucleon level operators can be found in ap-
pendix C. We thus arrive at the e↵ective Lagrangian at
the nucleon level (N = p, n)
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where the coe�cients are related to the couplings in the
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For the next step in calculating the scattering cross
section, we convert from quark-level operators to e↵ective
nucleon-level operators and we take the non-relativistic
limit of the matrix elements, which gives (N = p, n)
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The leading (spin-independent) contribution to the nu-
cleon matrix elements of the operators of equation 15 are
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����, Ni = 4m�mN ,
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Putting everything together, we define the dark matter-
nucleon e↵ective couplings

CN = 4m�mNcN� + 2mNcNh , (21)

in terms of which the total scattering cross section is
given by
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B. Fermion DM

The calculation of the scattering cross section for the
fermion DM case proceeds through the same steps as
in the scalar DM case. The tree-level Higgs exchange
arises from the interaction of equation 6 after electroweak
symmetry breaking
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FIG. 2. The Feynman diagrams that contribute to direct
detection in the fermion DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.

while the loop induced coupling of the DM to the photon
is given by
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Note that this agrees with ref. [19]. The relativistic ef-
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We next convert the quark-level operators to nucleon-
level operators and take the non-relativistic limit. De-
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quark and nucleon level operators can be found in ap-
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For the next step in calculating the scattering cross
section, we convert from quark-level operators to e↵ective
nucleon-level operators and we take the non-relativistic
limit of the matrix elements, which gives (N = p, n)
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The leading (spin-independent) contribution to the nu-
cleon matrix elements of the operators of equation 15 are
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Putting everything together, we define the dark matter-
nucleon e↵ective couplings

CN = 4m�mNcN� + 2mNcNh , (21)

in terms of which the total scattering cross section is
given by
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B. Fermion DM

The calculation of the scattering cross section for the
fermion DM case proceeds through the same steps as
in the scalar DM case. The tree-level Higgs exchange
arises from the interaction of equation 6 after electroweak
symmetry breaking
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FIG. 2. The Feynman diagrams that contribute to direct
detection in the fermion DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.

while the loop induced coupling of the DM to the photon
is given by
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Note that this agrees with ref. [19]. The relativistic ef-
fective Lagrangian describing the interaction of the DM
with quarks is
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We next convert the quark-level operators to nucleon-
level operators and take the non-relativistic limit. De-
tails of the matching of operator coe�cients between the
quark and nucleon level operators can be found in ap-
pendix C. We thus arrive at the e↵ective Lagrangian at
the nucleon level (N = p, n)
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Total cross section is:
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f or to the mediator � running in the loop.

while the loop induced coupling of the DM to the photon
is given by

L
e↵

= b��̄�⌫�@µF
µ⌫ + µ��̄i�µ⌫�F

µ⌫ , (24)

where b� and the magnetic dipole moment µ� are defined
as

b� = �
�2

�e

64⇡2m2

�

 
1 +

2

3
log

m2

`

m2

�

!
, (25)

µ� = �
�2

�em�

64⇡2m2

�

. (26)

Note that this agrees with ref. [19]. The relativistic ef-
fective Lagrangian describing the interaction of the DM
with quarks is

L
e↵

= cqh��qq + cq���
µ�q�µq + cq

md

�i�↵µ k↵
k2

�q�µq,

(27)

where

cqh =
��hmq

vm2

h

, cq� = eQqb�, cq
md

= eQqµ�. (28)

We next convert the quark-level operators to nucleon-
level operators and take the non-relativistic limit. De-
tails of the matching of operator coe�cients between the
quark and nucleon level operators can be found in ap-
pendix C. We thus arrive at the e↵ective Lagrangian at
the nucleon level (N = p, n)

L
e↵

= cNh ��NN + cN� ��µ�N�µN

+cNQ�i�↵µ k↵
k2

�NKµN

+cNµ �i�↵µ k↵
k2

�Ni��µk�N. (29)

Here the coe�cients cN are related to the cq as

cNh =
X

q=u,d,s

cqh
mN

mq
f
(N)

Tq +
2

27
f
(N)

TG

X

q=c,b,t

cqh
mN

mq
, (30)

cN� = eb�
X

q

Qq, (31)



Direct Detection
Coupling scan

5

and the charge and magnetic coe�cients of the magnetic
dipole moment are

cNQ = eQNµ�, cNµ = �eµ̃Nµ�, (32)

where µ̃N is the nucleon magnetic moment, with µ̃p = 2.8
and µ̃n = �1.9.
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FIG. 3. The LUX bound on the coupling �� for m� =
500 GeV calculated using the charge term alone, the dipole
term alone, and the full combination.

So far we have kept the magnetic dipole terms. Their
momentum dependence makes it impossible to write the
di↵erential event rate as the product of the elastic cross
section and the velocity integration. We calculate the
di↵erential rate numerically, and work out the exclusion
limits from LUX [36] in the presence of the dipole terms
in appendix C. The result is shown in figure 3. We find
that the e↵ect of the magnetic dipole operator is negligi-
ble compared to the charge operator in setting limits for
the coupling ��. Based on this, for the rest of the paper
we will drop the magnetic dipole contributions.

The leading (spin-independent) contribution to the nu-
cleon matrix elements are

h�, N
����µ�N�µN

���, Ni = 4m�mN ,

h�, N
����NN

���, Ni = 4m�mN . (33)

As in the scalar DM case, we define the dark matter-
nucleon e↵ective couplings

CN = 4m�mNcN� + 4m�mNcNh , (34)

where the coe�cients are
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The total scattering cross section is then given by
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[ZCp + (A� Z)Cn]2 . (37)

IV. RESULTS

In this section, we use the cross section formulas de-
rived in the section III in order to calculate the bounds
on lepton-flavored DM and directly compare the regions
of parameter space that have been excluded for the sym-
metric and asymmetric cases. Note that the full parame-
ter space of our model is four-dimensional (with the two
masses m�, m� and the two couplings �� and ��h) and
therefore it is not possible to visually represent the phe-
nomenological aspects of a full parameter scan. Instead,
we choose to present the highlights in two pairs of comple-
mentary plots (for the scalar DM and fermion DM cases
each), one pair where the masses are fixed at represen-
tative values and the couplings are varied, and one pair
where the masses are varied, and a particular value of
the couplings is chosen for each mass point. Combining
the information in these plots, the reader should be able
to develop an intuitive understanding for the prospects
of the model in the full parameter space.
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FIG. 4. The region in the (��h,��) plane for the asymmetric
scalar DM case consistent with the LUX bound. (Left) m�

fixed at 500 GeV while m� is varied. (Right) m� is fixed at
200 GeV while m� is varied. For m� = 40 GeV, the allowed
region cuts o↵ at quite small values of ��h because of the
invisible Higgs decay bound.
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FIG. 5. The region in the (��h,��) plane for the asymmetric
fermion DM case consistent with the LUX bound. (Left) m�

fixed at 500 GeV while m� is varied. (Right) m� is fixed at
200 GeV while m� is varied. For m� = 40 GeV, the allowed
region cuts o↵ at quite small values of ��h because of the
invisible Higgs decay bound.
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Indirect Detection
When tree level decays are possible:  

Only the lightest     is around today. 

For symmetric case, annihilations to leptons, or 
through the Higgs portal. 

For asymmetric case, there is no signal. 

There is one other interesting case: What if tree level 
decays are not possible?
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Near-Degeneracy
How small can splittings be?  

If  no tree-level     mass splitting from the UV, 
dominant splitting from wavefunction 
renormalization ~ yl2. 

For “generic” parameters, this gives ~keV splitting 
between              and ~eV splitting between                                               
(     is heaviest)
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such as µ ! e�. The simplest implementation of this structure is that at tree level both matrices are
proportional to the identity matrix to a very good approximation

�ij = � �ij + (��)ij , m�,ij = m��ij + (�m)ij , (2.2)

where (��)ij ⌧ � and (�m)ij ⌧ m�. In this limit, all three flavors �e,µ,⌧ freeze out with equal number
densities. In order to simplify our treatment in the rest of the paper, we will at this point perform a
basis change of �i such that the mass matrix becomes diagonal, in other words

m�,ij = (m� + �mi) �ij (no sum). (2.3)

In this basis, all flavor changing e↵ects are encoded in (��)ij .
It should be noted that even if this model arises out of a UV theory which preserves the full SU(3)

flavor symmetry in the � sector, the breaking of the flavor symmetry SU(3) ! U(1)3 in the SM by
the lepton Yukawa couplings will be communicated to the DM sector at loop level. In considering
these corrections, let us concentrate on the 2-point function for the three flavors of � (insert feynman
graph). The one-loop contributions are identical in the limit of massless leptons, but at order O(m2

`)
they start di↵ering due to the di↵erent masses in the lepton propagators. This gives rise to di↵erences
in the wavefunction renormalizations for the �i. Due to the chiral nature of the FDM coupling, it is
easy to see that there is no direct mass renormalization, however once the fields �i are brought back
to canonical normalization, a mass splitting is induced between them, given by:
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m��

2
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Z 1

0
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Parametrically this means
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2
�

, (2.5)

where y` denote the Yukawa couplings of each lepton and v is the Higgs vacuum expectation value.
For the rest of this paper, we will consider the case that the UV theory preserves � flavor to a high
degree, such that

((�m)i � (�m)j) ⌧ �mij , (2.6)

and we will neglect (�m)i from this point on. With this assumption, �⌧ will be split significantly
further from �e and �µ than �e and �µ will be split from each other. For an overall mass scale m�

in the GeV regime, the splitting of �⌧ from the other two flavors will be of order keV, whereas the
splitting between �e and �µ will be of order eV. Note also that the sign of �mij is not arbitrary. As
a consequence, �⌧ is expected to be heaviest, and �e the lightest.

While (�m)i can be subleading to loop corrections �mij as a source of mass splitting and can
therefore be neglected when the UV theory preserves � flavor symmetry to a high degree, one has to be
more careful about the UV contributions to �ij . Since the SM has a global U(1)3 lepton symmetry, no
loop corrections can induce flavor changing contributions to �ij . Therefore (��)ij will be the leading
source of � and lepton flavor-violating processes, and cannot be neglected.

With o↵-diagonal (��)ij present, only the lightest � is truly stable. However, due to the very
small mass splittings, there are no tree-level decays of the heavier �. At loop level on the other hand,
dipole transitions between the �i become possible, giving rise to the process �i ! �j� (insert Feynman
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Dipole Transitions
With splittings <          , all tree level decays 
kinematically forbidden, loop decays 
suppressed, all three     flavors around today. 

Now consider effect of very small but nonzero 
breaking of 

Dipole transitions are possible
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diagram). The rate for these decays can be calculated in a straightforward manner. If we assume that
all o↵-diagonal couplings in �ij are of the same size �� ⌧ �, then to leading order

�ij ⌘ ��i!�j� =
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2
�

2
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m

4
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where we have neglected higher order terms proportional to lepton masses. Note that �ij / (�mij)2.
Thus, the rate for the transition between �µ and �e will be many orders of magnitude smaller than
those between �⌧ and one of these two states (which have essentially the same rate as each other).
Considering that the transition between �µ and �e corresponds to both a smaller energy and to a much
smaller rate, we expect it will be practically unobservable. On the other hand, a robust prediction
of this setup is that if an X-ray line signal is observed in the keV region, then at around 1% energy
resolution (more precisely, an energy resolution of the order of y2µ/y

2
⌧ ) it will reveal itself as being made

up of two line signals of the same strength.
For m� ⇡ 10 GeV, m� ⇡ 200 GeV and � ⇡ 1, if �� � 2 ⇥ 10�6, then the lifetime of �⌧ is less

than the age of the universe, and therefore no signal will be observable today, even though one may
be able to look for signal at higher redshifts.

3 Potential FDM Interpretation of the Claimed Observation of a 3.5 keV

Line

An X-ray signal has been claimed to be observed at 3.5 keV [3]. While there is currently no consensus
about whether the observation is confirmed [6] or not [4], and with the caveat that even if the
observation is confirmed it may still be accounted for by an extremely rare atomic signal [5], we proceed
to question whether such an observation may be consistent with the scenario we have described.

The lifetime for a decaying dark matter candidate to be consistent with the observed signal has
been calculated in [7]. For m� ⇡ 10 GeV, one obtains ⌧DM ⇡ 1022 s (since this is orders of magnitude
larger than the age of the universe, this means that the condition for �⌧ to not already have decayed
is automatically satisfied). For � ⇡ 1, this is consistent with the FDM scenario we described for
�� ⇡ 6⇥ 10�9.

For an FDM interpretation to be checked, the line needs to be resolved at the percent level, in
order to distinguish the two lines of equal strength for the �⌧ ! �e� and �⌧ ! �µ� transitions. Note
that this splitting is much larger than the broadening of each line, which scales as the average DM
velocity squared. Fortunately, it appears hopeful that such a resolution may be obtained with the next
generation of experiments (this information appears to be di�cult to extract from publicly
available sources - it may be more e�cient to quickly check with an expert (Kev?)).

4 Constraints

4.1 Direct detection

Lepton flavored dark matter can scatter o↵ nuclei via a one-loop photon exchange. These constraints
can be severe in the region where the dark matter is a thermal relic. The dominant contribution to
the WIMP-nucleon cross section is flavor diagonal and for each flavor of FDM it is given by,
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diagram). The rate for these decays can be calculated in a straightforward manner. If we assume that
all o↵-diagonal couplings in �ij are of the same size �� ⌧ �, then to leading order
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where we have neglected higher order terms proportional to lepton masses. Note that �ij / (�mij)2.
Thus, the rate for the transition between �µ and �e will be many orders of magnitude smaller than
those between �⌧ and one of these two states (which have essentially the same rate as each other).
Considering that the transition between �µ and �e corresponds to both a smaller energy and to a much
smaller rate, we expect it will be practically unobservable. On the other hand, a robust prediction
of this setup is that if an X-ray line signal is observed in the keV region, then at around 1% energy
resolution (more precisely, an energy resolution of the order of y2µ/y

2
⌧ ) it will reveal itself as being made

up of two line signals of the same strength.
For m� ⇡ 10 GeV, m� ⇡ 200 GeV and � ⇡ 1, if �� � 2 ⇥ 10�6, then the lifetime of �⌧ is less

than the age of the universe, and therefore no signal will be observable today, even though one may
be able to look for signal at higher redshifts.

3 Potential FDM Interpretation of the Claimed Observation of a 3.5 keV
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4 Constraints

4.1 Direct detection

Lepton flavored dark matter can scatter o↵ nuclei via a one-loop photon exchange. These constraints
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Figure 4: Constraints on the mass of dark matter, m
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and the mediator, m
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when the X-ray line
is at 3.5 keV. The contours show the value of coupling �, and the red band shows the region where
correct relic abundance is obtained. The blue and purple-shaded regions show the exclusion from LUX
and from AMS respectively.

line. Fixing the splitting to be 3.5 keV, we show the direct detection and the AMS positron constraint
in figure 4 along with the region of parameter space consistent with the requirement of correct relic
abundance.

This scenario further predicts that closer inspection of such a line will reveal two closely spaced
lines corresponding to the �
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and �
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! �
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transitions. As noted in eq. (1.5), the ratio of the
line energies in this couplet are set by the charged lepton masses. Therefore,
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where !0 = 3.5 keV is the average frequency of the two �
⌧

decay lines. The broadening of the line
due to the kinetic energy of the DM scales with its velocity. For typical astrophysical sources, the DM
velocity ranges from (1–3)⇥10�3, resulting in a broadening of O(1–10) eV. Whether the double line
feature gets washed out by the thermal broadening thus depends on the astrophysical source. While
this splitting is not currently measurable, it is within the design resolution of upcoming experiments
like ASTRO-H [119, 120]. The couplet constitutes a “smoking gun” signal of lepton FDM scenarios
at these experiments.

The lifetime for a decaying dark matter candidate to be consistent with the observed signal is
given by (see for instance [93]),
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For m
�

= 150 GeV, one obtains ⌧
DM

⇡ 1020 s. For m
�

= 500 GeV and � ' 1, this would require
�� ' 10�8. The additional mass splittings introduced by this level of flavor violation are subdominant
to the MFV contributions calculated above.
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Asymmetric case has no tension between indirect 
detection in X-rays and other constraints. 

Symmetric case is less trivial. 

Without Higgs coupling, relic abundance is all FDM  
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detection constraints weakened for larger  

One can approximate:

4.3 Indirect detection: positrons, photons

In the limit m� ⌧ m�, (�m)2 and h�vi both scale approximately as m2
��

4
/m

4
�, and therefore choosing

a fixed mass splitting or requiring thermal relic abundance leads to potentially observable signals for
indirect detection searches in photons and positrons (with the caveats mentioned at the end of the last
subsection). The constraints from both indirect detection channels are more stringent for lower mass
dark matter, since the signal rate scales as the square of the � number density, which itself scales as
m

�1
� , while the background flux as a function of energy does not change as rapidly. Therefore, for the

same �m or h�vi, these constraints can be weakened by increasing the dark matter mass and either
decreasing the coupling or increasing m�, keeping m� < m� of course.

For the positron constraint from the AMS-02 experiment [8], the signal has contributions both from
the prompt positrons produced when one of the annihilating particles is �e, and also from secondary
positrons from the decays of µ+ and ⌧

+ that are produced when one of the annihilating particles is �µ

or �⌧ . The spectrum of the secondary positrons is of course shifted towards lower energies compared
to the prompt positrons (not to mention that the branching ratio of ⌧ ! e + X is rather low), and
therefore the bound from AMS-02 comes mostly from the prompt positrons. The bound is shown in
figure 1 as the yellow-shaded region. Note that the positron constraint is significantly weaker than
the constraint from direct detection across the parameter space, thus the inclusion or non-inclusion of
secondary positrons from the bound is academic. The e↵ective annihilation cross section leading to
the production of prompt positrons (any one of the three �` flavors annihilating with �e) is related to
the total annihilation cross section (all nine annihilation channels) as

h�vieff,e+ =
1

6
h�vi. (4.4)

Similar to the case of positron constraints being most sensitive to prompt positrons in the final
state, indirect detection in photons is most sensitive to ⌧ ’s in the final state, since more (and harder)
photons are produced from ⌧ ’s than from e’s or µ’s. One can therefore formulate the bound from
indirect detection in the photon final state [9] in terms of the e↵ective annihilation cross section
leading to the production of ⌧ ’s,

h�vieff,� =
1

6
h�vi. (4.5)

The constraint from indirect detection in photons is shown in figure 1 as the red-shaded region.
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Figure 3: For mediator masses m
�

= 100, 200 and 400 GeV, we plot the position of the X-ray signal
(in keV, gray dashed contours) as well as a number of constraints. Direct detection constraints from
LUX are shown as the blue-shaded region, while the indirect detection constraints from positrons and
photons are shown as the purple and green-shaded regions, respectively. The red band shows the
region where correct relic abundance is obtained.
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Collider Signatures

Since     carries SM charge, it can be pair produced at 
colliders. Subsequent decays give leptons + MET
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Collider Signatures 

χµlχe unobservable 
small cross section 
similar BR, 4l final state 

is most interesting. 

Can Kılıç, UT Austin 

Flavor / charge correlations can be used to distinguish 
FDM and vanilla DM.



LFDM-Symmetric Case

Relic abundance: 
typical WIMP, 

freezeout
Direct detection: 
Some tension, 
not excluded

leptons+MET at LHC

Positron and photon 
constraints in indirect 

detection, not 
excluded. 

Double line ~keV 
with minimal mass 

splittings



LFDM-Asymmetric Case

Relic abundance: 
Asymmetry

Direct detection: 
interference 

weakens 
constraints

leptons+MET at LHC

No constraint 

Double line ~keV 
with minimal mass 

splittings



Conclusions
WIMP paradigm + hierarchy problem suggests vanilla DM (SUSY), 
so far not observed. Worthwhile to explore different approaches 
that current experiments are also sensitive to. 

In FDM, DM comes in three generations just like visible matter. A 
number of novel phenomenological features, distinct signatures to 
distinguish it from vanilla DM. 

Lepton FDM: Possible connection to matter/antimatter asymmetry, 
may have weaker bounds from direct and indirect detection 
experiments. Possibly consistent with X-ray signal. Leptons + MET 
at the LHC. 

(Advertisement) Top FDM: Connection to 3rd generation also 
possible, consistent with relic abundance + direct detection. Tops
+MET at the LHC, possibility of displaced vertices.
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Higgs Couplings for Fermion FDM
One can reproduce the same coupling structure even 
when     is a fermion. 

This can arise e.g. by integrating out TeV-scale scalar. 

For consistency we should also include               term, 
however this has no phenomenological consequence 
unless     is very light. 
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for both the symmetric and asymmetric cases in section
IV. We will conclude in section V and comment on future
directions. Detailed formulae related to the calculation
of the relic density in the symmetric case and to the scat-
tering amplitude for direct detection can be found in the
appendices.

II. THE MODEL

The FDM setup has been described in detail in ref. [19]
so we will only give a brief summary here. The DM is
taken to be a singlet under the gauge symmetries of the
standard model (SM) but it belongs to a multiplet that
transforms nontrivially under the flavor symmetries of
the SM, which we will denote by �i. There is also a
mediator particle � which is a flavor singlet, but which
carries SM hypercharge. Assuming that the � mass is
heavier than at least one of the � masses, the lightest of
the �i is rendered stable by a global U(1) under which
only the �i and � are charged. We will refer to this U(1)
as �-number.

It was shown in ref. [19] that FDM is compatible with
constraints arising from flavor observables in a Minimal
Flavor Violation (MFV) [34] setup, such that the SM
Yukawa couplings are the only source of flavor violation.
With this assumption, the minimal choice in terms of
the number of degrees of freedom is for �i to be a flavor
triplet.

Which SM flavor symmetry �i transforms under de-
termines the SM fermions it can couple to at the renor-
malizable level. For the rest of this paper we will focus
our attention on the specific case of lepton-flavored DM,
where �e,µ,⌧ transform as a triplet under SU(3)eR . As
in ref. [19], we will work with a benchmark model where
�⌧ is the lightest state, but the main conclusions of this
paper are insensitive to this choice. A renormalizable
coupling to the SM fermions requires one of � and � to
be a fermion, and the other to be a scalar. If the DM is
a scalar, the interaction term is

L
scalar

� �ij�i�̄eR,j + h.c., (1)

while for a fermionic DM it has the form

L
fermion

� �ij�̄i�eR,j + h.c.. (2)

As discussed in ref. [19], within the MFV formalism the
flavor structure of �ij is

�ij = (↵1 + �y†y)ij . (3)

In order to reduce clutter, we will assume that ↵ � �,
such that we can define �ij ⌘ ���ij . It should be noted
however that this is mainly a choice of convenience and
that the main conclusions of this paper are not sensitive
to this choice.

In the scalar DM case, the only other renormalizable
interaction of the dark sector with the SM allowed by
the symmetries of the model is a coupling to the Higgs

doublet. Including this interaction, the scalar potential
can be written as

V
scalar

= �h(H
†H � 1

2
v2)2 + µ2

�i
�⇤
i�i

+ ��h�
⇤
i�iH

†H + �s(�
⇤
i�i)

2. (4)

This potential is bounded from below even for ��h < 0,
provided that

�h > 0, �s > 0, �h�s >
1

4
�2

�h. (5)

Note that negative value ��h does not present a problem
as long as �s is positive and large. After electroweak
symmetry breaking, the DM inherits a �-�-h coupling.
This will contribute to direct detection through tree-level
Higgs exchange.
In order to study similar phenomenological features in

the fermion DM case, we will also include a dimension-5
term in the Lagrangian

L
fermion

� � 

⇤
�̄i�iH

†H. (6)

To have consistency between the scalar and fermion DM
cases, we will adopt a convention such that



⇤
⌘ ��h

v
, (7)

where v is the electroweak scale, and with the under-
standing that ��h is small in the fermionic DM case. In
other words, the dimension-5 term is assumed to have
arisen by integrating out additional degrees of freedom
at the scale ⇤ (close to TeV scale), such as a heavy SM
singlet scalar with couplings to �̄-�, and to the SM Higgs.
Note that the scalar potential in this case can also include
a renormalizable |�|2|H|2 term, but the presence of this
term will have no e↵ect for the rest of the paper, and for
this reason we will not dwell on it any further.
Let us now turn our attention to the generation of a

� asymmetry. We will demonstrate this explicitly in the
fermion DM case; it is straightforward to implement the
same mechanism in the scalar DM case as well. We as-
sume that a primordial lepton asymmetry is generated
via the decay of right-handed neutrinos at a high scale
within a few orders of magnitude of the GUT scale. The
right handed neutrinos NR couple to the SM leptons
through
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yLijL̄iHeR,j + yNij L̄iH̃NR,j

⌘
+ h.c., (8)

where Li are the SU(2) doublet SM lepton fields, H̃ =
✏H⇤ and the first term is a Majorana mass for the
right-handed neutrinos. The mechanism by which non-
thermal decays of the right-handed neutrinos generate a
nonzero lepton asymmetry, and later a nonzero baryon
asymmetry through sphaleron processes, is well known
(see [32, 33] and references therein). This mechanism re-
lies on CP violating phases in the cross-terms between
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Direct Detection (Fermion FDM)
Fermion DM:

with

and

non-relativistic:

4

where the coe�cients are related to the couplings in the
UV theory as

cq� = eQq
b�
2
, cqh =

��hmq

m2

h

. (14)

For the next step in calculating the scattering cross
section, we convert from quark-level operators to e↵ective
nucleon-level operators and we take the non-relativistic
limit of the matrix elements, which gives (N = p, n)

L
e↵

= cN� �⇤$

@
µ

�N�µN + cNh �⇤�NN. (15)

The coe�cients cN at the nucleon level can be written in
terms of the coe�cients cq at the quark level as

cN� =
eb�
2

X

q

Qq, (16)

cNh =
X

q=u,d,s

cqh
mN

mq
f
(N)

Tq +
2

27
f
(N)

TG

X

q=c,b,t

cqh
mN

mq
, (17)

where we use the numerical values of f (N)

Tq and f
(N)

TG given
in ref. [35]. Combining with equation 14 we arrive at

cN� =
eQNb�

2
, (18)

cNh =
��hmN

m2

h

0

@2

9
+

7

9

X

q=u, d, s

f
(N)

Tq

1

A . (19)

The leading (spin-independent) contribution to the nu-
cleon matrix elements of the operators of equation 15 are
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Putting everything together, we define the dark matter-
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B. Fermion DM

The calculation of the scattering cross section for the
fermion DM case proceeds through the same steps as
in the scalar DM case. The tree-level Higgs exchange
arises from the interaction of equation 6 after electroweak
symmetry breaking
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FIG. 2. The Feynman diagrams that contribute to direct
detection in the fermion DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.
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level operators and take the non-relativistic limit. De-
tails of the matching of operator coe�cients between the
quark and nucleon level operators can be found in ap-
pendix C. We thus arrive at the e↵ective Lagrangian at
the nucleon level (N = p, n)

L
e↵

= cNh ��NN + cN� ��µ�N�µN

+cNQ�i�↵µ k↵
k2

�NKµN

+cNµ �i�↵µ k↵
k2

�Ni��µk�N. (29)

Here the coe�cients cN are related to the cq as

cNh =
X

q=u,d,s

cqh
mN

mq
f
(N)

Tq +
2

27
f
(N)

TG

X

q=c,b,t

cqh
mN

mq
, (30)

cN� = eb�
X

q

Qq, (31)

4

where the coe�cients are related to the couplings in the
UV theory as

cq� = eQq
b�
2
, cqh =

��hmq

m2

h

. (14)

For the next step in calculating the scattering cross
section, we convert from quark-level operators to e↵ective
nucleon-level operators and we take the non-relativistic
limit of the matrix elements, which gives (N = p, n)

L
e↵

= cN� �⇤$

@
µ

�N�µN + cNh �⇤�NN. (15)

The coe�cients cN at the nucleon level can be written in
terms of the coe�cients cq at the quark level as

cN� =
eb�
2

X

q

Qq, (16)

cNh =
X

q=u,d,s

cqh
mN

mq
f
(N)

Tq +
2

27
f
(N)

TG

X

q=c,b,t

cqh
mN

mq
, (17)

where we use the numerical values of f (N)

Tq and f
(N)

TG given
in ref. [35]. Combining with equation 14 we arrive at

cN� =
eQNb�

2
, (18)

cNh =
��hmN

m2

h

0

@2

9
+

7

9

X

q=u, d, s

f
(N)

Tq

1

A . (19)

The leading (spin-independent) contribution to the nu-
cleon matrix elements of the operators of equation 15 are
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B. Fermion DM

The calculation of the scattering cross section for the
fermion DM case proceeds through the same steps as
in the scalar DM case. The tree-level Higgs exchange
arises from the interaction of equation 6 after electroweak
symmetry breaking
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detection in the fermion DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.
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The leading (spin-independent) contribution to the nu-
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B. Fermion DM

The calculation of the scattering cross section for the
fermion DM case proceeds through the same steps as
in the scalar DM case. The tree-level Higgs exchange
arises from the interaction of equation 6 after electroweak
symmetry breaking
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FIG. 2. The Feynman diagrams that contribute to direct
detection in the fermion DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.
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The leading (spin-independent) contribution to the nu-
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B. Fermion DM

The calculation of the scattering cross section for the
fermion DM case proceeds through the same steps as
in the scalar DM case. The tree-level Higgs exchange
arises from the interaction of equation 6 after electroweak
symmetry breaking
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FIG. 2. The Feynman diagrams that contribute to direct
detection in the fermion DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator � running in the loop.

while the loop induced coupling of the DM to the photon
is given by

L
e↵

= b��̄�⌫�@µF
µ⌫ + µ��̄i�µ⌫�F

µ⌫ , (24)

where b� and the magnetic dipole moment µ� are defined
as

b� = �
�2

�e

64⇡2m2

�

 
1 +

2

3
log

m2

`

m2

�

!
, (25)

µ� = �
�2

�em�

64⇡2m2

�

. (26)
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and the charge and magnetic coe�cients of the magnetic
dipole moment are

cNQ = eQNµ�, cNµ = �eµ̃Nµ�, (32)

where µ̃N is the nucleon magnetic moment, with µ̃p = 2.8
and µ̃n = �1.9.
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FIG. 3. The LUX bound on the coupling �� for m� =
500 GeV calculated using the charge term alone, the dipole
term alone, and the full combination.

So far we have kept the magnetic dipole terms. Their
momentum dependence makes it impossible to write the
di↵erential event rate as the product of the elastic cross
section and the velocity integration. We calculate the
di↵erential rate numerically, and work out the exclusion
limits from LUX [36] in the presence of the dipole terms
in appendix C. The result is shown in figure 3. We find
that the e↵ect of the magnetic dipole operator is negligi-
ble compared to the charge operator in setting limits for
the coupling ��. Based on this, for the rest of the paper
we will drop the magnetic dipole contributions.

The leading (spin-independent) contribution to the nu-
cleon matrix elements are

h�, N
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���, Ni = 4m�mN ,

h�, N
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���, Ni = 4m�mN . (33)

As in the scalar DM case, we define the dark matter-
nucleon e↵ective couplings

CN = 4m�mNcN� + 4m�mNcNh , (34)

where the coe�cients are
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The total scattering cross section is then given by
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IV. RESULTS

In this section, we use the cross section formulas de-
rived in the section III in order to calculate the bounds
on lepton-flavored DM and directly compare the regions
of parameter space that have been excluded for the sym-
metric and asymmetric cases. Note that the full parame-
ter space of our model is four-dimensional (with the two
masses m�, m� and the two couplings �� and ��h) and
therefore it is not possible to visually represent the phe-
nomenological aspects of a full parameter scan. Instead,
we choose to present the highlights in two pairs of comple-
mentary plots (for the scalar DM and fermion DM cases
each), one pair where the masses are fixed at represen-
tative values and the couplings are varied, and one pair
where the masses are varied, and a particular value of
the couplings is chosen for each mass point. Combining
the information in these plots, the reader should be able
to develop an intuitive understanding for the prospects
of the model in the full parameter space.
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FIG. 4. The region in the (��h,��) plane for the asymmetric
scalar DM case consistent with the LUX bound. (Left) m�

fixed at 500 GeV while m� is varied. (Right) m� is fixed at
200 GeV while m� is varied. For m� = 40 GeV, the allowed
region cuts o↵ at quite small values of ��h because of the
invisible Higgs decay bound.
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200 GeV while m� is varied. For m� = 40 GeV, the allowed
region cuts o↵ at quite small values of ��h because of the
invisible Higgs decay bound.
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where µ̃N is the nucleon magnetic moment, with µ̃p = 2.8
and µ̃n = �1.9.
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section and the velocity integration. We calculate the
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that the e↵ect of the magnetic dipole operator is negligi-
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the coupling ��. Based on this, for the rest of the paper
we will drop the magnetic dipole contributions.
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and µ̃n = �1.9.
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So far we have kept the magnetic dipole terms. Their
momentum dependence makes it impossible to write the
di↵erential event rate as the product of the elastic cross
section and the velocity integration. We calculate the
di↵erential rate numerically, and work out the exclusion
limits from LUX [36] in the presence of the dipole terms
in appendix C. The result is shown in figure 3. We find
that the e↵ect of the magnetic dipole operator is negligi-
ble compared to the charge operator in setting limits for
the coupling ��. Based on this, for the rest of the paper
we will drop the magnetic dipole contributions.
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ter space of our model is four-dimensional (with the two
masses m�, m� and the two couplings �� and ��h) and
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tative values and the couplings are varied, and one pair
where the masses are varied, and a particular value of
the couplings is chosen for each mass point. Combining
the information in these plots, the reader should be able
to develop an intuitive understanding for the prospects
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in appendix C. The result is shown in figure 3. We find
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in appendix C. The result is shown in figure 3. We find
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