Computer Assisted BSM Model Building with LieART

Tom Kephart
Vanderbilt University

Presented at the Arnowitt Symposium
Texas A\&M University
18 May 2015

Based on:

"LieART—A Mathematica Application for Lie Algebras and Representation Theory" Robert Feger and TWK, Comput.Phys.Commun. 192 (2015) 166.

TheLieART package is a free download (as a tar.gz archive) from:
http://www.hepforge.org/downloads/lieart/

Inspired by R. Slansky, Phys. Rept., 79, 1 (1981).

LieART: Lie Algebras and Representation Theory

The primary purpose of the LieART application is the tensor product and subalgebra decomposition of irreducible representations (irreps) of Lie algebras. These tasks are frequently needed in particle physics, where multiparticle fields are assigned to irreps. Tensor products of irreps are thus commonly used to find singlets suitable for the Lagrangian. Spontaneous symmetry breaking corresponds to the subalgebra decomposition.

Algebras

Algebra - ProductAlgebra - CartanMatrix - MetricTensor
Roots
RootSystem - Complete root system of an algebra
PositiveRoots - Only the positive roots of an algebra
OrthogonalSimpleRoots - Simple roots of an algebra in orthogonal coordinates
Weights
WeightSystem - Complete weight system of a representation

Representations
Irrep - Irreducible representation
Dim - Compute the dimension of a representation
YoungTableau - Displays the Young tableau corresponding to an $\mathrm{SU}(\mathrm{N})$ representation
ProductIrrep - DimName - Index
Decompositions
DecomposeProduct - Decompose tensor products of irreps
DecomposeIrrep - Decompose irrep to subalgebras

Displaying Output

IrrepPlus - Textbook style sum of a list irreps
LaTeXForm - Formatting suitable for copy\&paste into a $L^{A} T_{E} X$ document

TUTORIALS

- Quick Start Tutorial

TABLES

- Representation Properties
- Tensor Products
- Branching Rules

Table A.12: SU(12) Irreps

Dynkin	Dimension			SU(11)	$\mathrm{SU}(10) \times \mathrm{SU}(2)$	SU(9) $\times \mathrm{SU}(3)$) $\mathrm{SU}(7) \times \operatorname{SU}(5)$	$\mathrm{SU}(6) \times \mathrm{SU}(6)$
label	(name)		Decalit	ysinglets	singlets	singlets	singlets	singlets
(10000000000)	12	1	1	1	0	0	0	0
(01000000000)	66	10	2	0	1	0	0	0
(20000000000)	78	14	2	1	0	0	0	0
(10000000001)	143	24	0	1*	$1 *$	1*	1*	1*
(00100000000)	220	45	3	0	0	1	0	0
(30000000000)	364	105	3	1	0	0	0	0
(00010000000)	495	120	4	0	0	0	0	0
(11000000000)	572	141	3	0	0	0	0	0
(01000000001)	780	185	1	0	0	0	0	0
(00001000000)	792	210	5	0	0	0	1	0

$* \operatorname{SU}(11) \times \mathrm{U}(1)$ and $\mathrm{SU}(10) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ and $\mathrm{SU}(9) \times \mathrm{SU}(3) \times \mathrm{U}(1)$ and $\mathrm{SU}(7) \times \mathrm{SU}(5) \times \mathrm{U}(1)$ and $\mathrm{SU}(6) \times \mathrm{SU}(6) \times \mathrm{U}(1)$ singlets resp.

Table A.45: SU(12) Tensor Products

$$
\begin{aligned}
& \overline{12} \times 12=1+143 \\
& 12 \times 12=66+78 \\
& \overline{66} \times 12=\overline{12}+\overline{780} \\
& 66 \times 12=\mathbf{2 2 0}+572 \\
& \mathbf{7 8} \times 12=\overline{\mathbf{1 2}}+\overline{\mathbf{9 2 4}} \\
& \mathbf{7 8} \times \mathbf{1 2}=\mathbf{3 6 4}+\mathbf{5 7 2} \\
& 143 \times 12=12+\mathbf{7 8 0}+\mathbf{9 2 4} \\
& \hline
\end{aligned}
$$

$\mathrm{SU}(12)$	$\rightarrow \mathrm{SU}(7) \times \mathrm{SU}(5) \times \mathrm{U}(1)$
$\mathbf{1 2}$	$=(\mathbf{1}, \mathbf{5})(-7)+(\mathbf{7}, \mathbf{1})(5)$
$\mathbf{6 6}$	$=(\mathbf{1}, \mathbf{1 0})(-14)+(\mathbf{7}, \mathbf{5})(-2)+(\mathbf{2 1}, \mathbf{1})(10)$
$\mathbf{7 8}$	$=(\mathbf{7}, \mathbf{5})(-2)+(\mathbf{1}, \mathbf{1 5})(-14)+(\mathbf{2 8}, \mathbf{1})(10)$
$\mathbf{1 4 3}$	$=(\mathbf{1}, \mathbf{1})(0)+(\mathbf{7}, \overline{\mathbf{5}})(12)+(\overline{\mathbf{7}}, \mathbf{5})(-12)+(\mathbf{1}, \mathbf{2 4})(0)+(\mathbf{4 8}, \mathbf{1})(0)$
$\mathbf{2 2 0}$	$=(\mathbf{1}, \overline{\mathbf{1 0}})(-21)+(\mathbf{7}, \mathbf{1 0})(-9)+(\mathbf{2 1}, \mathbf{5})(3)+(\mathbf{3 5}, \mathbf{1})(15)$
$\mathbf{3 6 4}$	$=(\mathbf{7}, \mathbf{1 5})(-9)+(\mathbf{2 8}, \mathbf{5})(3)+(\mathbf{1}, \overline{\mathbf{3 5}})(-21)+(\mathbf{8 4}, \mathbf{1})(15)$
$\mathbf{4 9 5}=$	$(\mathbf{1}, \overline{\mathbf{5}})(-\mathbf{2 8})+(\mathbf{7}, \mathbf{1 0})(-16)+(\mathbf{2 1}, \mathbf{1 0})(-4)+(\mathbf{\mathbf { 3 5 }}, \mathbf{1})(20)+(\mathbf{3 5}, \mathbf{5})(8)$
$\mathbf{5 7 2}=(\mathbf{7}, \mathbf{1 0})(-9)+(\mathbf{7}, \mathbf{1 5})(-9)+(\mathbf{2 1}, \mathbf{5})(3)+(\mathbf{2 8}, \mathbf{5})(3)+(\mathbf{1}, \overline{\mathbf{4 0}})(-21)+(\mathbf{1 1 2 , 1})(15)$	
$\mathbf{7 8 0}=$	$(\mathbf{1}, \mathbf{5})(-7)+(\mathbf{7}, \mathbf{1})(5)+(\overline{\mathbf{7}}, \mathbf{1 0})(-19)+(\mathbf{2 1}, \overline{\mathbf{5}})(17)+(\mathbf{7}, \mathbf{2 4})(5)+(\mathbf{1}, \mathbf{4 5})(-7)+(\mathbf{4 8}, \mathbf{5})(-7)+$
	$(\mathbf{1 4 0} \mathbf{1})(5)$
$\mathbf{7 9 2}=$	$(\mathbf{1}, \mathbf{1})(-35)+(\mathbf{7}, \overline{\mathbf{5}})(-23)+(\overline{\mathbf{2 1}}, \mathbf{1})(25)+(\mathbf{2 1}, \overline{\mathbf{1 0}})(-11)+(\overline{\mathbf{3 5}}, \mathbf{5})(13)+(\mathbf{3 5}, \mathbf{1 0})(1)$

$\mathrm{SU}(12) \rightarrow \mathrm{SU}(6) \times \mathrm{SU}(6) \times \mathrm{U}(1)$

```
\(12=(6,1)(1)+(\mathbf{1}, 6)(-1)\)
\(66=(6,6)(0)+(15,1)(2)+(1,15)(-2)\)
\(78=(6,6)(0)+(21,1)(2)+(1,21)(-2)\)
\(143=(1,1)(0)+(6, \overline{6})(2)+(\overline{6}, 6)(-2)+(35,1)(0)+(1,35)(0)\)
\(220=(6,15)(-1)+(15,6)(1)+(20,1)(3)+(1,20)(-3)\)
\(364=(21,6)(1)+(6,21)(-1)+(56,1)(3)+(\mathbf{1}, 56)(-3)\)
\(495=(\overline{\mathbf{1 5}}, 1)(4)+(\mathbf{1}, \overline{15})(-4)+(6,20)(-2)+(20,6)(2)+(15,15)(0)\)
\(572=(6,15)(-1)+(\mathbf{1 5}, 6)(1)+(21,6)(1)+(6,21)(-1)+(\mathbf{7 0}, \mathbf{1})(3)+(\mathbf{1}, \mathbf{7 0})(-3)\)
\(\mathbf{7 8 0}=(\mathbf{6}, \mathbf{1})(1)+(\mathbf{1}, \mathbf{6})(-1)+(\mathbf{1 5}, \overline{\mathbf{6}})(3)+(\overline{\mathbf{6}}, \mathbf{1 5})(-3)+(\mathbf{3 5}, \mathbf{6})(-1)+(6, \mathbf{3 5})(1)+(\mathbf{8 4}, \mathbf{1})(1)+(\mathbf{1}, \mathbf{8 4})(-1)\)
\(\mathbf{7 9 2}=(\overline{\mathbf{6}}, \mathbf{1})(5)+(\mathbf{1}, \overline{\mathbf{6}})(-5)+(\mathbf{6}, \overline{\mathbf{1 5}})(-3)+(\overline{\mathbf{1 5}}, \mathbf{6})(3)+(\mathbf{1 5}, \mathbf{2 0})(-1)+(\mathbf{2 0}, \mathbf{1 5})(1)\)
```

Dynamic, so tables can be extended, etc.

LieART - Quick Start Tutorial

The application LieART provides functions to perform the most common tasks associated with irreducible representations (irreps) of the classical and exceptional Lie algebas.

This loads the package:

```
In[5]:= << LieART`
```

LieART 1.1.1
last revised 3 February 2014

Entering Irreducible Representations

Irreducible representations (irreps) are internally decribed by their Dynkin label with a combined head of Irrep and the Lie algebra.

Irrep [algebraClass] [label] Irrep descibed by its algebraClass and Dynkin label.

Entering irreps by Dynkin label.

The algebraClass follows the Dynkin classification of simple Lie algebras and can only be A, B, C, D for the classical algebras and E6, E7, E8, F4 and G2 for the exceptional algebras. The precise classical algebra is determined by the length of the Dynkin label.

Entering the $\overline{\mathbf{1 0}}$ of $\mathrm{SU}(5)$ by its Dynkin label and algebra class:

```
In[1]:= Irrep[A][0, 0, 1, 0] // FullForm
```

Out[1]//FullForm=
Irrep $[A][0,0,1,0]$

In StandardForm the irrep is displayed in the textbook notation of Dynkin labels :

In[2]:= Irrep $[\mathbf{A}][0,0,1,0] / /$ StandardForm

Out[2]//StandardForm=
(0010)

In TraditionalForm (default) the irrep is displayed by its dimensional name:

```
In[3]:= Irrep[A][0, 0, 1, 0]
Out[3]= \overline{10}
```

The default output format type of LieART is TraditionalForm. The associated user setting is overwritten for the notebook LieART is loaded in. For StandardForm as output format type please set the global variable \$DefaultOutputForm=StandardForm.

Decomposing Tensor Products

```
DecomposeProduct [irreps] Decomposes the tensor product of several irreps.
```

Tensor product decomposition.
Decompose the tensor product $\mathbf{3} \otimes \overline{\mathbf{3}}$ of $\mathrm{SU}(3)$:
In[12]:= DecomposeProduct[Irrep[SU3][3], Irrep[SU3][Bar[3]]]
Out[12] $=\mathbf{1 + 8}$
In[4]:= DecomposeProduct[Irrep[SU3][3],
Irrep [su3] [Bar[3]], Irrep[SU3][3], Irrep[SU3][Bar[3]]]
Out[4] $=2(1)+4(8)+\mathbf{1 0}+\overline{\mathbf{1 0}}+\mathbf{2 7}$
Decompose the tensor product $\mathbf{2 7} \otimes \overline{\mathbf{2 7}}$ of E_{6} :
In[13]:= DecomposeProduct[Irrep[E6][27], Irrep[E6][Bar[27]]]
Out[13]= $\mathbf{1 + 7 8 + 6 5 0}$
Decompose the tensor product $3 \otimes \mathbf{3} \otimes \mathbf{3}$ of $\mathrm{SU}(3)$:
In[14]:= DecomposeProduct[Irrep[SU3][3], Irrep[SU3][3], Irrep[SU3][3]]
Out[14]= $\mathbf{1 + 2 (8) + 1 0}$
Decompose the tensor product $\mathbf{8 \otimes 8}$ of $\mathrm{SU}(3)$:
In[15]:= DecomposeProduct[Irrep[SU3] [8], Irrep[SU3] [8]]
Out[15]= $\mathbf{1}+2(\mathbf{8})+\mathbf{1 0}+\overline{\mathbf{1 0}}+\mathbf{2 7}$

Decomposition to Subalgebras

```
DecomposeIrrep [irrep, subalgebra] Decomposes irrep to the specified subalgebra.
DecomposeIrrep [
Decompose pirrep at position pos of the product irrep plrrep.
```

 plrrep,subalgebra, pos]
 Decompose irreps and product irreps.

Decompose the $\overline{\mathbf{1 0}}$ of $\mathrm{SU}(5)$ to $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$:
In[22]:= DecomposeIrrep[Irrep[SU5][Bar[10]], ProductAlgebra[SU3, SU2, U1]]
Out[22] $=(\mathbf{1}, \mathbf{1})(6)+(\mathbf{3}, 1)(-4)+(\overline{\mathbf{3}}, 2)(1)$

Decompose the 10 and the $\overline{5}$ of $\mathrm{SU}(5)$ to $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$ (DecomposeIrrep is Listable):
In[23]:= DecomposeIrrep[\{Irrep[SU5][10], Irrep[SU5][Bar[5]]\}, ProductAlgebra[SU3, SU2, U1]]
Out[23] $=\{(\overline{\mathbf{3}}, \mathbf{1})(4)+(\mathbf{3}, \mathbf{2})(-1)+(\mathbf{1}, \mathbf{1})(-6),(\overline{\mathbf{3}}, \mathbf{1})(-2)+(\mathbf{1}, \mathbf{2})(3)\}$

Decompose the $\mathbf{1 6}$ of $\mathrm{SO}(10)$ to $\mathrm{SU}(5) \otimes \mathrm{U}(1)$:
In[24]:= DecomposeIrrep[Irrep[SO10][16], ProductAlgebra[SU5, U1]]
Out[24] $=(1)(-5)+(5)(3)+(10)(-1)$

Decompose the $\mathbf{2 7}$ of E_{6} to $\mathrm{SU}(3) \otimes \mathrm{SU}(3) \otimes \mathrm{SU}(3)$:
In[25]:= DecomposeIrrep[Irrep[E6][27], ProductAlgebra[SU3, SU3, SU3]]
$O u t[25]=(\mathbf{3}, \mathbf{1}, \mathbf{3})+(\mathbf{1}, \mathbf{3}, \overline{\mathbf{3}})+(\overline{\mathbf{3}}, \overline{\mathbf{3}}, \mathbf{1})$

Example: Decomposition 248^{6} in E8

In[102]:= Timing[Irrep[E8][248]^6] $\{90.112,79(1)+421(248)+575(3875)+675(27000)+924(30380)+775(147250)+1386(779247)+$ $415(1763125)+1011(2450240)+1240(4096000)+405(4881384)+765(6696000)+$ $1144(26411008)+895(70680000)+1125(76271625)+115(79143000)+554(146325270)+$ $410(203205000)+510(281545875)+456(301694976)+855(344452500)+315(820260000)+$ $605(1094951000)+405(2172667860)+470(2275896000)+15(2642777280)+15(2903770000)+$ $195(3929713760)+45(4076399250)+325(4825673125)+125(6899079264)+480(8634368000)+$ $80\left(8634368000^{\prime}\right)+80(12692520960)+115(17535336000)+216(20288765952)+$ $165(21039669000)+180(23592339045)+144(45329752170)+45(63513702720)+$ $45(66393847000)+69176971200+90(83080364250)+90(85424220000)+40(110977024000)+$ $40(124436480000)+15(152883490500)+15(220778105625)+80(234550030000)+$ $267413986840+30(355647996000)+5(417933862500)+5(492957660000)+$ $45(508731738750)+45(574197082368)+5(627099023250)+9(841900509450)+$ $5(919045960000)+10(1041872676000)+9(1283242632840)+10(1349926375875)+$ 16(1813461073920)\}

Takes 90 sec on 4 year old iMac.

Check: A179663 in "Online Encyclopedia of Integral Sequences," Power of the adjoint representation of E8.

1, 1, 5, 16, 79, 421, 2674,19244, 156612, 1423028, 14320350, ...

LieART Applications

Example:Three family $\operatorname{SU}(\mathrm{N})$ models with no chiral exotic fermions, made without using any totally antisymmetric irreps
(i.e., without using any single column tableaux)

Robert Feger and TWK 1505.03403
R. Fonseca has obtained some related results with Susyno see: 1504.03695

All two column tableaux for $\operatorname{SU}(6)$.

SU(6) example with three families and no light exotics

$$
\begin{aligned}
& 6(\overline{21})+9(70)+6(84)+9(\overline{105})+3\left(\overline{105}^{\prime}\right)+3(210) \\
& \quad=3(10+\overline{5})+a(5+\overline{5})+b(15+\overline{15})+c(40+\overline{40})+\ldots
\end{aligned}
$$

All irreps are two column tableaux

$$
\begin{gathered}
2(\overline{28})+112+4(140)+5(\overline{224})+490+2\left(\overline{490}^{\prime}\right)+2(588) ; \\
\overline{28}+112+5(140)+\overline{196}+210+5(\overline{224})+490+\overline{490^{\prime}}+588 ; \\
112+6(140)+2(\overline{196})+2(210)+5(\overline{224})+490 ; \\
7(\overline{28})+4(112)+140+196+3(\overline{490})+2\left(490^{\prime}\right)+588 ; \\
6(\overline{28})+4(112)+2(140)+210+3(\overline{490})+3\left(490^{\prime}\right) ; \\
3(\overline{28})+\overline{112}+140+3(196)+2(210)+3(\overline{224})+3(\overline{490})+3(588) ; \\
2(\overline{28})+\overline{112}+2(140)+2(196)+3(210)+3(\overline{(224})+3(\overline{490})+490^{\prime}+2(588) ; \\
\overline{28}+\overline{112}+3(140)+196+4(210)+3(\overline{224})+3(\overline{490})+2\left(490^{\prime}\right)+588 ; \\
\overline{112}+4(140)+5(210)+3(\overline{224})+3(\overline{490})+3\left(490^{\prime}\right) .
\end{gathered}
$$

Three family solutions in $\mathrm{SU}(7)$ made from only two column tableaux.

| 28 | 112 | 140 | 196 | 210 | 224 | 490 | 490^{\prime} | 588 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -2 | 1 | 4 | 0 | 0 | -5 | 1 | -2 | 2 |
| -1 | 1 | 5 | -1 | 1 | -5 | 1 | -1 | 1 |
| 0 | 1 | 6 | -2 | 2 | -5 | 1 | 0 | 0 |
| -7 | 4 | 1 | 1 | 0 | 0 | -3 | 2 | 1 |
| -6 | 4 | 2 | 0 | 1 | 0 | -3 | 3 | 0 |
| -3 | -1 | 1 | 3 | 2 | -3 | -3 | 0 | 3 |
| -2 | -1 | 2 | 2 | 3 | -3 | -3 | 1 | 2 |
| -1 | -1 | 3 | 1 | 4 | -3 | -3 | 2 | 1 |
| 0 | -1 | 4 | 0 | 5 | -3 | -3 | 3 | 0 |

SU(7) examples in tabular form. (minus signs for barred irreps)

$$
\begin{array}{cccccccccccc}
36 & 168 & 216 & 336 & 378 & 420 & 504 & 1008 & 1176 & 1344 & 1512 & 2352^{\prime} \\
\hline-2 & 1 & 2 & -1 & 1 & -1 & -1 & 0 & 1 & 1 & 0 & -1 \\
1 & -1 & 3 & 0 & 2 & 0 & -4 & 0 & -1 & -1 & 2 & 0 \\
0 & -1 & 1 & -1 & 1 & -1 & 2 & 2 & -1 & 2 & -4 & 2 \\
-2 & 1 & 3 & 0 & -2 & -3 & -2 & 2 & -2 & 1 & 1 & 0 \\
2 & -3 & 0 & -1 & 2 & -1 & -3 & 2 & 0 & 3 & -1 & -1 \\
3 & -3 & 3 & 1 & 2 & -2 & 2 & -1 & 0 & 0 & -1 & 1
\end{array}
$$

Two column three family $\operatorname{SU}(8)$ solutions

| 45 | 240 | 315 | 540 | 630 | 720 | 1008 | 1050 | 1890 | 2520 | 2700 | 3402 | 3780 | 5292 | 6048 | 7560 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | -1 | -1 | -1 | 0 | 1 | -2 | -3 | 1 | 1 | 0 | 0 | 0 | -3 | 0 | 2 |
| -1 | 1 | 1 | 0 | 0 | 1 | 2 | 2 | 0 | -1 | 1 | 0 | -4 | -1 | 1 | 2 |
| 1 | -1 | 0 | 1 | 1 | 1 | -2 | -2 | -1 | -1 | 2 | 3 | -2 | 0 | 0 | 0 |

The reason the number of solutions is dropping with N is that the anomaly coefficients are growing and it is getting more difficult to find anomaly free sets of two column tableau to

Two column three family $\operatorname{SU}(9)$ solutions

Another example:

Analysis of Inert Higgs models: Where do the doublets of SU(5) live?

T.C.Yuan and TWK, in progress

$S U(5)$ irreps of dimension less than 1000 that contain $S U(3) \times S U(2) \times U(1)$ doublets.

$S U(5)$ irrep	doublet		$S U(5)$ irrep	doublet
5	$(1,2)_{-3}$		280	$(1,2)_{-3}$
40	$(1,2)_{9}$		450	$(1,2)_{9}$
45	$(1,2)_{-3}$		450^{\prime}	$(1,2)_{-3}$
70	$(1,2)_{-3}$	480	$(1,2)_{-3}$	
175^{\prime}	$(1,2)_{15}$		560^{\prime}	$(1,2)_{-21}$
210	$(1,2)_{9}$		700^{\prime}	$(1,2)_{15}$

Minimal Flavor Symmetry

Work in collaboration with

Carl Albright, NIU/Fermilab
and
Robert Feger, Würzburg University

Is there a flavor symmetry (FLASY)?

Anarchy/Landscape
Discrete flavor symmetry
Continuous flavor symmetry

If anarchy or landscape,

then masses and mixings are random numbers and we are done--values cannot be determined.

Flavor symmetries are more interesting and they are predictive.

Large spectrum of models has been studied:
Discrete flavor symmetry X Standard Model(SM)
Continuous flavor symmetry X SM

or

Discrete flavor symmetry X Beyond the SM (BSM)

Continuous flavor symmetry X BSM

Better results with increasing discrete group size--can we reduce it/minimize it?

Discrete FLASY X SM has been the most studied.
For reviews see:
Altarelli and Feruglio, Rev Mod Phys (2010)
Ishimori, Kobayashi, Ohki, Shimizu, Okada and Tanimoto, Prog Theo Phys Sup (2010)

King and Luhn
Published in Rept. Prog. Phys. (2013)
Some problems

Discrete flavor symmetry problems

 Origin of flavor symmetry?Global discrete FLASY--violated by quantum gravity and fails to give desired results at EW scale

Gauge discrete FLASY--must break continuous symmetry to discrete--check for discrete anomaly cancelation

Luhn and Ramond, JHEP (2008);
Luhn, PLB(2009).

Recent progress on breaking continuous to discrete

SU(3) example see:
Ludl, J Phys A (2010)
Grimus and Ludl, J Phys A (2011)
Merle and Zwicky, JHEP (2012)

Discrete flavor symmetry problems

Most severe: ' ${ }^{\prime}$ FLASY irrep problem" How do SM fermions irreps get into Discrete FLASY irreps?

Requires initial gauge group G where contains FLASY X SM and irreps

$$
\begin{gathered}
R \longrightarrow\left(R_{\text {Flav },}, R_{s m}\right) \\
\operatorname{not} R \longrightarrow\left(R_{\text {Flav },} 1\right)+\left(1, R_{s M}\right)
\end{gathered}
$$

Domain walls at EW scale from discrete FLASY breaking and other cosmic defects

Is there a flavor symmetry?

Masses and mixings from textures with no or small discrete flavor group?

SU(7) and SU(8) models (S. Barr, PRD 2008) High scale M, SU(5) scale V_{5}, EW scale vsm

Small parameter

$$
\epsilon=v_{5} / \mathrm{M}
$$

Is there a flavor symmetry?

top mass
$\mathrm{m}_{\mathrm{t}} \sim \mathrm{VSM}_{\mathrm{SM}}$
b-quark mass
$m_{b} \sim \in V_{S M}$

etc.

Equalities with $O(1)$ Yukawa couplings. All done with choice of $\operatorname{SU}(\mathrm{N})$ irreps-no discrete symmetry-but no mixings yet.

Is there a flavor symmetry?

Extend Barr's results to include mixings:
Difficult without discrete group
Keep $\operatorname{SU}(\mathrm{N})$ and include small discrete group
Example in $S U(9) \times Z_{2} \times Z_{2} \times Z_{2} \times Z_{3}$
Model found by hand (computer assisted).
J. Dent, R. Feger, TWK, and S. Nandi, PLB (2011)

Needs full model scan (LieART).

Reducing the flavor symmetry

Strategy:

Increase gauge group G size, Decrease discrete group D size:

Typically $G=S M$ and $D=S_{3}, A_{4}, S_{4}$, T', Delta(27), PSL(2, 7) ... X Zn's.

Similar to SU(9) example, try $G=S U(N)$ and $D=Z_{n 1} X Z_{n 2} X \ldots$

Reducing the flavor symmetry

 Is there an N where $\mathrm{D}=1$?Scan hundreds of models to find: Yes! Examples for $\mathrm{N}=12$
C. Albright, R. Feger and TWK, PRD (2012)

Example of a model with no discrete flavor symmetry:

$S U(12)$ model of masses and mixings

- Anomaly free fermion set: (totally antisym irreps, so no exotics)

$$
\begin{aligned}
& 6(\mathbf{4 9 5})+ 4(\overline{\mathbf{7 9 2}})+4(\overline{\mathbf{2 2 0}})+(\overline{\mathbf{6 6}})+4(\overline{\mathbf{1 2}}) \\
& \rightarrow 3(\mathbf{1 0}+\overline{\mathbf{5}}+\mathbf{1})+\text { Real } \\
& \text { Real }=(\mathbf{5}+\overline{\mathbf{5}}) s+(\mathbf{1 0}+\overline{\mathbf{1 0}}) s+\text { singlets }
\end{aligned}
$$

- The $S U(5)$ singlet $V E V v_{5}=\langle 1\rangle_{5}$ and $S U(12)$ unification scale M appear in the ratio:

$$
\epsilon=\frac{V_{5}}{M} \sim \frac{1}{50} .
$$

$S U(12)$ model of masses and mixings

- Yukawa interactions of dimension $4+n$ give rise to mass matrix elements of the form:

$$
h_{i j} \epsilon^{n} v_{S M} u_{i L}^{T} u_{j L}^{c},
$$

- $h_{i j}$ are Yukawa couplings
- $v_{S M}=174 \mathrm{GeV}$ is the EW scale.

$S U(12)$ model of masses and mixings

- Fermion Assignments: Assign family components to $S U(12)$ irreps.

First Family	$\begin{array}{ll} (\overline{\mathbf{5}}) \overline{\mathbf{6 6}}_{1} & \rightarrow d_{\mathrm{L}}^{c}, e_{\mathrm{L}}, \nu_{1, \mathrm{~L}} \\ (\mathbf{1}) \mathbf{7 9 2}_{1} & \rightarrow N_{1, \mathrm{~L}}^{c} \end{array}$
Second Fami	$\begin{aligned} & (\mathbf{1 0}) \overline{\mathbf{7 9 2}}_{2} \rightarrow c_{\mathrm{L},} c_{\mathrm{L},}^{c}, s_{\mathrm{L},}, \mu_{\mathrm{L}}^{c} \\ & \left(\overline{\mathbf{5}} \mathbf{7 9 \mathbf { 9 2 }}_{2} \rightarrow s_{\mathrm{L}}^{c} \mu_{\mathrm{L},}, \nu_{2, L}\right. \\ & \left(\mathbf{1}{\overline{\mathbf{2 0 0}_{2}}}_{2} \rightarrow N_{2, L}^{c} \mathrm{~L}\right. \end{aligned}$
Third Family	$\begin{aligned} & (\mathbf{1 0}) \overline{\mathbf{2 2 0}}_{3} \rightarrow t_{\mathrm{L},}, t_{\mathrm{L}}^{c}, b_{\mathrm{L}}, \tau_{\mathrm{L}}^{c} \\ & (\overline{\mathbf{5}}) \mathbf{7 9 2}_{3} \rightarrow b_{\mathrm{L},}^{c} \tau_{\mathrm{L},}, \nu_{3, \mathrm{~L}} \\ & (\mathbf{1}) \overline{\mathbf{1 2}}_{3} \rightarrow N_{3, \mathrm{~L}}^{c} \end{aligned}$

$S U(12)$ model of masses and mixings

- Higgs bosons:
(5) $924_{H},(\overline{5}) 924_{H}$
(1) $\mathbf{6 6}_{\mathrm{H}},(\mathbf{1}) \overline{\mathbf{6 6}}_{\mathrm{H}}$
(1) $220_{\mathrm{H}},(1) \overline{\mathbf{2 2 0}}_{\mathrm{H}}$
(24) 143_{H}

Massive fermion:
$\mathbf{2 2 0} \times \overline{\mathbf{2 2 0}}$
$792 \times \overline{792}$

Typical Model: raw output 10/13/2014


```
Model: SU(12), 7 Higgs, }10\mathrm{ massive fermions, 55 mass terms
Anom. Free Set: (66)+(495)+2(\overline{220})+2(\overline{12})
SU(5) Level: }\quad21(\overline{10})+24(10)+45(5)+42(5)+140(1
Fermions: (10)495 , (10) \overline{220}
Higgs: (5)495, (5)495, (1)66, (1)\overline{66},(1)792, (1)792, (24)143
M. Fermions: }\quad12,\overline{12},66,\overline{66},220,\overline{220},495,\overline{495},792,\overline{792
Leading UpType Diagrams:
```



```
    U23: (10) }\mp@subsup{\overline{220}}{2}{2}.(1)792.(\overline{10})\overline{66}\times(10)66.(5)\overline{495}.(10)66
```



```
    U21: (10) }\overline{220}\mp@subsup{}{2}{\prime}.(1)792.(\overline{10})\overline{66}\times(10)66.(5)\overline{495.(10)66\times(\overline{10})\overline{66}.(1)\overline{66}.(10)495
    U22:(10)}\mp@subsup{\overline{220}}{2}{2}.(1)792.(\overline{10)}\overline{66}\times(10)66.(5)\overline{495}.(10)66\times(\overline{10)}\overline{66}.(1)792.(10)\overline{220}\mp@subsup{}{2}{
Subleading UpType Diagrams:
Dim 5: U33: (10)663.(5)䐆.(10)66\times(\overline{10})\overline{66}.(24)143.(10)663
```



```
Dim 6: U13: (10)495 ..(1)\overline{66}.(\overline{10)}\overline{66\times(10)66.(5)}\overline{495.(10)66\times(\overline{10}}\overline{66}.(24)143.(10)66
    U13: (10)495 ..(1)\overline{66}.(\overline{10)}\overline{66\times(10)66.(24)143.(\overline{10)}\overline{66}\times(10)66.(5)}\overline{495.(10)663}
    U13: (10)495 ..(1)792.(\overline{10)220\times(10) }\overline{220}.(1)792.(\overline{10)}\overline{66}\times(10)66.(5)
```


Spontaneous symmetry breaking

Take SUSY scale to be

Msusy ~ $10^{10} \mathrm{GeV}$ then M >> $V_{5} \gg$ Msusy $\gg V_{E W}$ SSB of $\operatorname{SU}(12) \longrightarrow$ SU(5)

via superpotential.
SUSY remains unbroken if sum of the Dynkin weight of all the VEVs vanishes.

Spontaneous symmetry breaking

Route 1:
Adjoints of $\operatorname{SU}(12)$ to break: $S U(12) \longrightarrow S U(5) X U(1)^{7}$ above the SUSY scale.

One more adjoint to break
$S U(5) X U(1)^{7} \longrightarrow S U(3) X S U(2) X U(1)^{8}$ at V_{5}, then VEVs for $\mathrm{SU}(5)$ singlets with
$U(1)$ charges below SUSY scale to
complete breaking to
$S U_{C}(3) \times S U_{\llcorner }(2) X U_{Y}(1)$
Route 1 can be automated.

Spontaneous symmetry breaking

Route 2:

VEVs for totally antisymmetric irreps of $\operatorname{SU}(12)$ to break directly to $S U(5)$, then one adjoint to SM.

Example below

(VEVs can be in $\mathrm{SU}(7)$ sector of scalar partners of chiral fermions.)

Route 2 is more model dependent, so each model needs attention.

Simplest anomaly-free 3 family set in SU(12)

$$
66+495+2 \overline{(220})+2(\overline{12})
$$

with VEVs of equal strength v along Dynkin weights

which correspond to

$$
\begin{gathered}
v^{12,11} \quad v^{10,9,8,7} \quad v^{7,6} \\
v_{12,11,10} \quad v_{9} \quad v_{8,7,6}
\end{gathered}
$$

breaks $S U(12)$ directly to $S U(5)$.

$S U(12)$ model of masses and mixings

- Yukawa Interactions:

Froggatt-Nielsen type diagrams. (SUSY suppresses loops)

- Typical diagram:

Up terms

- Leading Up Terms:

Up-Type Quark Mass-Term Diagrams
Dim 4: U33: (10) $\overline{220}_{3} .(5) 924_{\mathrm{H}} \cdot(10) \overline{220}_{3}$
Dim 5: U23: (10) $\overline{792}_{2} \cdot(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220}^{2} .(5) 924_{\mathrm{H}} \cdot(10) \overline{220}_{3}$
U32: (10) $\overline{220}_{3} .(5) 924_{\mathrm{H}} \cdot(10) \overline{220} \times(\overline{10}) 220 .(1) 66_{\mathrm{H}} \cdot(10) \overline{792}_{2}$
Dim 6: U13: (10) $495_{1} \cdot(1) 220_{\mathrm{H}} \cdot(\overline{10}) 792 \times(10) \overline{792} \cdot(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(5) 924_{\mathrm{H}} \cdot(10) \overline{220}_{3}$
U31: $(10) \overline{220}_{3} .(5) 924_{\mathrm{H}} \cdot(10) \overline{220} \times(\overline{10}) 220 .(1) 66_{\mathrm{H}} \cdot(10) \overline{792} \times(\overline{10}) 792 .(1) 220_{\mathrm{H}} .(10) 495_{1}$
U22: $(10) 79{ }_{2} .(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} .(5) 924_{\mathrm{H}} \cdot(10) \overline{220} \times(\overline{10}) 220 .(1) 66_{\mathrm{H}} \cdot(10) \overline{792}_{2}$
Dim 7: U12: (10) $495_{1} \cdot(1) 220_{\mathrm{H}} \cdot(\overline{10}) 792 \times(10) \overline{792} .(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(5) 924_{\mathrm{H}} \cdot(10) \overline{220} \times(\overline{10}) 220 \cdot(1) 66_{\mathrm{H}} \cdot(10) 792_{2}$
U21: (10) $792{ }_{2} .(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} .(5) 924_{\mathrm{H}} \cdot(10) \overline{220} \times(\overline{10}) 220 .(1) 66_{\mathrm{H}} \cdot(10) 792 \times(\overline{10}) 792 \cdot(1) 220_{\mathrm{H}} \cdot(10) 495_{1}$
Dim 8: U11: (10) $495_{1} \cdot(1) 220_{\mathrm{H}} \cdot(\overline{10}) 792 \times(10) \overline{792} .(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} .(5) 924_{\mathrm{H}} \cdot(10) \overline{220} \times(\overline{10}) 220$
.(1) $66_{\mathrm{H}} \cdot(10) 792 \times(\overline{10}) 792 .(1) 220_{\mathrm{H}} \cdot(10) 495_{1}$

Down terms

- Leading Down Terms:

Down-Type Quark Mass-Term Diagrams

Dim 5: D32: (10) $\overline{220}_{3} .(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 .(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792}_{2}$
D33: (10) $\overline{220}_{3} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 .(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792}_{3}$
Dim 6: D31: (10) $\overline{220}_{3} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 .(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792}^{x} \times(5) 792 \cdot(1) \overline{220}_{\mathrm{H}} \cdot(\overline{5}) \overline{66}_{1}$
D22: (10) $\overline{792}_{2} \cdot(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 \cdot(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792}_{2}$
D23: $(10) \overline{792}_{2} \cdot(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 \cdot(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792}_{3}$
Dim 7: D12: (10) $495_{1} \cdot(1) 220_{\mathrm{H}} \cdot(\overline{10}) 792 \times(10) \overline{792} \cdot(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 \cdot(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792}_{2}$
D21: (10) $\overline{792}_{2} \cdot(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220}^{2} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 .(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792}^{2} \times(5) 792 \cdot(1) \overline{220}_{\mathrm{H}} \cdot(\overline{5}) \overline{66}_{1}$
D13: (10) $495_{1} \cdot(1) 220_{\mathrm{H}} \cdot(\overline{10}) 792 \times(10) \overline{792} \cdot(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220 \cdot(1) 66_{\mathrm{H}} \cdot(\overline{5}) 792{ }_{3}$
Dim 8: D11: (10)4951. (1)220H. $\cdot(\overline{10}) 792 \times(10) \overline{792} \cdot(1) 66_{\mathrm{H}} \cdot(\overline{10}) 220 \times(10) \overline{220} \cdot(\overline{5}) 924_{\mathrm{H}} \cdot(\overline{5}) \overline{220} \times(5) 220$
.$(1) 66_{\mathrm{H}} \cdot(\overline{5}) \overline{792}^{\times}(5) 792 \cdot(1) \overline{220}_{\mathrm{H}} \cdot(\overline{5}) \overline{66}_{1}$

Mass matrices

$$
\begin{aligned}
& M_{U}=\left(\begin{array}{ccc}
h_{11}^{\mathrm{u}} \epsilon^{4} & h_{12}^{\mathrm{u}} \epsilon^{3} & h_{13}^{\mathrm{u}} \epsilon^{2} \\
h_{12}^{\mathrm{u}} \epsilon^{3} & h_{21}^{\mathrm{u}} \epsilon^{2} & h_{23}^{\mathrm{u}} \epsilon \\
h_{13}^{\mathrm{u}} \epsilon^{2} & h_{23}^{\mathrm{u}} \epsilon & h_{33}^{\mathrm{u}}
\end{array}\right) v, \\
& M_{\mathrm{D}}=\left(\begin{array}{lll}
h_{11}^{\mathrm{d}} \epsilon^{4} & h_{11}^{\mathrm{d}} \epsilon^{3} & h_{13}^{\mathrm{d}} \epsilon^{3} \\
h_{21}^{\mathrm{d}} \epsilon^{3} & h_{22}^{\mathrm{d}} \epsilon^{2} & h_{23}^{\mathrm{d}} \epsilon^{2} \\
h_{31}^{\mathrm{d}} \epsilon^{2} & h_{32}^{\mathrm{d}} \epsilon & h_{33}^{\mathrm{d}} \epsilon
\end{array}\right) v, \\
& M_{\mathrm{L}}=\left(\begin{array}{lll}
h_{11}^{\ell} \epsilon^{4} & h_{12}^{\ell} \epsilon^{3} & h_{13}^{\ell} \epsilon^{2} \\
h_{21}^{\ell} \epsilon^{3} & h_{22}^{\ell} \epsilon^{2} & h_{23}^{\ell} \epsilon \\
h_{31}^{\ell} \epsilon^{3} & h_{32}^{\ell} \epsilon^{2} & h_{33}^{\ell} \epsilon
\end{array}\right) v=M_{\mathrm{D}}^{T} .
\end{aligned}
$$

(Here $v=v_{S M}$ and below we use $\Lambda_{R}=M$.)

Dirac neutrino terms

- Leading Dirac Neutrino Terms:

Dirac-Neutrino Mass-Term Diagrams

Dim 4: DN23: $(\overline{5}) \overline{792}_{2} .(5) 924_{\mathrm{H}} \cdot(1) \overline{12}_{3}$
DN33: ($\overline{5}$) $\overline{79}_{3} .(5) 924_{\mathrm{H}} \cdot(1) \overline{12}_{3}$
Dim 5: DN13: ($\overline{5}) \overline{66}_{1} \cdot(1) \overline{220}_{\mathrm{H}} \cdot(5) 792 \times(\overline{5}) \overline{792}^{2} .(5) 924_{\mathrm{H}} \cdot(1) \overline{12}_{3}$
DN22: $(\overline{5}) \overline{792}_{2} \cdot(1) 66_{\mathrm{H}} \cdot(5) 220 \times(\overline{5}) \overline{220}$. (5) $924_{\mathrm{H}} \cdot(1) \overline{220}_{2}$
DN32: ($\overline{5}) \overline{792}_{3} .(1) 66_{\mathrm{H}} \cdot(5) 220 \times(\overline{5}) \overline{220}$. (5) $924_{\mathrm{H}} \cdot(1) \overline{220}_{2}$
Dim 6: DN12: $(\overline{5}) \overline{66}_{1} \cdot(1) \overline{220}_{\mathrm{H}} \cdot(5) 792 \times(\overline{5}) \overline{792} .(1) 66_{\mathrm{H}} \cdot(5) 220 \times(\overline{5}) \overline{220} .(5) 924_{\mathrm{H}} \cdot(1) \overline{220}_{2}$
DN21: $(\overline{5}) \overline{792}_{2} .(1) 66_{\mathrm{H}} \cdot(5) 220 \times(\overline{5}) \overline{220}$. (5) $924_{\mathrm{H}} \cdot(1) \overline{220} \times(1) 220 .(1) 66_{\mathrm{H}} \cdot(1) \overline{792}_{1}$
DN31: $(\overline{5}) \overline{792}_{3} \cdot(1) 66_{\mathrm{H}} \cdot(5) 220 \times(\overline{5}) \overline{220}$. (5) $924_{\mathrm{H}} \cdot(1) \overline{220} \times(1) 220 .(1) 66_{\mathrm{H}} \cdot(1) \overline{792}_{1}$
Dim 7: DN11: ($\overline{5}) \overline{66}_{1} \cdot(1) \overline{220}_{\mathrm{H}} \cdot(5) 792 \times(\overline{5}) \overline{792} .(1) 66_{\mathrm{H}} \cdot(5) 220 \times(\overline{5}) \overline{220} .(5) 924_{\mathrm{H}} \cdot(1) \overline{220} \times(1) 220 .(1) 66_{\mathrm{H}} \cdot(1) \overline{792}_{1}$

Majorana neutrino terms

- Leading Majorana Neutrino Terms::

Majorana-Neutrino Mass-Term Diagrams

Dim 4: MN11: $(1) \overline{792}_{1} \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{792}_{1}$
MN33: (1) $\overline{12}_{3} .(1) 66_{\mathrm{H}} \cdot(1) \overline{12}_{3}$
Dim 5: MN12: (1) $\overline{792}_{1} \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{792} \times(1) 792 .(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{220}_{2}$
MN21: (1) $\overline{220}_{2} \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) 792 \times(1) \overline{792}^{2} \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{792}_{1}$
Dim 6: MN13: (1) $\overline{792}_{1} \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{792} \times(1) 792 .(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{220} \times(1) 220 \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{12}_{3}$
MN31: (1) $\overline{12}_{3} .(1) \overline{66}_{\mathrm{H}} \cdot(1) 220 \times(1) \overline{220}^{2} .(1) \overline{66}_{\mathrm{H}} \cdot(1) 792 \times(1) \overline{792} .(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{792}_{1}$
MN22: (1) $\overline{220}_{2} \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) 792 \times(1) \overline{792}^{2} .(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{792} \times(1) 792 .(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{220}_{2}$
Dim 7: MN23: (1) $\overline{220}_{2} \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) 792 \times(1) \overline{792}^{2} \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{792}^{2} \times(1) 792 \cdot(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{220} \times(1) 220 .(1) \overline{66}_{\mathrm{H}} \cdot(1) \overline{12}_{3}$

Dirac and Majorana neutrino mass matrices

- Dirac and Majorana neutrino mass matrices

$$
\begin{aligned}
M_{\mathrm{DN}} & =\left(\begin{array}{lll}
h_{11}^{\mathrm{dn}} \epsilon^{3} & h_{12}^{\mathrm{dn}} \epsilon^{2} & h_{13}^{\mathrm{dn}} \epsilon \\
h_{21}^{\mathrm{dn}} \epsilon^{2} & h_{22}^{\mathrm{dn}} \epsilon & h_{23}^{\mathrm{dn}} \\
h_{31}^{\mathrm{dn}} \epsilon^{2} & h_{32}^{\mathrm{dn}} \epsilon & h_{33}^{\mathrm{dn}}
\end{array}\right) v, \\
M_{\mathrm{MN}}= & \left(\begin{array}{ccc}
h_{11}^{\mathrm{mn}} & h_{12}^{\mathrm{mn}} \epsilon & h_{13}^{\mathrm{mn}} \epsilon^{2} \\
h_{12}^{\mathrm{mn}} \epsilon & h_{22}^{\mathrm{mn}} \epsilon^{2} & h_{23}^{\mathrm{mn}} \epsilon^{3} \\
h_{13}^{\mathrm{mn}} \epsilon^{2} & h_{23}^{\mathrm{mn}} \epsilon^{3} & h_{33}^{\mathrm{mn}}
\end{array}\right) \Lambda_{\mathrm{R}} .
\end{aligned}
$$

M_{D} and M_{L} and $M_{D N}$ are all doubly lopsided.

Light-neutrino mass matrix

- Light-neutrino mass matrix is from type I seesaw:

$$
\begin{aligned}
& M_{\nu}=-M_{D N} M_{M N}^{-1} M_{\mathrm{DN}}^{T} . \\
& M_{\nu} \approx \frac{v^{2}}{\Lambda_{R}} \times
\end{aligned}
$$

SU(12) model summary

SU(12) model gives prospect of decent phenomenology:
-masses
-mixing angles
$\theta_{13} \neq 0$ naturally.
No domain wall problem
-no discrete symmetry to break.
No fine tuning except for
usual hierarchy problem
-i.e., why is vew so small?

SU(N) models with smaller N?

$\mathrm{SU}(12)$ is big, maybe too big -approaching landscape.

But it seems worthwhile to explore this small piece of landscape.

SU(N) models with smaller N ?

Chiral $\operatorname{SU}(\mathrm{N})$ models for N as large as 14 have been found via orbifolded AdS/CFT (H. P. Nilles et al.).

Is there a discrete symmetry free $\mathrm{SU}(\mathrm{N})$ model for $\mathrm{N}<12$ with good pheno?

Best from scan for $\mathrm{N}=8$ is an
$\mathrm{SU}(8) \times Z_{2}$ model (under investigation.)
Searching $9<N<11$ now.

Summary

$\operatorname{SU}(\mathrm{N})$ models of masses and mixing with little (e.g., Z_{2})
or no discrete symmetry are possible.
Better SU(12) models in hand
-simpler irrep structure
(Feger, Albright, TWK, 2015, to appear)

Some problems that arise in discrete FLASY models can be avoided or solved:

-origin of discrete symmetries
 -domain walls
 -FLASY irrep problem

Stay tuned!

