Computer Assisted BSM Model Building with LieART

Tom Kephart Vanderbilt University

Presented at the Arnowitt Symposium Texas A&M University 18 May 2015 Based on:

"LieART—A Mathematica Application for Lie Algebras and Representation Theory" Robert Feger and TWK, Comput.Phys.Commun. 192 (2015) 166.

TheLieART package is a free download (as a tar.gz archive) from:

http://www.hepforge.org/downloads/lieart/

Inspired by R. Slansky, Phys. Rept., 79, 1 (1981).

LieART: Lie Algebras and Representation Theory

The primary purpose of the LieART application is the tensor product and subalgebra decomposition of irreducible representations (irreps) of Lie algebras. These tasks are frequently needed in particle physics, where multiparticle fields are assigned to irreps. Tensor products of irreps are thus commonly used to find singlets suitable for the Lagrangian. Spontaneous symmetry breaking corresponds to the subalgebra decomposition.

Algebras Algebra · ProductAlgebra · CartanMatrix · MetricTensor Roots RootSystem — Complete root system of an algebra PositiveRoots — Only the positive roots of an algebra OrthogonalSimpleRoots — Simple roots of an algebra in orthogonal coordinates Weights WeightSystem — Complete weight system of a representation Representations Irrep — Irreducible representation Dim — Compute the dimension of a representation YoungTableau — Displays the Young tableau corresponding to an SU(N) representation ProductIrrep · DimName · Index Decompositions **DecomposeProduct** — Decompose tensor products of irreps DecomposeIrrep — Decompose irrep to subalgebras

Displaying Output

- IrrepPlus Textbook style sum of a list irreps
- LaTeXForm Formatting suitable for copy&paste into a LATEX document

TUTORIALS

Quick Start Tutorial

TABLES

- Representation Properties
- Tensor Products
- Branching Rules

Dynkin	Dimension	1		SU(11) S	$SU(10) \times SU(2)$	$SU(9) \times SU(3)$	$SU(7) \times SU(5)$	$SU(6) \times SU(6)$
label	(name)	(index)I	Decalit	ysinglets	singlets	singlets	singlets	singlets
(1000000000)	12	1	1	1	0	0	0	0
(0100000000)	66	10	2	0	1	0	0	0
(2000000000)	78	14	2	1	0	0	0	0
(1000000001)	143	24	0	1*	1*	1*	1*	1*
(0010000000)	220	45	3	0	0	1	0	0
(3000000000)	364	105	3	1	0	0	0	0
(0001000000)	495	120	4	0	0	0	0	0
(1100000000)	572	141	3	0	0	0	0	0
(0100000001)	780	185	1	0	0	0	0	0
(00001000000)	792	210	5	0	0	0	1	0

Table A.12: SU(12) Irreps

 $^{SU(11)\times U(1)}$ and $SU(10)\times SU(2)\times U(1)$ and $SU(9)\times SU(3)\times U(1)$ and $SU(7)\times SU(5)\times U(1)$ and $SU(6)\times SU(6)\times U(1)$ singlets resp.

Table A.45: SU(12) Tensor Products

$\overline{12} imes 12 = 1 + 143$
12 imes 12 = 66 + 78
$\overline{66} imes 12 = \overline{12} + \overline{780}$
66 imes 12 = 220 + 572
$\overline{78} imes 12 = \overline{12} + \overline{924}$
78 imes 12 = 364 + 572
${\bf 143 \times 12}={\bf 12}+{\bf 780}+{\bf 924}$

 $SU(12) \rightarrow SU(7) \times SU(5) \times U(1)$

$$\begin{array}{l} 12 &= (1,5)(-7) + (7,1)(5) \\ 66 &= (1,10)(-14) + (7,5)(-2) + (21,1)(10) \\ 78 &= (7,5)(-2) + (1,15)(-14) + (28,1)(10) \\ 143 &= (1,1)(0) + (7,\overline{5})(12) + (\overline{7},5)(-12) + (1,24)(0) + (48,1)(0) \\ 220 &= (1,\overline{10})(-21) + (7,10)(-9) + (21,5)(3) + (35,1)(15) \\ 364 &= (7,15)(-9) + (28,5)(3) + (1,\overline{35})(-21) + (84,1)(15) \\ 495 &= (1,\overline{5})(-28) + (7,\overline{10})(-16) + (21,10)(-4) + (\overline{35},1)(20) + (35,5)(8) \\ 572 &= (7,10)(-9) + (7,15)(-9) + (21,5)(3) + (28,5)(3) + (1,\overline{40})(-21) + (112,1)(15) \\ 780 &= (1,5)(-7) + (7,1)(5) + (\overline{7},10)(-19) + (21,\overline{5})(17) + (7,24)(5) + (1,45)(-7) + (48,5)(-7) + (140,1)(5) \\ 792 &= (1,1)(-35) + (7,\overline{5})(-23) + (\overline{21},1)(25) + (21,\overline{10})(-11) + (\overline{35},5)(13) + (35,10)(1) \\ \end{array}$$

 $SU(12) \rightarrow SU(6) \times SU(6) \times U(1)$

 $\begin{array}{l} 12 &= (6,1)(1) + (1,6)(-1) \\ 66 &= (6,6)(0) + (15,1)(2) + (1,15)(-2) \\ 78 &= (6,6)(0) + (21,1)(2) + (1,21)(-2) \\ 143 &= (1,1)(0) + (6,\overline{6})(2) + (\overline{6},6)(-2) + (35,1)(0) + (1,35)(0) \\ 220 &= (6,15)(-1) + (15,6)(1) + (20,1)(3) + (1,20)(-3) \\ 364 &= (21,6)(1) + (6,21)(-1) + (56,1)(3) + (1,56)(-3) \\ 495 &= (\overline{15},1)(4) + (1,\overline{15})(-4) + (6,20)(-2) + (20,6)(2) + (15,15)(0) \\ 572 &= (6,15)(-1) + (15,6)(1) + (21,6)(1) + (6,21)(-1) + (70,1)(3) + (1,70)(-3) \\ 780 &= (6,1)(1) + (1,6)(-1) + (15,\overline{6})(3) + (\overline{6},15)(-3) + (35,6)(-1) + (6,35)(1) + (84,1)(1) + (1,84)(-1) \\ 792 &= (\overline{6},1)(5) + (1,\overline{6})(-5) + (6,\overline{15})(-3) + (\overline{15},6)(3) + (15,20)(-1) + (20,15)(1) \\ \end{array}$

Dynamic, so tables can be extended, etc.

LieART - Quick Start Tutorial

The application LieART provides functions to perform the most common tasks associated with irreducible representations (irreps) of the classical and exceptional Lie algebas.

This loads the package:

In[5]:= << LieART [~]]
LieART 1.1.1	٦
last revised 3 February 2014	E C

Entering Irreducible Representations

Irreducible representations (irreps) are internally decribed by their Dynkin label with a combined head of Irrep and the Lie algebra.

```
Irrep [algebraClass] [label] Irrep descibed by its algebraClass and Dynkin label.
```

Entering irreps by Dynkin label.

The *algebraClass* follows the Dynkin classification of simple Lie algebras and can only be A, B, C, D for the classical algebras and E6, E7, E8, F4 and G2 for the exceptional algebras. The precise classical algebra is determined by the length of the Dynkin label.

2

<u>____</u>

3

7

2

2

Entering the 10 of SU(5) by its Dynkin label and algebra class:

```
In[1]:= Irrep[A][0, 0, 1, 0] // FullForm
```

Out[1]//FullForm=

Irrep[A][0, 0, 1, 0]

In StandardForm the irrep is displayed in the textbook notation of Dynkin labels :

```
In[2]:= Irrep[A][0, 0, 1, 0] // StandardForm
Out[2]//StandardForm=
```

(0010)

In TraditionalForm (default) the irrep is displayed by its dimensional name:

```
In[3]:= Irrep[A][0, 0, 1, 0]
```

```
Out[3]= 10
```

The default output format type of LieART is TraditionalForm. The associated user setting is overwritten for the notebook LieART is loaded in. For StandardForm as output format type please set the global variable \$DefaultOutputForm=StandardForm.

Decomposing Tensor Products

<pre>DecomposeProduct[irreps]</pre>	Decomposes the tensor product of several irreps.	
Tensor product decomposition.		
Decompose the tensor product $3 \otimes \overline{3}$ of SU(3)	3):	
In[12]:= DecomposeProduct[Irrep[SU3	[][3], Irrep[SU3][Bar[3]]]	
Out[12]= 1+8		
<pre>In[4]:= DecomposeProduct[Irrep[SU3 Irrep[SU3][Bar[3]], Irrep</pre>	[3], [SU3][3], Irrep[SU3][Bar[3]]]	
Out[4] = $2(1) + 4(8) + 10 + \overline{10} + 27$		
Decompose the tensor product $27\otimes\overline{27}$ of E	6	
<pre>In[13]:= DecomposeProduct[Irrep[E6]</pre>	[27], Irrep[E6][Bar[27]]]	
Out[13]= 1+78+650		1
Decompose the tensor product $3 \otimes 3 \otimes 3$ of S	SU(3):	
<pre>In[14]:= DecomposeProduct[Irrep[SU3</pre>	[3], Irrep[SU3][3], Irrep[SU3][3]]	
Out[14]= 1+2(8)+10		
Decompose the tensor product $8 \otimes 8$ of SU(3)	3):	
<pre>In[15]:= DecomposeProduct[Irrep[SU3</pre>	[8], Irrep[SU3][8]]	
Out[15] = $1 + 2(8) + 10 + \overline{10} + 27$		

]]

3

Ø---

]]

3

) | |

Decomposition to Subalgebras

```
      DecomposeIrrep[irrep,subalgebra]
      Decomposes irrep to the specified subalgebra.

      DecomposeIrrep[
      Decompose pirrep at position pos of the product irrep pIrrep.

      pIrrep,subalgebra, pos]
      Decompose pirrep at position pos of the product irrep pIrrep.
```

Decompose irreps and product irreps.

Decompose the $\overline{10}$ of SU(5) to SU(3) \otimes SU(2) \otimes U(1):

In[22]:= DecomposeIrrep[Irrep[SU5][Bar[10]], ProductAlgebra[SU3, SU2, U1]]

 $Out[22]= (1, 1)(6) + (3, 1)(-4) + (\overline{3}, 2)(1)$

Decompose the 10 and the 5 of SU(5) to SU(3) SU(2) U(1) (DecomposeIrrep is Listable):

 $In[23]:= DecomposeIrrep[{Irrep[SU5][10], Irrep[SU5][Bar[5]]}, ProductAlgebra[SU3, SU2, U1]]$ $Out[23]= \{(\overline{3}, 1)(4) + (3, 2)(-1) + (1, 1)(-6), (\overline{3}, 1)(-2) + (1, 2)(3)\}$

3

7--

]

5

2---

3

]

Decompose the 16 of SO(10) to $SU(5)\otimes U(1)$:

In[24]:= DecomposeIrrep[Irrep[S010][16], ProductAlgebra[SU5, U1]]

```
Out[24] = (1)(-5) + (\overline{5})(3) + (10)(-1)
```

Decompose the 27 of E_6 to SU(3) \otimes SU(3) \otimes SU(3):

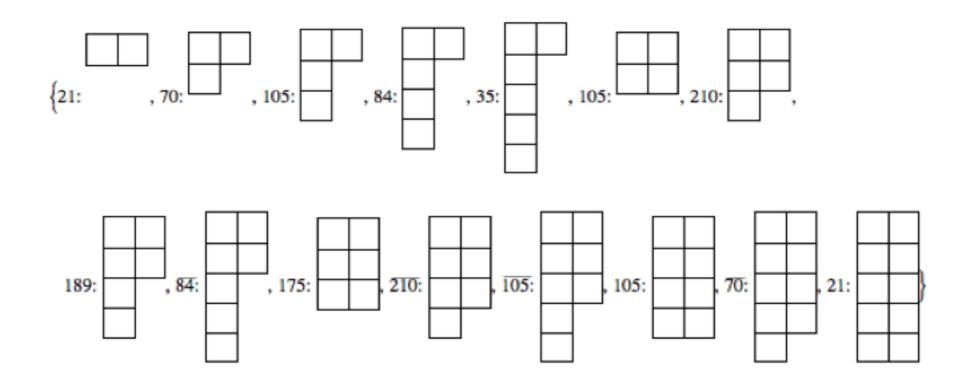
In[25]:= DecomposeIrrep[Irrep[E6][27], ProductAlgebra[SU3, SU3, SU3]] Out[25]= $(3, 1, 3) + (1, 3, \overline{3}) + (\overline{3}, \overline{3}, 1)$

Example: Decomposition 248⁶ in E₈

```
In[102]:= Timing[Irrep[E8][248]^6]
                                                      \{90.112, 79(1) + 421(248) + 575(3875) + 675(27000) + 924(30380) + 775(147250) + 1386(779247) + 924(30380) + 775(147250) + 1386(779247) + 924(30380) + 775(147250) + 1386(779247) + 924(30380) + 775(147250) + 1386(779247) + 924(30380) + 775(147250) + 1386(779247) + 924(30380) + 775(147250) + 1386(779247) + 924(30380) + 775(147250) + 1386(779247) + 924(30380) + 775(147250) + 1386(779247) + 924(30380) + 924(30380) + 775(147250) + 1386(779247) + 924(30380) + 775(147250) + 1386(779247) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) + 924(30380) 
                                                                415(1763125) + 1011(2450240) + 1240(4096000) + 405(4881384) + 765(6696000) +
                                                               1144(26411008) + 895(70680000) + 1125(76271625) + 115(79143000) + 554(146325270) + 1125(76271625) + 115(79143000) + 554(146325270) + 1125(76271625) + 115(79143000) + 554(146325270) + 1125(76271625) + 115(79143000) + 554(146325270) + 1125(76271625) + 115(79143000) + 554(146325270) + 1125(76271625) + 115(79143000) + 554(146325270) + 1125(76271625) + 115(79143000) + 554(146325270) + 1125(76271625) + 115(79143000) + 554(146325270) + 1125(76271625) + 115(79143000) + 554(146325270) + 1125(76271625) + 115(79143000) + 554(146325270) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 115(79143000) + 554(146325270) + 1125(76271625) + 115(79143000) + 554(146325270) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(76271625) + 1125(767766) + 1125(767766) + 1125(767766) + 1125(767766) + 1125(767766) + 1125(767766) + 1125(767766) + 1125(767766) + 1125(767766) + 1125(767766) + 1125(767666) + 1125(76766) + 1125(76766) + 1125(76766) + 1125(7666) + 1
                                                                410(203205000) + 510(281545875) + 456(301694976) + 855(344452500) + 315(820260000) +
                                                                605(1094951000) + 405(2172667860) + 470(2275896000) + 15(2642777280) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(2903770000) + 15(290000) + 15(290000) + 15(290000) + 15(290000) + 15(2900000) + 15(29000000) + 15(29000000000000000) + 15(29000000000000000000000000000
                                                                80(8634368000') + 80(12692520960) + 115(17535336000) + 216(20288765952) +
Out[102]:=
                                                               165(21039669000) + 180(23592339045) + 144(45329752170) + 45(63513702720) +
                                                                45(66393847000) + 69176971200 + 90(83080364250) + 90(85424220000) + 40(110977024000) +
                                                                40(124436480000) + 15(152883490500) + 15(220778105625) + 80(234550030000) +
                                                                267413986840 + 30(355647996000) + 5(417933862500) + 5(492957660000)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          +
                                                                45(508731738750) + 45(574197082368) + 5(627099023250) + 9(841900509450) +
                                                                5(919045960000) + 10(1041872676000) + 9(1283242632840) + 10(1349926375875) +
                                                                16(1813461073920)}
```

Takes 90 sec on 4 year old iMac.

Check: A179663 in "Online Encyclopedia of Integral Sequences," Power of the adjoint representation of E8.


1, 1, 5, 16, 79, **421**, 2674, 19244, 156612, 1423028, 14320350, ...

LieART Applications

Example:Three family SU(N) models with no chiral exotic fermions, made without using any totally antisymmetric irreps (i.e., without using any single column tableaux)

Robert Feger and TWK 1505.03403

R. Fonseca has obtained some related results with Susyno see: 1504.03695

All two column tableaux for SU(6).

SU(6) example with three families and no light exotics

 $6(\overline{21}) + 9(70) + 6(84) + 9(\overline{105}) + 3(\overline{105}') + 3(210)$

 $= 3(10+\overline{5})+a(5+\overline{5})+b(15+\overline{15})+c(40+\overline{40})+...$

All irreps are two column tableaux

 $2(\overline{28}) + 112 + 4(140) + 5(\overline{224}) + 490 + 2(\overline{490}') + 2(588);$ $\overline{28} + 112 + 5(140) + \overline{196} + 210 + 5(\overline{224}) + 490 + \overline{490}' + 588;$ $112 + 6(140) + 2(\overline{196}) + 2(210) + 5(\overline{224}) + 490;$ $7(\overline{28}) + 4(112) + 140 + 196 + 3(\overline{490}) + 2(490') + 588;$ $6(\overline{28}) + 4(112) + 2(140) + 210 + 3(\overline{490}) + 3(490');$ $3(\overline{28}) + \overline{112} + 140 + 3(196) + 2(210) + 3(\overline{224}) + 3(\overline{490}) + 3(588);$ $2(\overline{28}) + \overline{112} + 2(140) + 2(196) + 3(210) + 3(\overline{224}) + 3(\overline{490}) + 490' + 2(588);$ $\overline{28} + \overline{112} + 3(140) + 196 + 4(210) + 3(\overline{224}) + 3(\overline{490}) + 2(490') + 588;$ $\overline{112} + 4(140) + 5(210) + 3(\overline{224}) + 3(\overline{490}) + 3(490').$

Three family solutions in SU(7) made from only two column tableaux.

28	112	140	196	210	224	490	490′	588
-2	1	4	0	0	-5	1	-2	2
-1	1	5	-1	1	-5	1	-1	1
0	1	6	-2	2	-5	1	0	0
-7	4	1	1	0	0	-3	2	1
-6	4	2	0	1	0	-3	3	0
-3	-1	1	3	2	-3	-3	0	3
-2	-1	2	2	3	-3	-3	1	2
-1	-1	3	1	4	-3	-3	2	1
0	-1	4	0	5	-3	-3	3	0

SU(7) examples in tabular form. (minus signs for barred irreps)

36	168	216	336	378	420	504	1008	1176	1344	1512	2352'
-2	1	2	-1	1	-1	-1	0	1	1	0	-1
1	-1	3	0	2	0	-4	0	-1	-1	2	0
0	-1	1	-1	1	-1	2	2	-1	2	-4	2
-2	1	3	0	-2	-3	-2	2	-2	1	1	0
2	-3	0	-1	2	-1	-3	2	0	3	-1	-1
3	-3	3	1	2	-2	2	$^{-1}$	0	0	-1	1

Two column three family SU(8) solutions

	45	240	315	540	630	720	1008	1050	1890	2520	2700	3402	3780	5292	6048	7560
	0	-1	-1	-1	0	1	-2	-3	1	1	0	0	0	-3	0	2
	-1	1	1	0	0	1	2	2	0	-1	1	0	-4	-1	1	2
	1	-1	0	1	1	1	-2	-2	-1	-1	2	3	-2	0	0	0
The reason the number of solutions is dropping with N is that the anomaly coefficients are																
growing and it is getting more difficult to find anomaly free sets of two column tableau to																

Two column three family SU(9) solutions

Another example:

Analysis of Inert Higgs models: Where do the doublets of SU(5) live?

T.C.Yuan and TWK, in progress

SU(5) irreps of dimension	less than 1000 that co	contain $SU(3) \times SU(2) \times U(1)$ doublets.
---------------------------	------------------------	--

SU(5) irrep	doublet	SU(5) irrep	doublet
5	$(1,2)_{-3}$	280	$(1,2)_{-3}$
40	$(1,2)_{9}$	450	$(1, 2)_9$
45	$(1,2)_{-3}$	450′	$(1,2)_{-3}$
70	$(1,2)_{-3}$	480	$(1,2)_{-3}$
175'	$(1, 2)_{15}$	560'	$(1,2)_{-21}$
210	$(1,2)_9$	700′	$(1, 2)_{15}$

Minimal Flavor Symmetry

Work in collaboration with

Carl Albright, NIU/Fermilab

and Robert Feger, Würzburg University

Is there a flavor symmetry (FLASY)?

Anarchy/Landscape

Discrete flavor symmetry

Continuous flavor symmetry

If anarchy or landscape, then masses and mixings are random numbers and we are done--values cannot be determined.

Flavor symmetries are more interesting and they are predictive.

Large spectrum of models has been studied:

Discrete flavor symmetry X Standard Model(SM)

Continuous flavor symmetry X SM

Or

Discrete flavor symmetry X Beyond the SM (BSM)

Continuous flavor symmetry X BSM

Better results with increasing discrete group size--can we reduce it/minimize it?

Discrete FLASY X SM has been the most studied.

For reviews see:

Altarelli and Feruglio, Rev Mod Phys (2010)

Ishimori, Kobayashi, Ohki, Shimizu, Okada and Tanimoto, Prog Theo Phys Sup (2010)

King and Luhn Published in Rept. Prog. Phys. (2013)

Some problems

Discrete flavor symmetry problems

Origin of flavor symmetry?

Global discrete FLASY--violated by quantum gravity and fails to give desired results at EW scale

Gauge discrete FLASY--must break continuous symmetry to discrete--check for discrete anomaly cancelation

> Luhn and Ramond, JHEP (2008); Luhn, PLB(2009).

Recent progress on breaking continuous to discrete

SU(3) example see: Ludl, J Phys A (2010) Grimus and Ludl, J Phys A (2011) Merle and Zwicky, JHEP (2012) Discrete flavor symmetry problems Most severe: ``FLASY irrep problem'' How do SM fermions irreps get into Discrete FLASY irreps?

Requires initial gauge group G where contains FLASY X SM and irreps

$$R \longrightarrow (R_{Flav}, R_{SM})$$

not $R \longrightarrow (R_{Flav}, 1) + (1, R_{SM})$

Domain walls at EW scale from discrete FLASY breaking and other cosmic defects

Is there a flavor symmetry?

Masses and mixings from textures with no or small discrete flavor group?

SU(7) and SU(8) models (S. Barr, PRD 2008) High scale M, SU(5) scale v_5 , EW scale v_{SM}

Small parameter $\epsilon = v_5/M$

Is there a flavor symmetry?

top mass m_t ~ v_{SM}

b-quark mass m_b ~ € V_{SM}

etc.

Equalities with O(1) Yukawa couplings. All done with choice of SU(N) irreps—no discrete symmetry—but no mixings yet.

Is there a flavor symmetry?

Extend Barr's results to include mixings:

Difficult without discrete group

Keep SU(N) and include small discrete group

Example in SU(9) X Z₂ X Z₂ X Z₂ X Z₃ Model found by hand (computer assisted). J. Dent, R. Feger, TWK, and S. Nandi, PLB (2011)

Needs full model scan (LieART).

Reducing the flavor symmetry

Strategy:

Increase gauge group G size, Decrease discrete group D size:

Typically G = SM and D = S_3 , A₄, S₄, T', Delta(27), PSL(2, 7) ... X Z_n's.

Similar to SU(9) example, try G = SU(N) and D = $Z_{n1} X Z_{n2} X ...$ Reducing the flavor symmetry

Is there an N where D = 1?

Scan hundreds of models to find: Yes! Examples for N=12

C. Albright, R. Feger and TWK, PRD (2012)

Example of a model with no discrete flavor symmetry:

SU(12) model of masses and mixings

• Anomaly free fermion set: (totally antisym irreps, so no exotics)

$$6(495) + 4(\overline{792}) + 4(\overline{220}) + (\overline{66}) + 4(\overline{12})$$

$$\rightarrow 3(10 + \overline{5} + 1) + Real$$

 $\mathsf{Real} = (\mathbf{5} + \overline{\mathbf{5}})s + (\mathbf{10} + \overline{\mathbf{10}})s + \mathsf{singlets}$

• The SU(5) singlet VEV $v_5 = \langle 1 \rangle_5$ and SU(12) unification scale M appear in the ratio:

$$\epsilon = rac{V_5}{M} \sim rac{1}{50}.$$

SU(12) model of masses and mixings

 Yukawa interactions of dimension 4 + n give rise to mass matrix elements of the form:

$$h_{ij}\epsilon^n v_{SM} u_{iL}^T u_{jL}^c$$
,

- *h_{ij}* are Yukawa couplings
- $v_{SM} = 174$ GeV is the EW scale.

SU(12) model of masses and mixings

• Fermion Assignments: Assign family components to *SU*(12) irreps.

First Family	$(10)495_1 ightarrow u_{ extsf{L}}$, $u_{ extsf{L}}^{ extsf{c}}$, $d_{ extsf{L}}$, $e_{ extsf{L}}^{ extsf{c}}$
	$(\mathbf{\overline{5}})\mathbf{\overline{66}}_1 ightarrow d^c_L$, e_L , $ u_{1,L}$
	$(1)\overline{792}_1 \rightarrow N^{c}_{1,L}$
Second Family	$({f 10}){f \overline{792}}_2 o c_L$, c_L^c , s_L , μ_L^c
	$(\mathbf{\overline{5}})\mathbf{\overline{792}}_2 \ o s^c_L$, μ_L , $ u_{2,L}$
	$(1)\overline{220}_2 \rightarrow N_{2,L}^c$
Third Family	$(10)\overline{220}_{3} ightarrow t_{L}$, t_{L}^{c} , b_{L} , $ au_{L}^{c}$
	$(\mathbf{\overline{5}})\mathbf{\overline{792}}_{3} \ o b^{c}_{L}$, $ au_{L}$, $ u_{3,L}$
	$(1)\overline{12}_{3} \rightarrow N^{c}_{3,L}$

SU(12) model of masses and mixings

• Higgs bosons:

 $(\mathbf{5})\mathbf{924}_{\mathsf{H}}, (\mathbf{\overline{5}})\mathbf{924}_{\mathsf{H}}$

 $(1)\mathbf{66}_{\mathsf{H}}\text{, }(1)\overline{\mathbf{66}}_{\mathsf{H}}$

 $(1)220_{\text{H}}\text{, }(1)\overline{220}_{\text{H}}$

 $(\textbf{24})\textbf{143}_{\text{H}}$

Massive fermion:

 $220 \times \overline{220}$

792×792

Typical Model: raw output 10/13/2014

Model 1: SU(12), 7 H	liggs, 10 massive fermions,				
Anom. Free Set:	$(66) + (495) + 2(\overline{220}) + 2(\overline{12})$				
SU(5) Level:	$21(\overline{10}) + 24(10) + 45(\overline{5}) + 42(5) + 140(1)$				
Fermions:	$(10)495_1, (10)\overline{220}_2, (10)66_3, (5)\overline{12}_1, (5)\overline{220}_2, (5)\overline{12}_3, (1)1_1, (1)1_2, (1)1_3$				
Higgs:	$(5)\overline{495}, (5)495, (1)66, (1)\overline{66}, (1)792, (1)\overline{792}, (24)143$				
Massive Fermions:	12, 12, 66, 66, 220, 220, 495, 495, 792, 792				
Mass Matrices:	$\begin{split} M_{U} &= \begin{pmatrix} h_{11}^{u} \left(2\zeta^{\bullet} \epsilon^{2} + (\zeta^{\bullet})^{2} \right) & h_{12}^{u} \left(\epsilon^{3} + 2(\zeta^{\bullet})^{2} \epsilon - \frac{2\kappa\zeta^{\bullet} \epsilon}{3} + \zeta^{\bullet} \epsilon \right) & h_{13}^{u} \left(\epsilon^{2} + \zeta^{\bullet} \right) \\ h_{12}^{u} \left(\epsilon^{3} + 2(\zeta^{\bullet})^{2} \epsilon + \frac{2\kappa\zeta^{\bullet} \epsilon}{3} + \zeta^{\bullet} \epsilon \right) & h_{22}^{u} \left(4\zeta^{\bullet} \epsilon^{2} + \epsilon^{2} \right) & h_{23}^{u} \left(\frac{2\kappa\epsilon}{3} + 2\zeta^{\bullet} \epsilon + \epsilon \right) \\ h_{13}^{u} \left(\epsilon^{2} + \zeta^{\bullet} \right) & h_{12}^{u} \left(\epsilon^{3} + \zeta\epsilon + \zeta\zeta^{\bullet} \epsilon \right) & h_{33}^{u} \left(\frac{2\kappa\epsilon}{3} + 2\zeta^{\bullet} \epsilon + \epsilon \right) \\ h_{13}^{u} \left(\epsilon^{2} + \zeta^{\bullet} \right) & h_{12}^{u} \left(\epsilon^{3} + \zeta\epsilon + \zeta\zeta^{\bullet} \epsilon \right) & h_{33}^{u} \left(\frac{2\kappa\epsilon}{3} + 2\zeta\epsilon + \epsilon \right) \\ h_{21}^{d} & h_{22}^{d} \left(\epsilon^{3} + 2\zeta\epsilon + \zeta\right) & h_{23}^{d} \left(\frac{2\kappa\epsilon}{3} + 2\zeta\epsilon + \epsilon \right) \\ h_{21}^{d} & h_{22}^{d} \left(\epsilon^{3} + 2\zeta\epsilon + \zeta \right) & h_{23}^{d} \left(\frac{2\kappa\epsilon}{3} + 2\zeta\epsilon + \epsilon \right) \\ h_{31}^{d} \left(\frac{2\kappa\epsilon}{3} + 2\zeta\epsilon + \epsilon \right) & h_{32}^{d} \left(\epsilon^{3} + 2\zeta^{2} \epsilon + \frac{2\kappa\zeta\epsilon}{3} + \zeta \right) & h_{33}^{d} \left(\frac{2\kappa\epsilon}{3} + 2\zeta\epsilon + \epsilon \right) \\ h_{21}^{h} \left(\frac{2\kappa\epsilon}{3} + 2\zeta\epsilon + \epsilon \right) & h_{12}^{h} & h_{13}^{h} \left(\kappa\epsilon + 2\zeta\epsilon + \epsilon \right) \\ h_{31}^{h} \left(\frac{2\kappa\epsilon}{3} + 2\zeta\epsilon + \epsilon \right) & h_{32}^{h} \left(\epsilon^{3} + 2\zeta^{2} \epsilon + \kappa\zeta\epsilon + \zeta\epsilon + \epsilon \right) \\ h_{31}^{h} \left(\frac{2\kappa\epsilon}{3} + 2\zeta\epsilon + \epsilon \right) & h_{32}^{h} \left(\epsilon^{3} + 2\zeta^{2} \epsilon + \kappa\zeta\epsilon + \zeta\epsilon + \epsilon \right) \\ h_{31}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) & h_{32}^{h} \left(\epsilon^{3} + 2\zeta^{2} \epsilon + \kappa\zeta\epsilon + \epsilon + \epsilon \right) \\ h_{31}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) & h_{32}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) & h_{33}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) \\ h_{31}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) & h_{32}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) & h_{33}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) \\ h_{31}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) & h_{32}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) & h_{33}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) \\ h_{31}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) & h_{32}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) & h_{33}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) \\ h_{31}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) & h_{32}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) & h_{33}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) \\ h_{31}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) & h_{32}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) \\ h_{31}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) & h_{32}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) \\ h_{31}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) & h_{32}^{h} \left(-3\kappa\epsilon + 4\zeta^{\star} \epsilon + 2\epsilon \right) \\$				
Quark Pheno fit:	Up-type massesDown-type massesCharged Lepton Masses $m_{\mu} = 0.4877 \text{ MeV}$ $m_{d} = 0.5093 \text{ MeV}$ $m_{e} = 0.206 \text{ MeV}$				
€=0.0139093	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
κ=1.48907	$m_t = 94.7 \text{ GeV}$ $m_b = 0.61 \text{ GeV}$ $m_\tau = 0.7734 \text{ GeV}$				
$\zeta = 0.01391 e^{167.8^{\circ}i}$	1391e ^{167,8°} i				
$v_u = 173.951 \text{ GeV}$					
$v_d = 4.10861 \text{ GeV}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\chi_q^2 = 1.32 \times 10^{-7}$	$\theta_{23} = 2.38^{\circ}$ $\delta = 68.76^{\circ}$ $0.2255e^{-180.^{\circ}_{1}}$ $0.9734e^{-0.001803^{\circ}_{1}}$ 0.041527 $\theta_{12} = 0.2007^{\circ}$ $0.000722 = -21.34^{\circ}_{1}$ $0.04075 = -179^{\circ}_{1}$ 0.00012				
	$\theta_{13} = 0.2007^{\circ}$ (0.008733e ^{-21.34°1} 0.04075e ^{-179.°1} 0.99913)				

measured:	CKM Angles CKM Phase $\theta_{12} = 13.04^{\circ}$ $\theta_{23} = 2.38^{\circ}$ $\theta_{13} = 0.201^{\circ}$ $\delta = 68.75^{\circ}$	(0.97421		
Neutrino Pheno: fitted:	-		.72 meV	
$\Lambda_{\rm R} = 5.2 \times 10^{14} {\rm GeV},$ $\chi^2_{\nu} = 1.3 \times 10^{-6}$	Mass Differences Mixit $\Delta_{21} = 7.5 \times 10^{-5} \text{eV}^2$ $\sin^2(\Delta_{31} = -2.4 \times 10^{-3} \text{eV}^2)$ $\Delta_{31} = -2.4 \times 10^{-3} \text{eV}^2$ $\sin^2(\Delta_{32} = -2.5 \times 10^{-3} \text{eV}^2)$	$\delta^{2}(\theta_{23}) = 0.4119 \delta = 145.1^{\circ}$	$\begin{array}{c c} \textbf{MNS Matrix} \\ & \\ & \\ 0.8243 & 0.5473 \\ 0.4978 e^{-18.12^\circ i} & 0.5907 e^{166.6^\circ i} \\ 0.2697 e^{171.6^\circ i} & 0.5929 e^{-17.11^\circ i} \end{array}$	$\begin{array}{c} 0.1449e^{-145.1^\circ i} \\ 0.635 \\ 0.7588 \end{array} \right)$
Neutrino Pheno measured:	$\begin{tabular}{ c c c c c } \hline Mass Differences & Mixis \\ \hline \Delta_{21} = 7.6 \times 10^{-5} eV^2 & \sin^2(10^{-3} eV^2) \\ \hline \Delta_{31} = 2.4 \times 10^{-3} eV^2 & \sin^2(10^{-3} eV^2) \\ \hline \Delta_{32} = 2.4 \times 10^{-3} eV^2 & \sin^2(10^{-3} eV^2) \\ \hline \end{tabular}$	$\delta = 0.306$ $\delta = 0.^{\circ}$	NS Matrix 0.8243 0.5473 0.1449 0.4995 0.5825 0.6412 0.2666 -0.6009 0.7535	

Model:	SU(12), 7 Higgs, 10 massive fermions, 55 mass terms					
	Anom. Free Set: $(66) + (495) + 2(\overline{220}) + 2(\overline{12})$					
SU(5) L						
Fermion						
Higgs:	(5)495, (5)495, (1)66, (1)66, (1)792, (1)792, (24)143					
M. Fern	nions: 12, 12, 66, 66, 220, 220, 495, 495, 792, 792	12, 12, 66, 66, 220, 220, 495, 495, 792, 792				
Leading UpType Diagrams:						
Dim 4: U33: (10)663.(5)495.(10)663						
Dim 5: U13: $(10)495_1.(1)\overline{66}.(\overline{10})\overline{66}\times(10)66.(5)\overline{495}.(10)66_3$						
	U31: (10)66 ₃ .(5)495.(10)66×(10)66.(1)66.(10)495 ₁					
	U23: (10) 2202 .(1) 792.(10) 66×(10) 66.(5) 495.(10) 663					
	U32: (10)66 ₃ .(5)495.(10)66×(10)66.(1)792.(10)220 ₂					
Dim 6:	U11: (10)4951.(1)66.(10)66.(5)495.(10)66×(10)66.(1)66.(1)66.(10)4951					
	U12: $(10)495_1.(1)\overline{66}.(\overline{10})\overline{66}\times(10)66.(5)\overline{495}.(10)66\times(\overline{10})\overline{66}.(1)792.(10)\overline{220}_2$					
	$\textbf{U21:}\ (10)\overline{\textbf{220}}_2.(1)\textbf{792}.(\overline{\textbf{10}})\overline{\textbf{66}} \times (10)\textbf{66}.(5)\overline{\textbf{495}}.(10)\textbf{66} \times (\overline{\textbf{10}})\overline{\textbf{66}}.(1)\overline{\textbf{66}}.(10)\textbf{495}_1$					
	$U22: (10)\overline{220}_2.(1)792.(\overline{10})\overline{66} \times (10)66.(5)\overline{495}.(10)66 \times (\overline{10})\overline{66}.(1)792.(10)\overline{220}_2$					
Subleading UpType Diagrams:						
Dim 5:	U33: (10)663.(5)495.(10)66×(10)66.(24)143.(10)663					
	U33: (10)663.(24)143.(10)66×(10)66.(5)495.(10)663					
Dim 6:	U13: $(10)495_1.(1)\overline{66}.(\overline{10})\overline{66}\times(10)66.(5)\overline{495}.(10)66\times(\overline{10})\overline{66}.(24)143.(10)66_3$					
	$\textbf{U13:}\ (10) 495_1.(1) \overline{\textbf{66}}.(\overline{\textbf{10}}) \overline{\textbf{66}} \times (10) \textbf{66}.(24) \textbf{143}.(\overline{\textbf{10}}) \overline{\textbf{66}} \times (10) \textbf{66}.(5) \overline{\textbf{495}}.(10) \textbf{66}_3$					
	$\textbf{U13:}\ (10)495_1.(1)792.(\overline{10})220\times(10)\overline{220}.(1)792.(\overline{10})\overline{66}\times(10)66.(5)\overline{495}.(10)66_3$					
	U31: $(10)66_3.(5)\overline{495}.(10)66\times(\overline{10})\overline{66}.(24)143.(10)66\times(\overline{10})\overline{66}.(1)\overline{66}.(10)495_1$					

.

•

•

.

Spontaneous symmetry breaking Take SUSY scale to be M_{SUSY} ~ 10¹⁰ GeV then M >> V₅ >> M_{SUSY} >> V_{EW}

SSB of SU(12) —> SU(5)

via superpotential.

SUSY remains unbroken if sum of the Dynkin weight of all the VEVs vanishes.

Spontaneous symmetry breaking

Route 1: Adjoints of SU(12) to break: SU(12) —> SU(5) X U(1)⁷ above the SUSY scale.

One more adjoint to break SU(5) X U(1)⁷ —> SU(3) X SU(2) X U(1)⁸ at v₅, then VEVs for SU(5) singlets with U(1) charges below SUSY scale to complete breaking to SU_C(3) X SU_L(2) X U_Y(1)

Route 1 can be automated.

Spontaneous symmetry breaking Route 2: VEVs for totally antisymmetric irreps of SU(12) to break directly to SU(5), then one adjoint to SM.

Example below

(VEVs can be in SU(7) sector of scalar partners of chiral fermions.)

Route 2 is more model dependent, so each model needs attention.

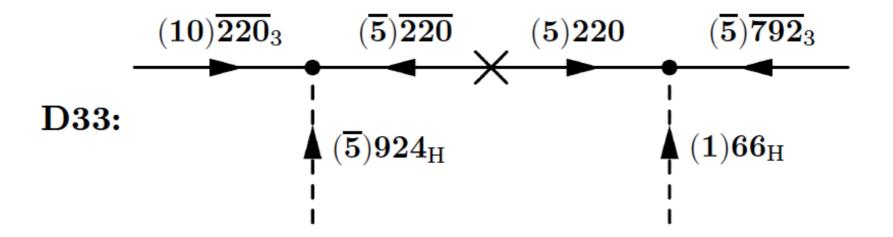
Simplest anomaly-free 3 family set in SU(12)

 $66 + 495 + 2\overline{(220)} + 2(\overline{12})$

with VEVs of equal strength v along Dynkin weights

 $\begin{bmatrix} -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 \end{bmatrix}$

which correspond to


$$v^{12,11}$$
 $v^{10,9,8,7}$ $v^{7,6}$

$$v_{12,11,10}$$
 v_9 $v_{8,7,6}$

breaks SU(12) directly to SU(5).

SU(12) model of masses and mixings

- Yukawa Interactions: Froggatt-Nielsen type diagrams. (SUSY suppresses loops)
- Typical diagram:

Up terms

• Leading Up Terms:

Up-Type Quark Mass-Term Diagrams

Down terms

• Leading Down Terms:

Down-Type Quark Mass-Term Diagrams

Mass matrices

$$M_{\rm U} = \begin{pmatrix} h_{11}^{\rm u} \epsilon^4 & h_{12}^{\rm u} \epsilon^3 & h_{13}^{\rm u} \epsilon^2 \\ h_{12}^{\rm u} \epsilon^3 & h_{22}^{\rm u} \epsilon^2 & h_{23}^{\rm u} \epsilon \\ h_{13}^{\rm u} \epsilon^2 & h_{23}^{\rm u} \epsilon & h_{33}^{\rm u} \end{pmatrix} v ,$$

$$M_{\rm D} = \begin{pmatrix} h_{11}^{\rm d} \epsilon^4 & h_{12}^{\rm d} \epsilon^3 & h_{13}^{\rm d} \epsilon^3 \\ h_{21}^{\rm d} \epsilon^3 & h_{22}^{\rm d} \epsilon^2 & h_{23}^{\rm d} \epsilon^2 \\ h_{31}^{\rm d} \epsilon^2 & h_{32}^{\rm d} \epsilon & h_{33}^{\rm d} \epsilon \end{pmatrix} v ,$$

$$M_{\rm L} = \begin{pmatrix} h_{11}^{\ell} \epsilon^4 & h_{12}^{\ell} \epsilon^3 & h_{13}^{\ell} \epsilon^2 \\ h_{21}^{\ell} \epsilon^3 & h_{22}^{\ell} \epsilon^2 & h_{23}^{\ell} \epsilon \\ h_{31}^{\ell} \epsilon^3 & h_{32}^{\ell} \epsilon^2 & h_{33}^{\ell} \epsilon \end{pmatrix} v = M_{\rm D}^{T}.$$

(Here $v = v_{SM}$ and below we use $\Lambda_R = M$.)

Dirac neutrino terms

• Leading Dirac Neutrino Terms:

Dirac-Neutrino Mass-Term Diagrams

Majorana neutrino terms

• Leading Majorana Neutrino Terms::

Majorana-Neutrino Mass-Term Diagrams

- **Dim 4:** MN11: $(1)\overline{792}_1.(1)\overline{66}_H.(1)\overline{792}_1$ MN33: $(1)\overline{12}_3.(1)\overline{66}_H.(1)\overline{12}_3$
- **Dim 5:** MN12: $(1)\overline{792}_{1}.(1)\overline{66}_{H}.(1)\overline{792}\times(1)\overline{792}.(1)\overline{66}_{H}.(1)\overline{220}_{2}$ MN21: $(1)\overline{220}_{2}.(1)\overline{66}_{H}.(1)\overline{792}\times(1)\overline{792}.(1)\overline{66}_{H}.(1)\overline{792}_{1}$
- **Dim 6:** MN13: $(1)\overline{792}_{1}$. $(1)\overline{66}_{H}$. $(1)\overline{792}\times(1)\overline{792}$. $(1)\overline{66}_{H}$. $(1)\overline{220}\times(1)220$. $(1)\overline{66}_{H}$. $(1)\overline{12}_{3}$ MN31: $(1)\overline{12}_{3}$. $(1)\overline{66}_{H}$. $(1)220\times(1)\overline{220}$. $(1)\overline{66}_{H}$. $(1)792\times(1)\overline{792}$. $(1)\overline{66}_{H}$. $(1)\overline{792}_{1}$ MN22: $(1)\overline{220}_{2}$. $(1)\overline{66}_{H}$. $(1)792\times(1)\overline{792}$. $(1)\overline{66}_{H}$. $(1)\overline{792}\times(1)\overline{792}$. $(1)\overline{66}_{H}$. $(1)\overline{220}_{2}$
- **Dim 7: MN23**: (1) $\overline{220}_2$.(1) $\overline{66}_H$.(1) $792 \times (1)\overline{792}$.(1) $\overline{66}_H$.(1) $\overline{792} \times (1)\overline{792}$.(1) $\overline{66}_H$.(1) $\overline{220} \times (1)220$.(1) $\overline{66}_H$.(1) $\overline{12}_3$. **MN32**: (1) $\overline{12}_3$.(1) $\overline{66}_H$.(1) $220 \times (1)\overline{220}$.(1) $\overline{66}_H$.(1) $\overline{792} \times (1)\overline{792}$.(1) $\overline{66}_H$.(1) $\overline{792} \times (1)\overline{792}$.(1) $\overline{792}$.(1)} $\overline{792}$.(1) $\overline{792}$.(1)} $\overline{792}$.(1) $\overline{792}$.(1)} $\overline{792}$.(1)}{\overline{792}}.(1) $\overline{792}$.(1)}{\overline{792}}.(1)}{\overline{792

Dirac and Majorana neutrino mass matrices

• Dirac and Majorana neutrino mass matrices

$$M_{\rm DN} = \begin{pmatrix} h_{11}^{\rm dn}\epsilon^3 & h_{12}^{\rm dn}\epsilon^2 & h_{13}^{\rm dn}\epsilon \\ h_{21}^{\rm dn}\epsilon^2 & h_{22}^{\rm dn}\epsilon & h_{23}^{\rm dn} \\ h_{31}^{\rm dn}\epsilon^2 & h_{32}^{\rm dn}\epsilon & h_{33}^{\rm dn} \end{pmatrix} v ,$$
$$M_{\rm MN} = \begin{pmatrix} h_{11}^{\rm mn} & h_{12}^{\rm mn}\epsilon & h_{13}^{\rm mn}\epsilon^2 \\ h_{12}^{\rm mn}\epsilon & h_{22}^{\rm mn}\epsilon^2 & h_{23}^{\rm mn}\epsilon^3 \\ h_{13}^{\rm mn}\epsilon^2 & h_{23}^{\rm mn}\epsilon^3 & h_{33}^{\rm mn} \end{pmatrix} \Lambda_{\rm R}$$

 $M_{\rm D}$ and $M_{\rm L}$ and $M_{\rm DN}$ are all doubly lopsided.

Light-neutrino mass matrix

• Light-neutrino mass matrix is from type I seesaw:

$$M_{\nu} = -M_{\rm DN} M_{\rm MN}^{-1} M_{\rm DN}^{\prime}.$$

 $M_{\nu} \approx rac{v^2}{\Lambda_{\rm R}} imes$

$\left(\epsilon^{2}\left(\frac{h_{12}^{\text{dn}^{2}}h_{11}^{\text{mn}}}{h_{12}^{\text{mn}^{2}}-h_{11}^{\text{mn}}h_{22}^{\text{mn}}}-\frac{h_{13}^{\text{dn}^{2}}}{h_{33}^{\text{mn}}}\right)\right)$	$\epsilon \left(\frac{h_{12}^{\mathrm{dn}} h_{22}^{\mathrm{dn}} h_{11}^{\mathrm{mn}}}{h_{12}^{\mathrm{mn}2} - h_{11}^{\mathrm{mn}} h_{22}^{\mathrm{mn}}} - \frac{h_{13}^{\mathrm{dn}} h_{23}^{\mathrm{dn}}}{h_{33}^{\mathrm{mn}}} \right)$	$\epsilon \left(\frac{h_{12}^{\mathrm{dn}} h_{32}^{\mathrm{dn}} h_{11}^{\mathrm{mn}}}{h_{12}^{\mathrm{mn}2} - h_{11}^{\mathrm{mn}} h_{22}^{\mathrm{mn}}} - \frac{h_{13}^{\mathrm{dn}} h_{33}^{\mathrm{dn}}}{h_{33}^{\mathrm{mn}}} \right) \right)$
$\epsilon \left(\frac{h_{12}^{\mathrm{dn}} h_{22}^{\mathrm{dn}} h_{11}^{\mathrm{mn}}}{h_{12}^{\mathrm{mn}2} - h_{11}^{\mathrm{mn}} h_{22}^{\mathrm{mn}}} - \frac{h_{13}^{\mathrm{dn}} h_{23}^{\mathrm{dn}}}{h_{33}^{\mathrm{mn}}} \right)$	$\frac{h_{22}^{\mathrm{dn}^2} h_{11}^{\mathrm{mn}}}{h_{12}^{\mathrm{mn}^2} - h_{11}^{\mathrm{mn}} h_{22}^{\mathrm{mn}}} - \frac{h_{23}^{\mathrm{dn}^2}}{h_{33}^{\mathrm{mn}}}$	$\frac{h_{22}^{\mathrm{dn}}h_{32}^{\mathrm{dn}}h_{11}^{\mathrm{mn}}}{h_{12}^{\mathrm{mn}2} - h_{11}^{\mathrm{mn}}h_{22}^{\mathrm{mn}}} - \frac{h_{23}^{\mathrm{dn}}h_{33}^{\mathrm{dn}}}{h_{33}^{\mathrm{mn}}}$
$\epsilon \left(\frac{h_{12}^{\mathrm{dn}} h_{32}^{\mathrm{dn}} h_{11}^{\mathrm{mn}}}{h_{12}^{\mathrm{mn}2} - h_{11}^{\mathrm{mn}} h_{22}^{\mathrm{mn}}} - \frac{h_{13}^{\mathrm{dn}} h_{33}^{\mathrm{dn}}}{h_{33}^{\mathrm{mn}}} \right)$	$\frac{h_{22}^{\mathrm{dn}}h_{32}^{\mathrm{dn}}h_{11}^{\mathrm{mn}}}{h_{12}^{\mathrm{mn}2} - h_{11}^{\mathrm{mn}}h_{22}^{\mathrm{mn}}} - \frac{h_{23}^{\mathrm{dn}}h_{33}^{\mathrm{dn}}}{h_{33}^{\mathrm{mn}}}$	$\frac{h_{32}^{\text{dn}^2} h_{11}^{\text{mn}}}{h_{12}^{\text{mn}^2} - h_{11}^{\text{mn}} h_{22}^{\text{mn}}} - \frac{h_{33}^{\text{dn}^2}}{h_{33}^{\text{mn}}} \right)$

SU(12) model summary

SU(12) model gives prospect of decent phenomenology:

-masses -mixing angles $\theta_{13} \neq 0$ naturally.

No domain wall problem -no discrete symmetry to break.

> No fine tuning except for usual hierarchy problem -i.e., why is v_{Ew} so small?

SU(N) models with smaller N?

SU(12) is big, maybe too big -approaching landscape.

But it seems worthwhile to explore this small piece of landscape.

SU(N) models with smaller N?

Chiral SU(N) models for N as large as 14 have been found via orbifolded AdS/CFT (H. P. Nilles et al.).

Is there a discrete symmetry free SU(N) model for N < 12 with good pheno?

Best from scan for N=8 is an SU(8) X Z₂ model (under investigation.)

Searching 9 < N < 11 now.

Summary

SU(N) models of masses and mixing with little (e.g., Z₂) or no discrete symmetry are possible.

> Better SU(12) models in hand -simpler irrep structure

(Feger, Albright, TWK, 2015, to appear)

Some problems that arise in discrete FLASY models can be avoided or solved:

-origin of discrete symmetries -domain walls -FLASY irrep problem

Stay tuned!