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Direct Detection:
Standard Approach
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Model WIMP-nuclear interactions as WIMP-quark/gluon interactions
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Interaction types include coupling to nuclear charge (spin-independent) or spin
(spin-dependent), giving two nuclear response types

The non-zero nuclear size and momentum dependence 1s encoded in form factors
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Interaction types include coupling to nuclear charge (spin-independent) or spin
(spin-dependent), giving two nuclear response types

The non-zero nuclear size and momentum dependence 1s encoded in form factors
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Target specific nuclear physics 1s also taken 1nto account

R. Schnee, arXiv:1101.5205
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The differential recoil rate 1s the primary quantity of interest
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momentum transfer
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B 12
OOWN,SI = O0SI—5
M

Heavy target enhancement Nucleon spin expectation values

Coherent scattering
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It has been shown that the standard approach neglects a large set of possible non-relativistic operators
beyond the SI/SD ones

There also exist four more nuclear responses that arise in the most general nucleus-WIMP elastic
scattering
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A.L. Fitzpatrick, W.C. Haxton, E. Katz, N. Lubbers, and Y. Xu, JCAP 1302 (2013) 004, arXiv:1203.3542
N. Anand, A.L. Fitzpatrick, and W.C. Haxton, Phys.Rev. C89, 065501 (2014)
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Gresham & Zurek (2014) showed that wildly incorrect interpretations are possible 1f only the
standard SI/SD responses are used
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Effective Field Theory
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Incorporating Galilean invariance, energy conservation, and Hermiticity, all non-
relativistic operators will be built out of four quantities
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A.L. Fitzpatrick, W.C. Haxton, E. Katz, N. Lubbers, and Y. Xu, JCAP 1302 (2013) 004, arXiv:1203.3542
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There are fifteen combinations of these operators
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There are fifteen combinations of these operators

Spin-independent

il
Ol ]-X1N 08 SX - U
0, (7)? O By
L . O10 imi .Sy
: ) iSN - (L X ?7J‘) iv .
Spin-dependent mn D11 -4 .G
— — myN X
@, Sy - S = & =
4 X 1 (912 X (SN X UJ‘)
S (L gt L
Os S (ay XU7) 0 WS- 7 (L - S)
OF (s SN (e = Sx) Ows i(Sy - 70 (GL - )
O- Sy - ot Or5 —(Sy - L) (S x o)

N. Anand, A.L. Fitzpatrick, and W.C. Haxton, Phys.Rev. C89, 065501 (2014)

Sunday, May 17, 2015



Sunday, May 17, 2015



Standard practice has been to start with effective interaction terms, and then
reduce 1n the non-relativistic limit

Sunday, May 17, 2015



Standard practice has been to start with effective interaction terms, and then
reduce 1n the non-relativistic limit

£

nt

(%) = c1 Wy ()W, ()W (X)W (X)

Sunday, May 17, 2015



Standard practice has been to start with effective interaction terms, and then
reduce 1n the non-relativistic limit

LF) = U, GV, EUy@Uy@) | | Low = caxy"y x Ny, y N

nt

Sunday, May 17, 2015



Standard practice has been to start with effective interaction terms, and then

reduce 1n the non-relativistic limit

£

nt

(%) = c1 Wy ()W, ()W (X)W (X)

for

Int

= cax vy’ x Ny y N

CIIXIN

Sunday, May 17, 2015




Standard practice has been to start with effective interaction terms, and then
reduce 1n the non-relativistic limit
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From the relativistic EFT there are 20 combinations of fermionic bilinears

From two scalar XX X”y O X 2%

=AM =D
X7 X X7 T X
and four vector terms

PEXX PRy x

20

After performing a non-relativistic reduction, these 20 operators can be written in terms of the 15 O;
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In general one can write down the non-relativistic Lagrangian

»CNR— Y S:CQOO‘

= nap’l, 1

General 1sospin couplings can be incorporated

15
»CNR: y: S:CZOJT

7=0,1 =1

The total interaction can be considered as a sum over single nucleon interactions

S Y05 Y Y zo
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The DM-nucleon interactions can then be written
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Given a non-relativistic reduction, one can 1dentify the dark matter operator coefficients
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2 {++lﬁ+l+l} 7 (i)

7=0,1

These coefficients apply to the dark matter in and out states
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The dark matter-nucleus amplitude can be written as
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which can further be reduced to the standard nuclear electroweak responses
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Assuming P and CP are good symmetries of the nuclear ground state leaves one with 6 responses
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Assuming P and CP are good symmetries of the nuclear ground state leaves one with 6 responses
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The dark matter-nucleus amplitude can be written as
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To calculate cross-sections, one needs to square the amplitude, average over initial spins and sum
over final states.
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Within this framework

e Include more dark matter particle types
® Include more mediator particle types

® Explore possible operator degeneracies
® Determine the dominant operators

® Determine distinguishability at detectors

e C(Connect to models for astrophysical and collider searches

We have examined simplified models for tree-level, renormalizable interactions
single dark matter particle, single mediator

P. Agrawal, Z. Chacko, C. Kilic, and R.K. Mishra, arXiv:1003.1912

N. Anand, A.L. Fitzpatrick, and W.C. Haxton, Phys.Rev. C89, 065501 (2014)
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For our cases of interest we integrate out the mediator, which amounts to
assuming the mediator mass is much larger than the recoill momentum of the
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e After the non-relativistic reduction, we matched onto the O; operators

® Two additional non-relativistic operators must be included in the vector dark matter case

1

my Sij = % (eTej + ej-e,,;)

J. Fan, M. Reece, and L-T. Wang, JCAP 1011 (2010) 042, arXiv:1008.1591

® Some EFT O; terms do not appear

e We calculated the leading order operator for each distinct interaction in a minimal fashion: only a
single set of two couplings 1s non-zero

® Non-standard interactions were found to dominate for certain interaction types
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e Aside from scalar WIMPs each particular spin produces some non-relativistic operators that are
unique to that spin

e 1wo non-relativistic operators, O1 and O, are ubiquitous and arise for all WIMP spins we have
explored

® In five scenarios relativistic operators generate unique non-relativistic operators at leading order.

The operators can produce radically different energy dependence for scattering off different
nuclear targets. Thus, a complementary use of different target materials will be helpful in order to
reliably distinguish between different particle physics model possibilities for WIMP dark matter.
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50 GeV spin-1/2 WIMP off of 7*Ge (dashed) and 'Xe (solid) for a 1TeV mediator
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50 GeV spin-1 WIMP off of 73Ge (dashed) and '3'Xe (solid)
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As direct detection experiments becoming increasingly more sensitive, a
discovery requires accurate modeling to discern paticle properties

Nuclear-WIMP interactions which include responses beyond the standard ones
could avoid misinterpretations of the particle nature of dark matter

We have examined a general array of single WIMP, single mediators interactions
and found non-standard responses arise at leading order for some interaction

types

The use of a variety of detector materials can be significant

Precise model constraints need to be carried out

Complementarity from colliders and astrophysical probes 1s also vital

An ongoing program with much to do!
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Direct Detection of Dark Matter

From Microphysics to Observational Signatures

James Dent

JBD, L.M. Krauss, J.L. Newstead, and S. Sabharwal, arXiv: 1505.03117

UNIV l';IR SITY
.. ILO,UISIANA | Texas A&M May 18,2015 |
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One can also decompose the velocity difference into a center-of-mass piece and intrinsic parts

vt — {0, — oy(i),i = 1,..., A}
= 0F —{on(i),i=1,..,A—1}

where the nuclear center-of-mass (Target) is described by

U = U = 57 2 [Unn(8) + Unour (i)
1=1
The nucleon velocities are decomposed into internal and ‘in’ and ‘out’ segments

Operators are decomposed as in

—

A
U Sy = Y 5 Uyin + Uy out — UNin(2) — Un,out(2)] - Sn(2)
1=1

—

= ik i S (i) — {fl g (Pwinli) + O] SN(i)}int
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The nucleon positions and momenta are replace by operators which account for the non-zero
nuclear size

Onin — Pran/M — iN /M

N

~ . —
UN . out HpN,owt/]\4 ZV/M

el

The DM-nucleon interactions can then be written

S AGS+ T+ - P+ 10y -Q+ 1y - Rt (i)

7=0,1
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Effective Action

Non-rel Iimit

Operator Matching
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5 Xv"xNy,N 1,1y O, E/E
sy Nig. 42 g’ i oo 4 il i U3 2m§iM01—22—ﬁog
6 XY X Niow,~N S L L +2(@ x S, +ivt) - (W x Sy) o (ﬁo4—o6) E/E
my[My m%\l
7 Xy*xNy,y>N —2Sy - Ut + %iSX - (Sy X q) —20; + 2”;—1109 O/E
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MM m
S wv Qv o N q“ q q q I g’ my y
10 Xio" Ay Nioyy 2N 405 % Sy) - (5 x Sw) 4(%04 — @06) E/E
= Vv Qv \/ 5 : q I < m
11 Xio" -y Ny*y>N 41(qu x S,) - Sy 47 Oy O/E
e v gy - . a =2 - > > > mn a2 ) m2
12 leO"“ ’Z_MXNZO'MO[’Z—M)/SN —[ mij —4UJ- (qu X SX)]% SN —ﬁ’z—%/lolo —4’3—%/1012 —4%015 O/0
13 5y ySx Ny, N 251 5, +2i8, - (Sy x L) 205 + 20, O/E
14 Xy“yS)(Z\_/iaWZ—MN 4iS, (ﬁ X Sy) —47 O, O/E
15 iy Y x Ny*y>N —4S5, - Sy —40y E/E
16 iXV“)/SXNi%a:ﬁ—MySN 4ivt fx o S 45201y E/O
17 iXia“”nf—;dySXNyﬂN 2i qu - S, 22—{;011 0/0
. = . @ 7 72 . > =2 m2
18 i Xio" ey x Nioye =N o Syli = — 40t - (L x Sw)] O+ 42501 O/0
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N. Anand, A.L. Fitzpatrick, and W.C.

Haxton, Phys.Rev. C89, 065501 (2014)
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Various profiles and their uncertainties
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Various profiles and their uncertainties
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J.L. Newstead, T.D. Jacques, L.M. Krauss, JBD, and F. Ferrer, Phys.Rev.D 88 (2013) 7, 076011,arXiv:1306.3244
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Various profiles and their uncertainties

MB Hernquist Via Lactea
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Vector dark matter
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Quark bilinears: hadronic matrix elements

(No| mqqq |Ni)y — fp, NN

&

gv°q IN;)) —» AqNNW5N

&

qq |N;))  — ./\/'qN]\_ffy“N

5

(
(
(No| qv"4°q | N;j) — AYNA#A N
(

No|qo*q |N;) — 55]\70“”]\7
for the heavy quarks

) y 9
(N|myqq |N) = EmNFT = =N (1 > fzqu)

q=u,d,s

Summing over all the quarks one finds

hy = hq—qu+27fTG > hq

q=u,d,s q=c,b,t Mg
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The psuedo-scalar bilinear

q
M= Y MAGY - AGY Y 2

q=u,d,s q=c,b,t "' "4
The vector bilinear essentially gives the number operator:

2hY +hd N =1p
\h"§+2h§l N =u

The psuedo-vector bilinear counts the contributions of spin to the nucleon (note that

sometimes this coupling has a G'r factored out to make it dimensionless)

pY = 3 njAl

q=u,d,s
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We use the values

no— 0014 fP =0.02
7.= 0.036  fF,=0.026
re= 0118  f7 =0.118

~
»
]

AP = —0.427 AP =(.842

AT = 0.842 AP = —0.427
A= —0.085 A?=—0.085

A" = —108.03 A@P = 110.55
Ad" = 108.60 AdP = —107.17
A" = —0.57 A§ = -3.37
AG" =35.7MeV  AGP = 395.2MeV

P. Agrawal, Z. Chacko, C. Kilic, and R. K. Mishra, arXiv:1003.1912 [hep-ph].
K. R. Dienes, J. Kumar, B. Thomas and D. Yaylali, Phys. Rev. D 90, no. 1, 015012 (2014)
larXiv:1312.7772 [hep-ph]].
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Assuming a universal coupling of the mediators to all quarks, the nucleon level
couplings can be written as

hiv — fzjyh1
hY =ANh,
hY =N"Nhg
Y =ANh,

where we have defined,

fr=1193 f2=1231
A" = —0.07 AP = —0.28
N"= 3 NP =3
A" = 0.33 AP =0.33
0" = 0.564 6P = 0.564
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Scalar DM \
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Spinor DM
['xqbq — ZS(ZZX — mxXX

1 1 Mg [ 2

~0.OMd — Zm2hH? ¢ 3 M2 4
TR 0u00"0 = 5mgg 3 9T
+iqDq — m,qq

—MOXX — XXV X — h1dqq — ihedqy’q,

Lqu — mex — mxXX

1 1
——G,,G" + —méGﬂG"
4 2
+iqPq — mqqq

—AsXV'X Gy — XYY XG,

—h3qv,qG" — huqy,y°qG*.

Sunday, May 17, 2015



Vector DM
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Scalar DM, charged mediator
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Spinor DM, charged mediator
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Vector DM, charged mediator

1 y Ax
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TABLE II. Non-zero ¢; coefficients for a spin—0 WIMP

Uncharged Mediator

Charged Mediator
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TABLE IIL ¢; coefficients for a spin-3 WIMP

Uncharged Mediator Charged Mediator
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TABLE IV. ¢; coefficients for a spin-1 WIMP

Uncharged Mediator

Charged Mediator
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