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Model WIMP-nuclear interactions as WIMP-quark/gluon interactions

Hadronic matrix elements encode nucleon interations

〈No| mq q̄q |Ni〉 −→ fN
T qN̄N

〈No| q̄γ5q |Ni〉 −→ ∆q̃N N̄γ5N

〈No| q̄γµq |Ni〉 −→ N N
q N̄γµN

〈No| q̄γµγ5q |Ni〉 −→ ∆N
q N̄γµγ5N

〈No| q̄σµνq |Ni〉 −→ δN
q N̄σµνN

while for the heavy quarks

〈N | mq q̄q |N〉 = 2
27mNF N

T G = 2
27mN



1 −
∑

q=u,d,s

fN
T q



 . (C2)

Summing over all the quarks one finds

hN
1 =

∑

q=u,d,s

hq
1
mN

mq
fN

T q + 2
27fN

T G

∑

q=c,b,t

hq
1
mN

mq
(C3)

The psuedo-scalar bilinear was recently revisited in [54]:

hN
2 =

∑

q=u,d,s

hq
2∆q̃N − ∆G̃N

∑

q=c,b,t

hq
2

mq
(C4)

The vector bilinear essentially gives the number operator:

hN
3 =






2hu
3 + hd

3 N = p

hu
3 + 2hd

3 N = u
(C5)

The psuedo-vector bilinear counts the contributions of spin to the nucleon (note that
sometimes this coupling has a GF factored out to make it dimensionless)

hN
4 =

∑

q=u,d,s

hq
4∆N

q (C6)

Throughout this paper the following values are used (it should be noted that there are
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Interaction types include coupling to nuclear charge (spin-independent) or spin 
(spin-dependent), giving two nuclear response types

The non-zero nuclear size and momentum dependence is encoded in form factors

Target specific nuclear physics is also taken into account
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Fig. 6. Assumed density of scattering centers for spin-independent interactions, as pro-
posed by Helm.71 Density is constant within the nuclear radius rn then decreases to
zero over a skin thickness s (the related 10%–90% thickness t is shown in this diagram).
The Fourier transform of this distribution yields the Woods-Saxon form factor used for
spin-independent scattering.

2.3. Nuclear Form Factors

Under the approximation of plane-wave (Born) scattering,

M(!q) = fnA

∫
d3xρ(!x)ei!q·!x. (26)

We may identify the momentum-dependent part of this interaction, the
form factor

F (!q) =

∫
d3xρ(!x)ei!q·!x, (27)

as the Fourier transform of the scattering site positions. For spin-
independent interactions, a good approximation41 is the Woods-Saxon form
factor

F (q) =
3 [sin(qrn)− qrn cos(qrn)]

(qrn)
3 e−(qs)2/2, (28)

which is the Fourier transform of a solid sphere of radius rn with a skin
thickness s, as shown in Figure 6. In practice, Lewin and Smith41 recom-
mend values of s = 0.9 fm and

r2n =
(
1.23A1/3 − 0.60 fm

)2
+

7

3
(0.52π fm)2 − 5s2. (29)
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Fig. 8. Spin-independent interaction rates (per detector exposure) as a function of
recoil energy for a WIMP on targets of 6 atomic masses A. From top to bottom on each
plot, materials are W (A = 183), Xe (dashed, A = 131, I is similar), Ge (A = 73),
Ar (A = 40), Si (A = 28), and Ne (A = 20, F or Na are similar). Left: Differential
rate for a 60–GeV/c2 WIMP. High-A materials have a higher rate at low energies, since
the rate ∝ µ2

AA2, but loss of coherence greatly decreases the rate in these materials
at high energies. As A increases towards Mχ, the mean energy and cutoff energy both
increase due to kinematics, while loss of coherence offsets the increase in the mean
energy. As A increases past Mχ, the energy spectrum becomes softer and the cutoff
energy decreases. Right: Integral rate above the energy threshold indicated for a 100–
GeV/c2 WIMP. Although energy thresholds vary from experiment to experiment, typical
energy thresholds for each material are indicated by + signs on each curve. With these
thresholds, the 100-GeV/c2 WIMP would produce the highest signal rate in Xe, with
rates in W and Ge about 40% lower. I follows about the same curve as Xe, typically with
a 3× higher threshold and half the rate. Rates in Si are ∼ 9× lower than in Xe, rates in
Ar are ∼ 14× lower, and rates in Ne (or Na or F with this threshold) are ∼ 100× lower.

loss of coherence. Since the loss of coherence makes these high-A targets
intrinsically insensitive to high-energy depositions, it is particularly criti-
cal that experiments with high-A materials achieve low energy thresholds.
Figure 8 shows the relative rates for the same WIMP in several different
targets.

2.4. Implications of a detection

Because the spin-independent, proton-spin-dependent, and neutron-spin-
dependent form factors are different for a given target, it is possible in
principle to distinguish the type of interaction by the energy spectrum on a
single target isotope. Differences are insignificant for low-mass WIMPs since
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Fig. 8. Spin-independent interaction rates (per detector exposure) as a function of
recoil energy for a WIMP on targets of 6 atomic masses A. From top to bottom on each
plot, materials are W (A = 183), Xe (dashed, A = 131, I is similar), Ge (A = 73),
Ar (A = 40), Si (A = 28), and Ne (A = 20, F or Na are similar). Left: Differential
rate for a 60–GeV/c2 WIMP. High-A materials have a higher rate at low energies, since
the rate ∝ µ2

AA2, but loss of coherence greatly decreases the rate in these materials
at high energies. As A increases towards Mχ, the mean energy and cutoff energy both
increase due to kinematics, while loss of coherence offsets the increase in the mean
energy. As A increases past Mχ, the energy spectrum becomes softer and the cutoff
energy decreases. Right: Integral rate above the energy threshold indicated for a 100–
GeV/c2 WIMP. Although energy thresholds vary from experiment to experiment, typical
energy thresholds for each material are indicated by + signs on each curve. With these
thresholds, the 100-GeV/c2 WIMP would produce the highest signal rate in Xe, with
rates in W and Ge about 40% lower. I follows about the same curve as Xe, typically with
a 3× higher threshold and half the rate. Rates in Si are ∼ 9× lower than in Xe, rates in
Ar are ∼ 14× lower, and rates in Ne (or Na or F with this threshold) are ∼ 100× lower.

loss of coherence. Since the loss of coherence makes these high-A targets
intrinsically insensitive to high-energy depositions, it is particularly criti-
cal that experiments with high-A materials achieve low energy thresholds.
Figure 8 shows the relative rates for the same WIMP in several different
targets.

2.4. Implications of a detection

Because the spin-independent, proton-spin-dependent, and neutron-spin-
dependent form factors are different for a given target, it is possible in
principle to distinguish the type of interaction by the energy spectrum on a
single target isotope. Differences are insignificant for low-mass WIMPs since

R. Schnee, arXiv:1101.5205
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with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is

dR

dER
¼ !"

m"mN

Z
jvj>vmin

jvjfðvÞ d#
dER

d3v; (1)

where!" is the local darkmatter density, andm",mN are the
WIMP and nucleus masses, respectively. The integral aver-
ages over the velocity distribution of WIMPs fðvÞ weighted
by the differential cross section d#

dER
. Kinematically the mini-

mum velocity, vmin , that can contribute to a recoil of energy
ER is [5]

vmin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ERmN

p
"
ERmN

$"N
þ %

#
; (2)

where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#

dER
¼ mN

2v2$2
"N

#0F
2ðERÞ: (3)

The WIMP-nucleon cross section can be written in terms

of contributions from neutron and proton scattering, #0 ¼
4$2

"N

& ½Zfp þ ðA& ZÞfn'2, where A and Z are the atomic

mass and number of the detector material, #"n ¼ 4$2
"n

& f2n

and #"p ¼ 4$2
"p

& f2p. Setting the proton and neutron masses
to be equal, an appropriate approximation at the level of
accuracy of relevance here, allows one to write #"n ¼
ðfnfpÞ

2#"p, such that the factor
fn
fp
neatly incorporates isospin

violating interactions. Equation (1) then becomes

dR

dER
¼ #"p

2m"$
2
"p

"
Zþ fn

fp
ðA& ZÞ

#
2
F2ðERÞGðvmin Þ; (4)

where we have defined

Gðvmin Þ ¼ !"

Z
jvj>vmin

fðvÞ
jvj d3v: (5)

Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters

1. Isospin and inelasticity

We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
mentioned earlier. When the isospin factor is not unity or
the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with

the same mass (solid line). A Maxwell-Boltzmann phase-space distribution and the Helm form factor have been assumed (see later
sections). Left: From top to bottom, fn=fp ¼ f1:5; 1; 0:5;&1g. Right: From top to bottom, % ¼ f0; 25; 50; 75; 100g keV.

NEWSTEAD et al. PHYSICAL REVIEW D 88, 076011 (2013)

076011-2

q̄q q̄γ5q q̄γµq q̄γµγ5q (45)

(46)

〈ER〉 =
1

2
Mχ〈v〉2 O(few × 10keV) (47)
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with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is
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d3v; (1)

where!" is the local darkmatter density, andm",mN are the
WIMP and nucleus masses, respectively. The integral aver-
ages over the velocity distribution of WIMPs fðvÞ weighted
by the differential cross section d#
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. Kinematically the mini-

mum velocity, vmin , that can contribute to a recoil of energy
ER is [5]
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where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#

dER
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2v2$2
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#0F
2ðERÞ: (3)

The WIMP-nucleon cross section can be written in terms

of contributions from neutron and proton scattering, #0 ¼
4$2

"N

& ½Zfp þ ðA& ZÞfn'2, where A and Z are the atomic

mass and number of the detector material, #"n ¼ 4$2
"n

& f2n

and #"p ¼ 4$2
"p

& f2p. Setting the proton and neutron masses
to be equal, an appropriate approximation at the level of
accuracy of relevance here, allows one to write #"n ¼
ðfnfpÞ

2#"p, such that the factor
fn
fp
neatly incorporates isospin

violating interactions. Equation (1) then becomes
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where we have defined
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fðvÞ
jvj d3v: (5)

Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters

1. Isospin and inelasticity

We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
mentioned earlier. When the isospin factor is not unity or
the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with

the same mass (solid line). A Maxwell-Boltzmann phase-space distribution and the Helm form factor have been assumed (see later
sections). Left: From top to bottom, fn=fp ¼ f1:5; 1; 0:5;&1g. Right: From top to bottom, % ¼ f0; 25; 50; 75; 100g keV.
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with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is
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where!" is the local darkmatter density, andm",mN are the
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ages over the velocity distribution of WIMPs fðvÞ weighted
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. Kinematically the mini-
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where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#
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¼ mN

2v2$2
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2ðERÞ: (3)

The WIMP-nucleon cross section can be written in terms
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& ½Zfp þ ðA& ZÞfn'2, where A and Z are the atomic

mass and number of the detector material, #"n ¼ 4$2
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& f2p. Setting the proton and neutron masses
to be equal, an appropriate approximation at the level of
accuracy of relevance here, allows one to write #"n ¼
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Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters

1. Isospin and inelasticity

We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
mentioned earlier. When the isospin factor is not unity or
the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with

the same mass (solid line). A Maxwell-Boltzmann phase-space distribution and the Helm form factor have been assumed (see later
sections). Left: From top to bottom, fn=fp ¼ f1:5; 1; 0:5;&1g. Right: From top to bottom, % ¼ f0; 25; 50; 75; 100g keV.
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which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is

dR
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jvj>vmin
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d3v; (1)

where!" is the local darkmatter density, andm",mN are the
WIMP and nucleus masses, respectively. The integral aver-
ages over the velocity distribution of WIMPs fðvÞ weighted
by the differential cross section d#
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. Kinematically the mini-

mum velocity, vmin , that can contribute to a recoil of energy
ER is [5]

vmin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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; (2)

where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#

dER
¼ mN

2v2$2
"N

#0F
2ðERÞ: (3)

The WIMP-nucleon cross section can be written in terms

of contributions from neutron and proton scattering, #0 ¼
4$2
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& ½Zfp þ ðA& ZÞfn'2, where A and Z are the atomic

mass and number of the detector material, #"n ¼ 4$2
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and #"p ¼ 4$2
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to be equal, an appropriate approximation at the level of
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2#"p, such that the factor
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where we have defined
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jvj d3v: (5)

Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters

1. Isospin and inelasticity

We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
mentioned earlier. When the isospin factor is not unity or
the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with

the same mass (solid line). A Maxwell-Boltzmann phase-space distribution and the Helm form factor have been assumed (see later
sections). Left: From top to bottom, fn=fp ¼ f1:5; 1; 0:5;&1g. Right: From top to bottom, % ¼ f0; 25; 50; 75; 100g keV.
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with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is

dR
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¼ !"
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jvj>vmin

jvjfðvÞ d#
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d3v; (1)

where!" is the local darkmatter density, andm",mN are the
WIMP and nucleus masses, respectively. The integral aver-
ages over the velocity distribution of WIMPs fðvÞ weighted
by the differential cross section d#
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. Kinematically the mini-

mum velocity, vmin , that can contribute to a recoil of energy
ER is [5]

vmin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ERmN
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; (2)

where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#
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¼ mN

2v2$2
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2ðERÞ: (3)

The WIMP-nucleon cross section can be written in terms

of contributions from neutron and proton scattering, #0 ¼
4$2
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& ½Zfp þ ðA& ZÞfn'2, where A and Z are the atomic

mass and number of the detector material, #"n ¼ 4$2
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to be equal, an appropriate approximation at the level of
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2#"p, such that the factor
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where we have defined
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Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters

1. Isospin and inelasticity

We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
mentioned earlier. When the isospin factor is not unity or
the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with

the same mass (solid line). A Maxwell-Boltzmann phase-space distribution and the Helm form factor have been assumed (see later
sections). Left: From top to bottom, fn=fp ¼ f1:5; 1; 0:5;&1g. Right: From top to bottom, % ¼ f0; 25; 50; 75; 100g keV.
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with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is
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WIMP and nucleus masses, respectively. The integral aver-
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where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#
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2v2$2
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The WIMP-nucleon cross section can be written in terms
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Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters

1. Isospin and inelasticity

We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
mentioned earlier. When the isospin factor is not unity or
the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with

the same mass (solid line). A Maxwell-Boltzmann phase-space distribution and the Helm form factor have been assumed (see later
sections). Left: From top to bottom, fn=fp ¼ f1:5; 1; 0:5;&1g. Right: From top to bottom, % ¼ f0; 25; 50; 75; 100g keV.
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with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.
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per nuclei per unit time is
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where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,
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Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.
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We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
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times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
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the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.
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The minimum velocity which can contribute to a recoil is

 counts/ton/day/keV

q̄q q̄γ5q q̄γµq q̄γµγ5q (45)

(46)

〈ER〉 =
1

2
Mχ〈v〉2 O(few × 10keV) (47)
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2. WIMP-nucleus elastic scattering: from model to signal

Understanding experiments designed for direct detection of dark matter
begins with the observables of potential signals. In this section we consider
the observables of any model that predicts standard WIMP-nucleus elastic
scattering (see Neil Weiner’s contribution to these proceedings8 for discus-
sion of more speculative models with non-standard scattering). Following
the reviews by Lewin and Smith,41 and Jungman, Kamionkowski and Gri-
est,5 this section derives how the observed WIMP interaction rate depends
on energy, target, time, and direction.

2.1. Spin-independent and spin-dependent cross sections

Using Fermi’s Golden Rule, we can divide the energy dependence of the dif-
ferential WIMP-nucleon cross section into a term σ0WN that is independent
of the momentum transfer and a term F 2(q) (known as the form factor)
containing the entire dependence on the momentum transfer q:

dσWN(q)

dq2
=

1

πv2
|M|2 =

σ0WNF 2(q)

4µ2
Av

2
. (1)

Here, v is the velocity of the WIMP in the lab frame, and the WIMP-
nucleus reduced mass µA ≡ MχMA/(Mχ + MA) in terms of the WIMP
mass Mχ and the mass MA of a target nucleus of atomic mass A. Since the
WIMPs are nonrelativistic, the zero-momentum cross section for a WIMP
of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross section
may be written in terms of a spin-independent (mostly scalar) and a spin-
dependent (mostly axial vector) term:

σ0WN =
4µ2

A

π
[Zfp + (A− Z)fn]

2 +
32G2

Fµ
2
A

π

J + 1

J
(ap〈Sp〉+ an〈Sn〉)2 .

(2)
The proof of this claim makes a good exercise for the reader; solution may be
found in Ref. 42. Here fp and fn (ap and an) are effective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass,Mχ, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus 〈Sp,n〉 = 〈N |Sp,n|N〉. For free nucleons, 〈Sp〉 = 〈Sn〉= 0.5. Ta-
ble 1 from Ref. 43 lists values of 〈Sp〉 and 〈Sn〉 for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.
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est,5 this section derives how the observed WIMP interaction rate depends
on energy, target, time, and direction.

2.1. Spin-independent and spin-dependent cross sections

Using Fermi’s Golden Rule, we can divide the energy dependence of the dif-
ferential WIMP-nucleon cross section into a term σ0WN that is independent
of the momentum transfer and a term F 2(q) (known as the form factor)
containing the entire dependence on the momentum transfer q:
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Here, v is the velocity of the WIMP in the lab frame, and the WIMP-
nucleus reduced mass µA ≡ MχMA/(Mχ + MA) in terms of the WIMP
mass Mχ and the mass MA of a target nucleus of atomic mass A. Since the
WIMPs are nonrelativistic, the zero-momentum cross section for a WIMP
of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross section
may be written in terms of a spin-independent (mostly scalar) and a spin-
dependent (mostly axial vector) term:
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The proof of this claim makes a good exercise for the reader; solution may be
found in Ref. 42. Here fp and fn (ap and an) are effective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass,Mχ, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus 〈Sp,n〉 = 〈N |Sp,n|N〉. For free nucleons, 〈Sp〉 = 〈Sn〉= 0.5. Ta-
ble 1 from Ref. 43 lists values of 〈Sp〉 and 〈Sn〉 for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.
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This WIMP-nucleon cross section σSI may be used to compare experimen-
tal results to theory and to each other. A given model predicts particular
combinations of σSI and Mχ; different experiments produce limits on σSI as
functions of Mχ by translating limits on the WIMP-nucleus cross-section
to limits on σSI using equation 4. The dependence on µ2
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2 in eqn. 4 indi-

cates the advantage of experiments using relatively heavy target materials
(but see the effects of the form factor in Sec. 2.3). For a 50GeV/c2 WIMP
incident on a target with A = 50, µ2
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2. WIMP-nucleus elastic scattering: from model to signal

Understanding experiments designed for direct detection of dark matter
begins with the observables of potential signals. In this section we consider
the observables of any model that predicts standard WIMP-nucleus elastic
scattering (see Neil Weiner’s contribution to these proceedings8 for discus-
sion of more speculative models with non-standard scattering). Following
the reviews by Lewin and Smith,41 and Jungman, Kamionkowski and Gri-
est,5 this section derives how the observed WIMP interaction rate depends
on energy, target, time, and direction.

2.1. Spin-independent and spin-dependent cross sections

Using Fermi’s Golden Rule, we can divide the energy dependence of the dif-
ferential WIMP-nucleon cross section into a term σ0WN that is independent
of the momentum transfer and a term F 2(q) (known as the form factor)
containing the entire dependence on the momentum transfer q:

dσWN(q)

dq2
=

1

πv2
|M|2 =

σ0WNF 2(q)

4µ2
Av

2
. (1)

Here, v is the velocity of the WIMP in the lab frame, and the WIMP-
nucleus reduced mass µA ≡ MχMA/(Mχ + MA) in terms of the WIMP
mass Mχ and the mass MA of a target nucleus of atomic mass A. Since the
WIMPs are nonrelativistic, the zero-momentum cross section for a WIMP
of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross section
may be written in terms of a spin-independent (mostly scalar) and a spin-
dependent (mostly axial vector) term:

σ0WN =
4µ2

A

π
[Zfp + (A− Z)fn]

2 +
32G2

Fµ
2
A

π

J + 1

J
(ap〈Sp〉+ an〈Sn〉)2 .

(2)
The proof of this claim makes a good exercise for the reader; solution may be
found in Ref. 42. Here fp and fn (ap and an) are effective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass,Mχ, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus 〈Sp,n〉 = 〈N |Sp,n|N〉. For free nucleons, 〈Sp〉 = 〈Sn〉= 0.5. Ta-
ble 1 from Ref. 43 lists values of 〈Sp〉 and 〈Sn〉 for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.
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Table 1. Values of the atomic number Z, the total nuclear spin J , and the expec-
tation values of the proton and neutron spins within the nucleus 〈Sp,n〉 for various
nuclei with odd numbers of protons or neutrons, leading to the relative sensitivities
to spin-dependent interactions shown, from Refs. 5,43 and the references contained
therein.

Odd 4〈Sp〉2(J + 1) 4〈Sn〉2(J + 1)

Nucleus Z Nuc. J 〈Sp〉 〈Sn〉 3J 3J

19F 9 p 1/2 0.477 -0.004 9.1×10−1 6.4×10−5

23Na 11 p 3/2 0.248 0.020 1.3×10−1 8.9×10−4

27Al 13 p 5/2 -0.343 0.030 2.2×10−1 1.7×10−3

29Si 14 n 1/2 -0.002 0.130 1.6×10−5 6.8×10−2

35Cl 17 p 3/2 -0.083 0.004 1.5×10−2 3.6×10−5

39K 19 p 3/2 -0.180 0.050 7.2×10−2 5.6×10−3

73Ge 32 n 9/2 0.030 0.378 1.5×10−3 2.3×10−1

93Nb 41 p 9/2 0.460 0.080 3.4×10−1 1.0×10−2

125Te 52 n 1/2 0.001 0.287 4.0×10−6 3.3×10−1

127I 53 p 5/2 0.309 0.075 1.8×10−1 1.0×10−2

129Xe 54 n 1/2 0.028 0.359 3.1×10−3 5.2×10−1

131Xe 54 n 3/2 -0.009 -0.227 1.8×10−4 1.2×10−1

For many models, fp ≈ fn, so the spin-independent WIMP-nucleus cross
section

σ0WN,SI ≈
4µ2

A

π
f2
nA

2. (3)

The dependence of this cross section on the target material may be factored
out by rewriting this result as

σ0WN,SI = σSI
µ2
A

µ2
n

A2, (4)

where µn is the reduced mass of the WIMP-nucleon system, and the (target-
independent) spin-independent cross section of a WIMP on a single nucleon

σSI ≡
4µ2

nf
2
n

π
. (5)

This WIMP-nucleon cross section σSI may be used to compare experimen-
tal results to theory and to each other. A given model predicts particular
combinations of σSI and Mχ; different experiments produce limits on σSI as
functions of Mχ by translating limits on the WIMP-nucleus cross-section
to limits on σSI using equation 4. The dependence on µ2

AA
2 in eqn. 4 indi-

cates the advantage of experiments using relatively heavy target materials
(but see the effects of the form factor in Sec. 2.3). For a 50GeV/c2 WIMP
incident on a target with A = 50, µ2

A/µ
2
n = 625, so the spin-independent
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2. WIMP-nucleus elastic scattering: from model to signal

Understanding experiments designed for direct detection of dark matter
begins with the observables of potential signals. In this section we consider
the observables of any model that predicts standard WIMP-nucleus elastic
scattering (see Neil Weiner’s contribution to these proceedings8 for discus-
sion of more speculative models with non-standard scattering). Following
the reviews by Lewin and Smith,41 and Jungman, Kamionkowski and Gri-
est,5 this section derives how the observed WIMP interaction rate depends
on energy, target, time, and direction.

2.1. Spin-independent and spin-dependent cross sections

Using Fermi’s Golden Rule, we can divide the energy dependence of the dif-
ferential WIMP-nucleon cross section into a term σ0WN that is independent
of the momentum transfer and a term F 2(q) (known as the form factor)
containing the entire dependence on the momentum transfer q:

dσWN(q)

dq2
=

1

πv2
|M|2 =

σ0WNF 2(q)

4µ2
Av

2
. (1)

Here, v is the velocity of the WIMP in the lab frame, and the WIMP-
nucleus reduced mass µA ≡ MχMA/(Mχ + MA) in terms of the WIMP
mass Mχ and the mass MA of a target nucleus of atomic mass A. Since the
WIMPs are nonrelativistic, the zero-momentum cross section for a WIMP
of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross section
may be written in terms of a spin-independent (mostly scalar) and a spin-
dependent (mostly axial vector) term:

σ0WN =
4µ2

A

π
[Zfp + (A− Z)fn]

2 +
32G2

Fµ
2
A

π

J + 1

J
(ap〈Sp〉+ an〈Sn〉)2 .

(2)
The proof of this claim makes a good exercise for the reader; solution may be
found in Ref. 42. Here fp and fn (ap and an) are effective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass,Mχ, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus 〈Sp,n〉 = 〈N |Sp,n|N〉. For free nucleons, 〈Sp〉 = 〈Sn〉= 0.5. Ta-
ble 1 from Ref. 43 lists values of 〈Sp〉 and 〈Sn〉 for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.
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2. WIMP-nucleus elastic scattering: from model to signal

Understanding experiments designed for direct detection of dark matter
begins with the observables of potential signals. In this section we consider
the observables of any model that predicts standard WIMP-nucleus elastic
scattering (see Neil Weiner’s contribution to these proceedings8 for discus-
sion of more speculative models with non-standard scattering). Following
the reviews by Lewin and Smith,41 and Jungman, Kamionkowski and Gri-
est,5 this section derives how the observed WIMP interaction rate depends
on energy, target, time, and direction.

2.1. Spin-independent and spin-dependent cross sections

Using Fermi’s Golden Rule, we can divide the energy dependence of the dif-
ferential WIMP-nucleon cross section into a term σ0WN that is independent
of the momentum transfer and a term F 2(q) (known as the form factor)
containing the entire dependence on the momentum transfer q:

dσWN(q)

dq2
=

1

πv2
|M|2 =

σ0WNF 2(q)

4µ2
Av

2
. (1)

Here, v is the velocity of the WIMP in the lab frame, and the WIMP-
nucleus reduced mass µA ≡ MχMA/(Mχ + MA) in terms of the WIMP
mass Mχ and the mass MA of a target nucleus of atomic mass A. Since the
WIMPs are nonrelativistic, the zero-momentum cross section for a WIMP
of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross section
may be written in terms of a spin-independent (mostly scalar) and a spin-
dependent (mostly axial vector) term:

σ0WN =
4µ2

A

π
[Zfp + (A− Z)fn]

2 +
32G2

Fµ
2
A

π

J + 1

J
(ap〈Sp〉+ an〈Sn〉)2 .

(2)
The proof of this claim makes a good exercise for the reader; solution may be
found in Ref. 42. Here fp and fn (ap and an) are effective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass,Mχ, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus 〈Sp,n〉 = 〈N |Sp,n|N〉. For free nucleons, 〈Sp〉 = 〈Sn〉= 0.5. Ta-
ble 1 from Ref. 43 lists values of 〈Sp〉 and 〈Sn〉 for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.
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Table 1. Values of the atomic number Z, the total nuclear spin J , and the expec-
tation values of the proton and neutron spins within the nucleus 〈Sp,n〉 for various
nuclei with odd numbers of protons or neutrons, leading to the relative sensitivities
to spin-dependent interactions shown, from Refs. 5,43 and the references contained
therein.

Odd 4〈Sp〉2(J + 1) 4〈Sn〉2(J + 1)

Nucleus Z Nuc. J 〈Sp〉 〈Sn〉 3J 3J

19F 9 p 1/2 0.477 -0.004 9.1×10−1 6.4×10−5

23Na 11 p 3/2 0.248 0.020 1.3×10−1 8.9×10−4

27Al 13 p 5/2 -0.343 0.030 2.2×10−1 1.7×10−3

29Si 14 n 1/2 -0.002 0.130 1.6×10−5 6.8×10−2

35Cl 17 p 3/2 -0.083 0.004 1.5×10−2 3.6×10−5

39K 19 p 3/2 -0.180 0.050 7.2×10−2 5.6×10−3

73Ge 32 n 9/2 0.030 0.378 1.5×10−3 2.3×10−1

93Nb 41 p 9/2 0.460 0.080 3.4×10−1 1.0×10−2

125Te 52 n 1/2 0.001 0.287 4.0×10−6 3.3×10−1

127I 53 p 5/2 0.309 0.075 1.8×10−1 1.0×10−2

129Xe 54 n 1/2 0.028 0.359 3.1×10−3 5.2×10−1

131Xe 54 n 3/2 -0.009 -0.227 1.8×10−4 1.2×10−1

For many models, fp ≈ fn, so the spin-independent WIMP-nucleus cross
section

σ0WN,SI ≈
4µ2

A

π
f2
nA

2. (3)

The dependence of this cross section on the target material may be factored
out by rewriting this result as

σ0WN,SI = σSI
µ2
A

µ2
n

A2, (4)

where µn is the reduced mass of the WIMP-nucleon system, and the (target-
independent) spin-independent cross section of a WIMP on a single nucleon

σSI ≡
4µ2

nf
2
n

π
. (5)

This WIMP-nucleon cross section σSI may be used to compare experimen-
tal results to theory and to each other. A given model predicts particular
combinations of σSI and Mχ; different experiments produce limits on σSI as
functions of Mχ by translating limits on the WIMP-nucleus cross-section
to limits on σSI using equation 4. The dependence on µ2

AA
2 in eqn. 4 indi-

cates the advantage of experiments using relatively heavy target materials
(but see the effects of the form factor in Sec. 2.3). For a 50GeV/c2 WIMP
incident on a target with A = 50, µ2

A/µ
2
n = 625, so the spin-independent
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2. WIMP-nucleus elastic scattering: from model to signal

Understanding experiments designed for direct detection of dark matter
begins with the observables of potential signals. In this section we consider
the observables of any model that predicts standard WIMP-nucleus elastic
scattering (see Neil Weiner’s contribution to these proceedings8 for discus-
sion of more speculative models with non-standard scattering). Following
the reviews by Lewin and Smith,41 and Jungman, Kamionkowski and Gri-
est,5 this section derives how the observed WIMP interaction rate depends
on energy, target, time, and direction.

2.1. Spin-independent and spin-dependent cross sections

Using Fermi’s Golden Rule, we can divide the energy dependence of the dif-
ferential WIMP-nucleon cross section into a term σ0WN that is independent
of the momentum transfer and a term F 2(q) (known as the form factor)
containing the entire dependence on the momentum transfer q:

dσWN(q)

dq2
=

1

πv2
|M|2 =

σ0WNF 2(q)

4µ2
Av

2
. (1)

Here, v is the velocity of the WIMP in the lab frame, and the WIMP-
nucleus reduced mass µA ≡ MχMA/(Mχ + MA) in terms of the WIMP
mass Mχ and the mass MA of a target nucleus of atomic mass A. Since the
WIMPs are nonrelativistic, the zero-momentum cross section for a WIMP
of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross section
may be written in terms of a spin-independent (mostly scalar) and a spin-
dependent (mostly axial vector) term:

σ0WN =
4µ2

A

π
[Zfp + (A− Z)fn]

2 +
32G2

Fµ
2
A

π

J + 1

J
(ap〈Sp〉+ an〈Sn〉)2 .

(2)
The proof of this claim makes a good exercise for the reader; solution may be
found in Ref. 42. Here fp and fn (ap and an) are effective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass,Mχ, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus 〈Sp,n〉 = 〈N |Sp,n|N〉. For free nucleons, 〈Sp〉 = 〈Sn〉= 0.5. Ta-
ble 1 from Ref. 43 lists values of 〈Sp〉 and 〈Sn〉 for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.

January 28, 2011 1:7 WSPC - Proceedings Trim Size: 9in x 6in SchneeTASIPDF

3

2. WIMP-nucleus elastic scattering: from model to signal

Understanding experiments designed for direct detection of dark matter
begins with the observables of potential signals. In this section we consider
the observables of any model that predicts standard WIMP-nucleus elastic
scattering (see Neil Weiner’s contribution to these proceedings8 for discus-
sion of more speculative models with non-standard scattering). Following
the reviews by Lewin and Smith,41 and Jungman, Kamionkowski and Gri-
est,5 this section derives how the observed WIMP interaction rate depends
on energy, target, time, and direction.

2.1. Spin-independent and spin-dependent cross sections

Using Fermi’s Golden Rule, we can divide the energy dependence of the dif-
ferential WIMP-nucleon cross section into a term σ0WN that is independent
of the momentum transfer and a term F 2(q) (known as the form factor)
containing the entire dependence on the momentum transfer q:

dσWN(q)

dq2
=

1

πv2
|M|2 =

σ0WNF 2(q)

4µ2
Av

2
. (1)

Here, v is the velocity of the WIMP in the lab frame, and the WIMP-
nucleus reduced mass µA ≡ MχMA/(Mχ + MA) in terms of the WIMP
mass Mχ and the mass MA of a target nucleus of atomic mass A. Since the
WIMPs are nonrelativistic, the zero-momentum cross section for a WIMP
of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross section
may be written in terms of a spin-independent (mostly scalar) and a spin-
dependent (mostly axial vector) term:

σ0WN =
4µ2

A

π
[Zfp + (A− Z)fn]

2 +
32G2

Fµ
2
A

π

J + 1

J
(ap〈Sp〉+ an〈Sn〉)2 .

(2)
The proof of this claim makes a good exercise for the reader; solution may be
found in Ref. 42. Here fp and fn (ap and an) are effective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass,Mχ, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus 〈Sp,n〉 = 〈N |Sp,n|N〉. For free nucleons, 〈Sp〉 = 〈Sn〉= 0.5. Ta-
ble 1 from Ref. 43 lists values of 〈Sp〉 and 〈Sn〉 for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.

January 28, 2011 1:7 WSPC - Proceedings Trim Size: 9in x 6in SchneeTASIPDF

3

2. WIMP-nucleus elastic scattering: from model to signal

Understanding experiments designed for direct detection of dark matter
begins with the observables of potential signals. In this section we consider
the observables of any model that predicts standard WIMP-nucleus elastic
scattering (see Neil Weiner’s contribution to these proceedings8 for discus-
sion of more speculative models with non-standard scattering). Following
the reviews by Lewin and Smith,41 and Jungman, Kamionkowski and Gri-
est,5 this section derives how the observed WIMP interaction rate depends
on energy, target, time, and direction.

2.1. Spin-independent and spin-dependent cross sections

Using Fermi’s Golden Rule, we can divide the energy dependence of the dif-
ferential WIMP-nucleon cross section into a term σ0WN that is independent
of the momentum transfer and a term F 2(q) (known as the form factor)
containing the entire dependence on the momentum transfer q:

dσWN(q)

dq2
=

1

πv2
|M|2 =

σ0WNF 2(q)

4µ2
Av

2
. (1)

Here, v is the velocity of the WIMP in the lab frame, and the WIMP-
nucleus reduced mass µA ≡ MχMA/(Mχ + MA) in terms of the WIMP
mass Mχ and the mass MA of a target nucleus of atomic mass A. Since the
WIMPs are nonrelativistic, the zero-momentum cross section for a WIMP
of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross section
may be written in terms of a spin-independent (mostly scalar) and a spin-
dependent (mostly axial vector) term:

σ0WN =
4µ2

A

π
[Zfp + (A− Z)fn]

2 +
32G2

Fµ
2
A

π

J + 1

J
(ap〈Sp〉+ an〈Sn〉)2 .

(2)
The proof of this claim makes a good exercise for the reader; solution may be
found in Ref. 42. Here fp and fn (ap and an) are effective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass,Mχ, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus 〈Sp,n〉 = 〈N |Sp,n|N〉. For free nucleons, 〈Sp〉 = 〈Sn〉= 0.5. Ta-
ble 1 from Ref. 43 lists values of 〈Sp〉 and 〈Sn〉 for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.

WIMP-nucleon scattering is 
factorized

January 28, 2011 1:7 WSPC - Proceedings Trim Size: 9in x 6in SchneeTASIPDF

3

2. WIMP-nucleus elastic scattering: from model to signal

Understanding experiments designed for direct detection of dark matter
begins with the observables of potential signals. In this section we consider
the observables of any model that predicts standard WIMP-nucleus elastic
scattering (see Neil Weiner’s contribution to these proceedings8 for discus-
sion of more speculative models with non-standard scattering). Following
the reviews by Lewin and Smith,41 and Jungman, Kamionkowski and Gri-
est,5 this section derives how the observed WIMP interaction rate depends
on energy, target, time, and direction.

2.1. Spin-independent and spin-dependent cross sections

Using Fermi’s Golden Rule, we can divide the energy dependence of the dif-
ferential WIMP-nucleon cross section into a term σ0WN that is independent
of the momentum transfer and a term F 2(q) (known as the form factor)
containing the entire dependence on the momentum transfer q:

dσWN(q)

dq2
=

1

πv2
|M|2 =

σ0WNF 2(q)

4µ2
Av

2
. (1)

Here, v is the velocity of the WIMP in the lab frame, and the WIMP-
nucleus reduced mass µA ≡ MχMA/(Mχ + MA) in terms of the WIMP
mass Mχ and the mass MA of a target nucleus of atomic mass A. Since the
WIMPs are nonrelativistic, the zero-momentum cross section for a WIMP
of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross section
may be written in terms of a spin-independent (mostly scalar) and a spin-
dependent (mostly axial vector) term:

σ0WN =
4µ2

A

π
[Zfp + (A− Z)fn]

2 +
32G2

Fµ
2
A

π

J + 1

J
(ap〈Sp〉+ an〈Sn〉)2 .

(2)
The proof of this claim makes a good exercise for the reader; solution may be
found in Ref. 42. Here fp and fn (ap and an) are effective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass,Mχ, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus 〈Sp,n〉 = 〈N |Sp,n|N〉. For free nucleons, 〈Sp〉 = 〈Sn〉= 0.5. Ta-
ble 1 from Ref. 43 lists values of 〈Sp〉 and 〈Sn〉 for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.
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Table 1. Values of the atomic number Z, the total nuclear spin J , and the expec-
tation values of the proton and neutron spins within the nucleus 〈Sp,n〉 for various
nuclei with odd numbers of protons or neutrons, leading to the relative sensitivities
to spin-dependent interactions shown, from Refs. 5,43 and the references contained
therein.

Odd 4〈Sp〉2(J + 1) 4〈Sn〉2(J + 1)

Nucleus Z Nuc. J 〈Sp〉 〈Sn〉 3J 3J

19F 9 p 1/2 0.477 -0.004 9.1×10−1 6.4×10−5

23Na 11 p 3/2 0.248 0.020 1.3×10−1 8.9×10−4

27Al 13 p 5/2 -0.343 0.030 2.2×10−1 1.7×10−3

29Si 14 n 1/2 -0.002 0.130 1.6×10−5 6.8×10−2

35Cl 17 p 3/2 -0.083 0.004 1.5×10−2 3.6×10−5

39K 19 p 3/2 -0.180 0.050 7.2×10−2 5.6×10−3

73Ge 32 n 9/2 0.030 0.378 1.5×10−3 2.3×10−1

93Nb 41 p 9/2 0.460 0.080 3.4×10−1 1.0×10−2

125Te 52 n 1/2 0.001 0.287 4.0×10−6 3.3×10−1

127I 53 p 5/2 0.309 0.075 1.8×10−1 1.0×10−2

129Xe 54 n 1/2 0.028 0.359 3.1×10−3 5.2×10−1

131Xe 54 n 3/2 -0.009 -0.227 1.8×10−4 1.2×10−1

For many models, fp ≈ fn, so the spin-independent WIMP-nucleus cross
section

σ0WN,SI ≈
4µ2

A

π
f2
nA

2. (3)

The dependence of this cross section on the target material may be factored
out by rewriting this result as

σ0WN,SI = σSI
µ2
A

µ2
n

A2, (4)

where µn is the reduced mass of the WIMP-nucleon system, and the (target-
independent) spin-independent cross section of a WIMP on a single nucleon

σSI ≡
4µ2

nf
2
n

π
. (5)

This WIMP-nucleon cross section σSI may be used to compare experimen-
tal results to theory and to each other. A given model predicts particular
combinations of σSI and Mχ; different experiments produce limits on σSI as
functions of Mχ by translating limits on the WIMP-nucleus cross-section
to limits on σSI using equation 4. The dependence on µ2

AA
2 in eqn. 4 indi-

cates the advantage of experiments using relatively heavy target materials
(but see the effects of the form factor in Sec. 2.3). For a 50GeV/c2 WIMP
incident on a target with A = 50, µ2

A/µ
2
n = 625, so the spin-independent

January 28, 2011 1:7 WSPC - Proceedings Trim Size: 9in x 6in SchneeTASIPDF

4

Table 1. Values of the atomic number Z, the total nuclear spin J , and the expec-
tation values of the proton and neutron spins within the nucleus 〈Sp,n〉 for various
nuclei with odd numbers of protons or neutrons, leading to the relative sensitivities
to spin-dependent interactions shown, from Refs. 5,43 and the references contained
therein.

Odd 4〈Sp〉2(J + 1) 4〈Sn〉2(J + 1)

Nucleus Z Nuc. J 〈Sp〉 〈Sn〉 3J 3J

19F 9 p 1/2 0.477 -0.004 9.1×10−1 6.4×10−5

23Na 11 p 3/2 0.248 0.020 1.3×10−1 8.9×10−4

27Al 13 p 5/2 -0.343 0.030 2.2×10−1 1.7×10−3

29Si 14 n 1/2 -0.002 0.130 1.6×10−5 6.8×10−2

35Cl 17 p 3/2 -0.083 0.004 1.5×10−2 3.6×10−5

39K 19 p 3/2 -0.180 0.050 7.2×10−2 5.6×10−3

73Ge 32 n 9/2 0.030 0.378 1.5×10−3 2.3×10−1

93Nb 41 p 9/2 0.460 0.080 3.4×10−1 1.0×10−2

125Te 52 n 1/2 0.001 0.287 4.0×10−6 3.3×10−1

127I 53 p 5/2 0.309 0.075 1.8×10−1 1.0×10−2

129Xe 54 n 1/2 0.028 0.359 3.1×10−3 5.2×10−1

131Xe 54 n 3/2 -0.009 -0.227 1.8×10−4 1.2×10−1

For many models, fp ≈ fn, so the spin-independent WIMP-nucleus cross
section

σ0WN,SI ≈
4µ2

A

π
f2
nA

2. (3)

The dependence of this cross section on the target material may be factored
out by rewriting this result as

σ0WN,SI = σSI
µ2
A

µ2
n

A2, (4)

where µn is the reduced mass of the WIMP-nucleon system, and the (target-
independent) spin-independent cross section of a WIMP on a single nucleon

σSI ≡
4µ2

nf
2
n

π
. (5)

This WIMP-nucleon cross section σSI may be used to compare experimen-
tal results to theory and to each other. A given model predicts particular
combinations of σSI and Mχ; different experiments produce limits on σSI as
functions of Mχ by translating limits on the WIMP-nucleus cross-section
to limits on σSI using equation 4. The dependence on µ2

AA
2 in eqn. 4 indi-

cates the advantage of experiments using relatively heavy target materials
(but see the effects of the form factor in Sec. 2.3). For a 50GeV/c2 WIMP
incident on a target with A = 50, µ2

A/µ
2
n = 625, so the spin-independent

Heavy target enhancement

Coherent scattering

With a form factor that incorporates 
momentum transfer

Sunday, May 17, 2015



Spin-independent Spin-dependent

January 28, 2011 1:7 WSPC - Proceedings Trim Size: 9in x 6in SchneeTASIPDF

3

2. WIMP-nucleus elastic scattering: from model to signal

Understanding experiments designed for direct detection of dark matter
begins with the observables of potential signals. In this section we consider
the observables of any model that predicts standard WIMP-nucleus elastic
scattering (see Neil Weiner’s contribution to these proceedings8 for discus-
sion of more speculative models with non-standard scattering). Following
the reviews by Lewin and Smith,41 and Jungman, Kamionkowski and Gri-
est,5 this section derives how the observed WIMP interaction rate depends
on energy, target, time, and direction.

2.1. Spin-independent and spin-dependent cross sections

Using Fermi’s Golden Rule, we can divide the energy dependence of the dif-
ferential WIMP-nucleon cross section into a term σ0WN that is independent
of the momentum transfer and a term F 2(q) (known as the form factor)
containing the entire dependence on the momentum transfer q:

dσWN(q)

dq2
=

1

πv2
|M|2 =

σ0WNF 2(q)

4µ2
Av

2
. (1)

Here, v is the velocity of the WIMP in the lab frame, and the WIMP-
nucleus reduced mass µA ≡ MχMA/(Mχ + MA) in terms of the WIMP
mass Mχ and the mass MA of a target nucleus of atomic mass A. Since the
WIMPs are nonrelativistic, the zero-momentum cross section for a WIMP
of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross section
may be written in terms of a spin-independent (mostly scalar) and a spin-
dependent (mostly axial vector) term:

σ0WN =
4µ2

A

π
[Zfp + (A− Z)fn]

2 +
32G2

Fµ
2
A

π

J + 1

J
(ap〈Sp〉+ an〈Sn〉)2 .

(2)
The proof of this claim makes a good exercise for the reader; solution may be
found in Ref. 42. Here fp and fn (ap and an) are effective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass,Mχ, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus 〈Sp,n〉 = 〈N |Sp,n|N〉. For free nucleons, 〈Sp〉 = 〈Sn〉= 0.5. Ta-
ble 1 from Ref. 43 lists values of 〈Sp〉 and 〈Sn〉 for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.
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found in Ref. 42. Here fp and fn (ap and an) are effective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass,Mχ, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus 〈Sp,n〉 = 〈N |Sp,n|N〉. For free nucleons, 〈Sp〉 = 〈Sn〉= 0.5. Ta-
ble 1 from Ref. 43 lists values of 〈Sp〉 and 〈Sn〉 for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.

January 28, 2011 1:7 WSPC - Proceedings Trim Size: 9in x 6in SchneeTASIPDF

3

2. WIMP-nucleus elastic scattering: from model to signal

Understanding experiments designed for direct detection of dark matter
begins with the observables of potential signals. In this section we consider
the observables of any model that predicts standard WIMP-nucleus elastic
scattering (see Neil Weiner’s contribution to these proceedings8 for discus-
sion of more speculative models with non-standard scattering). Following
the reviews by Lewin and Smith,41 and Jungman, Kamionkowski and Gri-
est,5 this section derives how the observed WIMP interaction rate depends
on energy, target, time, and direction.

2.1. Spin-independent and spin-dependent cross sections

Using Fermi’s Golden Rule, we can divide the energy dependence of the dif-
ferential WIMP-nucleon cross section into a term σ0WN that is independent
of the momentum transfer and a term F 2(q) (known as the form factor)
containing the entire dependence on the momentum transfer q:

dσWN(q)

dq2
=

1

πv2
|M|2 =

σ0WNF 2(q)

4µ2
Av

2
. (1)

Here, v is the velocity of the WIMP in the lab frame, and the WIMP-
nucleus reduced mass µA ≡ MχMA/(Mχ + MA) in terms of the WIMP
mass Mχ and the mass MA of a target nucleus of atomic mass A. Since the
WIMPs are nonrelativistic, the zero-momentum cross section for a WIMP
of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross section
may be written in terms of a spin-independent (mostly scalar) and a spin-
dependent (mostly axial vector) term:

σ0WN =
4µ2

A

π
[Zfp + (A− Z)fn]

2 +
32G2

Fµ
2
A

π

J + 1

J
(ap〈Sp〉+ an〈Sn〉)2 .

(2)
The proof of this claim makes a good exercise for the reader; solution may be
found in Ref. 42. Here fp and fn (ap and an) are effective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass,Mχ, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus 〈Sp,n〉 = 〈N |Sp,n|N〉. For free nucleons, 〈Sp〉 = 〈Sn〉= 0.5. Ta-
ble 1 from Ref. 43 lists values of 〈Sp〉 and 〈Sn〉 for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.
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Table 1. Values of the atomic number Z, the total nuclear spin J , and the expec-
tation values of the proton and neutron spins within the nucleus 〈Sp,n〉 for various
nuclei with odd numbers of protons or neutrons, leading to the relative sensitivities
to spin-dependent interactions shown, from Refs. 5,43 and the references contained
therein.

Odd 4〈Sp〉2(J + 1) 4〈Sn〉2(J + 1)

Nucleus Z Nuc. J 〈Sp〉 〈Sn〉 3J 3J

19F 9 p 1/2 0.477 -0.004 9.1×10−1 6.4×10−5

23Na 11 p 3/2 0.248 0.020 1.3×10−1 8.9×10−4

27Al 13 p 5/2 -0.343 0.030 2.2×10−1 1.7×10−3

29Si 14 n 1/2 -0.002 0.130 1.6×10−5 6.8×10−2

35Cl 17 p 3/2 -0.083 0.004 1.5×10−2 3.6×10−5

39K 19 p 3/2 -0.180 0.050 7.2×10−2 5.6×10−3

73Ge 32 n 9/2 0.030 0.378 1.5×10−3 2.3×10−1

93Nb 41 p 9/2 0.460 0.080 3.4×10−1 1.0×10−2

125Te 52 n 1/2 0.001 0.287 4.0×10−6 3.3×10−1

127I 53 p 5/2 0.309 0.075 1.8×10−1 1.0×10−2

129Xe 54 n 1/2 0.028 0.359 3.1×10−3 5.2×10−1

131Xe 54 n 3/2 -0.009 -0.227 1.8×10−4 1.2×10−1

For many models, fp ≈ fn, so the spin-independent WIMP-nucleus cross
section

σ0WN,SI ≈
4µ2

A

π
f2
nA

2. (3)

The dependence of this cross section on the target material may be factored
out by rewriting this result as

σ0WN,SI = σSI
µ2
A

µ2
n

A2, (4)

where µn is the reduced mass of the WIMP-nucleon system, and the (target-
independent) spin-independent cross section of a WIMP on a single nucleon

σSI ≡
4µ2

nf
2
n

π
. (5)

This WIMP-nucleon cross section σSI may be used to compare experimen-
tal results to theory and to each other. A given model predicts particular
combinations of σSI and Mχ; different experiments produce limits on σSI as
functions of Mχ by translating limits on the WIMP-nucleus cross-section
to limits on σSI using equation 4. The dependence on µ2

AA
2 in eqn. 4 indi-

cates the advantage of experiments using relatively heavy target materials
(but see the effects of the form factor in Sec. 2.3). For a 50GeV/c2 WIMP
incident on a target with A = 50, µ2

A/µ
2
n = 625, so the spin-independent
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It has been shown that the standard approach neglects a large set of possible non-relativistic operators 
beyond the SI/SD ones

There also exist four more nuclear responses that arise in the most general nucleus-WIMP elastic 
scattering

N. Anand, A.L. Fitzpatrick, and W.C. Haxton, Phys.Rev. C89, 065501 (2014)

Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)
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operators to the final differential WIMP-nucleus cross section.
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In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑
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cα

i Oα
i , (4)

6

where YJM and !YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, Φ′′

, Σ′
, ∆, Σ′′

, Φ̃′

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [53], and codes have been supplied
to calculate the full amplitude and rate [54].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡ i
!q

mN
· S · !v⊥,

O18 ≡ i
!q

mN
· S · !SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [56] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how different interac-
tions with different nuclei arise from different UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
for maximum discrimination of the UV model parameter space.

10

A.L. Fitzpatrick, W.C. Haxton, E. Katz, N. Lubbers, and Y. Xu,  JCAP 1302 (2013) 004, arXiv:1203.3542

Sunday, May 17, 2015



It has been shown that the standard approach neglects a large set of possible non-relativistic operators 
beyond the SI/SD ones

There also exist four more nuclear responses that arise in the most general nucleus-WIMP elastic 
scattering

N. Anand, A.L. Fitzpatrick, and W.C. Haxton, Phys.Rev. C89, 065501 (2014)

Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

6

Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

6

Spin-independent

where YJM and !YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, Φ′′

, Σ′
, ∆, Σ′′

, Φ̃′

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [53], and codes have been supplied
to calculate the full amplitude and rate [54].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡ i
!q

mN
· S · !v⊥,

O18 ≡ i
!q

mN
· S · !SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [56] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how different interac-
tions with different nuclei arise from different UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
for maximum discrimination of the UV model parameter space.

10

A.L. Fitzpatrick, W.C. Haxton, E. Katz, N. Lubbers, and Y. Xu,  JCAP 1302 (2013) 004, arXiv:1203.3542

Sunday, May 17, 2015



It has been shown that the standard approach neglects a large set of possible non-relativistic operators 
beyond the SI/SD ones

There also exist four more nuclear responses that arise in the most general nucleus-WIMP elastic 
scattering

N. Anand, A.L. Fitzpatrick, and W.C. Haxton, Phys.Rev. C89, 065501 (2014)

Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

6

Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

6

Spin-independent Spin-dependent

where YJM and !YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, Φ′′

, Σ′
, ∆, Σ′′

, Φ̃′
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O18 ≡ i
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· S · !SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.
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From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [56] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how different interac-
tions with different nuclei arise from different UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
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Gresham & Zurek (2014) showed that wildly incorrect interpretations are possible if only the 
standard SI/SD responses are used

modeled our analysis on idealized experiments that can
measure the energy of scattering events with very good
resolution.14

In Figs. 3 and 4 we show some examples for which novel
form factors have the most dramatic effect upon the

interpretation of simulated events for the benchmark
models we examined. A comprehensive set of plots for
all benchmark models can be found in Appendix C. In each
figure, the top panels show the spectrum of expected events
given full form factors (which were used to simulate
events), alongside the ratio of the rate given foil form
factors to full form factors (cf. Fig. 2). The lower four
panels show the results of fits to simulated data, taking the
energy ranges of 0–50 keV and 0–100 keV, in order to see
the effect of the higher-energy recoil events on the fits.
Given an anapole interaction, the scattering rate off of

iodine over the range of energies with a significant rate has
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FIG. 4 (color online). For a momentum-dependent longitudinal spin-dependent interaction, (top two panels) expected event spectrum
(pink curves) alongside the ratio of the foil rate to the true rate (blue curves), and (bottom four panels) fits for idealized iodine-target and
xenon-target experiments assuming full form factors (pink curves, used to generate the events in the first place) or foil form factors (blue
curves). True mass and cross sections are marked with an “×.” The solid line is for simulated 80 GeV DM and the dashed line for
250 GeV. The results from fits to two sets of simulated data (100 events with 0 < ER < 50 keV or 0 < ER < 100 keV) for each target
are shown in the bottom four panels.

14For example, we have not modeled our fluorine target
“experiment” after a more realistic bubble chamber experiment,
which is sensitive only to energy thresholds rather than to the
absolute energy of individual scattering events. See [18] for an
approach to the inverse problem that takes account of the different
direct detection technologies.
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Effective Field Theory

ANRV326-NS57-11 ARI 21 September 2007 19:35

functional for these correlation functions. In particular, we focus on the generator
! of one-particle-irreducible (1PI) correlation functions. Although this quantity is
often termed the effective action, particularly in older references, we reserve this
name for another quantity of more direct interest, which we discuss below.

2.1. The One-Particle-Irreducible and
One-Light-Particle-Irreducible Actions
We start by reviewing the standard definition for the generating functional. Consider
a theory whose fields are denoted generically by φ. Our interest in this theory is in the
correlation functions of these fields, as other physical quantities can be generically
constructed from these. These correlations may be obtained by studying the response
of the theory to the application of an external field, J(x), which couples to φ(x).

For instance, a path-integral definition of the correlation function would be

〈φ(x1) · · ·φ(xk)〉J ≡ e−iW [J]
∫

Dφ[φ(x1) · · ·φ(xk)] exp
{

i
∫

d 4x[L + Jφ]
}

, 7.

where L denotes the Lagrangian density that describes the system’s dynamics, and
the quantity W [J] is defined by

exp{iW [J]} =
∫

Dφ exp
{

i
∫

d 4x[L[φ] + Jφ]
}

. 8.

W [J] generates the connected correlations of the operator φ, in the sense that

〈φ(x1) · · ·φ(xk)〉c ,J = (−i )k−l δkW
δJ(x1) · · · δJ(xk)

. 9.

This can be taken to define the connected part, but it also agrees with the usual
graphical sense of connectedness. When this average is evaluated at J = 0, it coincides
with the covariant time-ordered—more properly, T ∗-ordered—vacuum expectation
value of φ.

2.1.1. The one-particle-irreducible generator. One-particle-reducible graphs are
defined as those connected graphs that can be broken into two disconnected parts by
simply cutting a single internal line. 1PI graphs are those connected graphs that are
not one-particle reducible.

A nongraphical formulation of one-particle reducibility of this sort can be had by
performing a Legendre transformation on the functional W [J] (5). With this choice,
if the mean field ϕ is defined by

ϕ(J) ≡ δW
δJ

= 〈φ(x)〉J, 10.

then the Legendre transform of W [J] is defined to be the functional ![ϕ], where

![ϕ] ≡ W [J(ϕ)] −
∫

d 4x ϕ J. 11.

Here we imagine J(ϕ) to be the external current required to obtain the expectation
value 〈φ〉J = ϕ, and that may be found, in principle, by inverting Equation 10. For
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This can be taken to define the connected part, but it also agrees with the usual
graphical sense of connectedness. When this average is evaluated at J = 0, it coincides
with the covariant time-ordered—more properly, T ∗-ordered—vacuum expectation
value of φ.

2.1.1. The one-particle-irreducible generator. One-particle-reducible graphs are
defined as those connected graphs that can be broken into two disconnected parts by
simply cutting a single internal line. 1PI graphs are those connected graphs that are
not one-particle reducible.

A nongraphical formulation of one-particle reducibility of this sort can be had by
performing a Legendre transformation on the functional W [J] (5). With this choice,
if the mean field ϕ is defined by

ϕ(J) ≡ δW
δJ

= 〈φ(x)〉J, 10.

then the Legendre transform of W [J] is defined to be the functional ![ϕ], where

![ϕ] ≡ W [J(ϕ)] −
∫

d 4x ϕ J. 11.

Here we imagine J(ϕ) to be the external current required to obtain the expectation
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〈φ(x1) · · ·φ(xk)〉c ,J = (−i )k−l δkW
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This can be taken to define the connected part, but it also agrees with the usual
graphical sense of connectedness. When this average is evaluated at J = 0, it coincides
with the covariant time-ordered—more properly, T ∗-ordered—vacuum expectation
value of φ.
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defined as those connected graphs that can be broken into two disconnected parts by
simply cutting a single internal line. 1PI graphs are those connected graphs that are
not one-particle reducible.

A nongraphical formulation of one-particle reducibility of this sort can be had by
performing a Legendre transformation on the functional W [J] (5). With this choice,
if the mean field ϕ is defined by

ϕ(J) ≡ δW
δJ

= 〈φ(x)〉J, 10.

then the Legendre transform of W [J] is defined to be the functional ![ϕ], where

![ϕ] ≡ W [J(ϕ)] −
∫

d 4x ϕ J. 11.

Here we imagine J(ϕ) to be the external current required to obtain the expectation
value 〈φ〉J = ϕ, and that may be found, in principle, by inverting Equation 10. For
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Incorporating Galilean invariance, energy conservation, and Hermiticity, all non-
relativistic operators will be built out of four quantities
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(two incoming and two outgoing), only two combinations are
physically relevant owing to inertial frame-independence and
momentum conservation. It is convenient to work with the
frame-invariant quantities, the momentum transfer !q and the
WIMP-nucleon relative velocity,

!v ≡ !vχ ,in − !vN,in. (9)

It is also useful to construct the related quantity

!v⊥ = !v + !q
2µN

= 1
2

(!vχ ,in + !vχ ,out − !vN,in − !vN,out)

= 1
2

(
!p

mχ

+ !p ′

mχ

−
!k

mN

−
!k ′

mN

)

, (10)

which satisfies !v⊥ · !q = 0 as a consequence of energy conser-
vation. Here µN is the WIMP-nucleon reduced mass. It was
shown in Ref. [8] that operators are guaranteed to be Hermitian
if they are built out of the following four three-vectors:

i
!q

mN

, !v⊥, !Sχ , !SN. (11)

Here (in another departure from Ref. [8]) we have introduced
mN as a convenient scale to render !q/mN and the constructed
Oi dimensionless: The choice of this scale is not arbitrary, as
it leads to an EFT power counting in nuclei that is particularly
simple, as we discuss in Secs. II B and IV B. The relevant
interactions that we can construct from these three-vectors
and that can be associated with interactions involving only
spin-0 or spin-1 mediators are

O1 = 1χ1N,

O2 = (v⊥)2,

O3 = i !SN ·
( !q

mN

× !v⊥
)

,

O4 = !Sχ · !SN,

O5 = i !Sχ ·
( !q

mN

× !v⊥
)

,

O6 =
(

!Sχ · !q
mN

)(
!SN · !q

mN

)
, (12)

O7 = !SN · !v⊥,

O8 = !Sχ · !v⊥,

O9 = i !Sχ ·
(

!SN × !q
mN

)
,

O10 = i !SN · !q
mN

,

O11 = i !Sχ · !q
mN

.

These 11 operators were discussed in Ref. [8]. We retain 10 of
these here, discarding O2, as this operator cannot be obtained
from the leading-order nonrelativistic reduction of a manifestly
relativistic operator (see, e.g., Table I of Sec. II C).

We classify these operators as leading order (LO), next-
to-leading order (NLO), and next-to-next-to-leading order
(N2LO), depending on the total number of momenta and
velocities they contain. We see in Sec. IV B that these
designations correspond to total cross sections that scale as
v0

T , v2
T , or v4

T , where vT is the WIMP velocity in the laboratory
frame.

In addition, one can construct the following operators that
do not arise for traditional spin-0 or spin-1 mediators

O12 = !Sχ · (!SN × !v⊥),

O13 = i(!Sχ · !v⊥)
(

!SN · !q
mN

)
,

O14 = i

(
!Sχ · !q

mN

)
(!SN · !v⊥), (13)

O15 = −
(

!Sχ · !q
mN

)[
(!SN × !v⊥) · !q

mN

]
,

O16 = −
[

(!Sχ × !v⊥) · !q
mN

](
!SN · !q

mN

)
.

It is easy to see that O16 is linearly dependent on O12 and O15,

O16 = O15 + !q 2

m2
N

O12, (14)

and so should be eliminated. OperatorO15 is cubic in velocities
and momenta, generating a total cross section of order v6

(N3LO). It is retained because it arises as the leading-order
nonrelativistic limit of certain covariant interactions (see
Sec. II C).

Each operator can have distinct couplings to protons and
neutrons. Thus, the EFT interaction we employ in this paper
takes the form

∑

α=n,p

15∑

i=1

cα
i Oα

i , cα
2 ≡ 0. (15)

One can factorize the space-spin and proton/neutron compo-
nents of Eq. (15) by introducing isospin, which is also useful
as an approximate symmetry of the nuclear wave functions.
Thus, an equivalent form for our interaction is

15∑

i=1

(
c0
i 1 + c1

i τ3
)
Oi =

∑

τ=0,1

15∑

i=1

cτ
i Oi t

τ , cτ
2 ≡ 0, (16)

where c0
i = 1

2 (cp
i + cn

i ) and c1
i = 1

2 (cp
i − cn

i ). The isospin
states are

|p〉 =
(

1
0

)
|n〉 =

(
0
1

)
, (17)

while the isospin operators are

t0 ≡ 1 =
(

1 0
0 1

)
t1 ≡ τ3 =

(
1 0
0 −1

)
. (18)

The EFT has a total of 28 parameters, associated with 14
space-spin operators each of which can have distinct couplings
to protons and neutrons. If we exclude operators that are
not associated with spin-0 or spin-1 mediators, 10 space-spin
operators and 20 couplings remain.
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and so should be eliminated. OperatorO15 is cubic in velocities
and momenta, generating a total cross section of order v6

(N3LO). It is retained because it arises as the leading-order
nonrelativistic limit of certain covariant interactions (see
Sec. II C).

Each operator can have distinct couplings to protons and
neutrons. Thus, the EFT interaction we employ in this paper
takes the form

∑

α=n,p

15∑

i=1

cα
i Oα

i , cα
2 ≡ 0. (15)

One can factorize the space-spin and proton/neutron compo-
nents of Eq. (15) by introducing isospin, which is also useful
as an approximate symmetry of the nuclear wave functions.
Thus, an equivalent form for our interaction is

15∑
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(
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)
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2 ≡ 0, (16)

where c0
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2 (cp
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i ) and c1
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i − cn

i ). The isospin
states are

|p〉 =
(

1
0

)
|n〉 =
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1
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, (17)

while the isospin operators are

t0 ≡ 1 =
(

1 0
0 1

)
t1 ≡ τ3 =

(
1 0
0 −1
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. (18)

The EFT has a total of 28 parameters, associated with 14
space-spin operators each of which can have distinct couplings
to protons and neutrons. If we exclude operators that are
not associated with spin-0 or spin-1 mediators, 10 space-spin
operators and 20 couplings remain.
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Exchanged momentum

will take the standard effective four-particle interaction form, reminiscent of Fermi’s original
model of weak interactions. The non-relativistic interactions can be shown to be functions of
only four parameters including the nucleon spin SN , the dark matter spin Sχ, the momentum
transfer, !q, and a kinematic variable !v⊥ which is a function of the relative incoming (!vχ,in −

!vN,in) and outgoing velocities !vχ,out − !vN,out

!v⊥ = 1
2 (!vχ,in − !vN,in + !vχ,out − !vN,out) = !vχ,in − !vN,in + !q

2µN
(1)

which obeys !v⊥ · !q = 0. It was demonstrated in [53] that there exist fifteen such non-
relativistic interactions which arise from twenty possible bi-linear combinations of dark
matter and nucleons.

The formalism developed in [53] is unique in being the only analysis to comprehensively
develop the nuclear physics of direct detection experiments. From this general framework it
is now apparent that there are interactions beyond the standard spin independent/dependent
type. The origins of these ‘new’ interactions are not necessarily exotic and it has been shown,
in the context of relativistic EFT, how many of them can be generated [56].

What has been lacking to date however, is a completely general and comprehensive treat-
ment that connects high energy microphysics with low-energy effective nuclear matrix ele-
ments in a model independent way. It is possible, for example, that the various interactions
listed in [53] can give rise to degeneracies where different fundamental dark matter La-
grangians, describing dark matter and interaction mediators of various spins, can produce
the same interaction types. This will obviously pose problems for attempts to discern the
properties of dark matter when interpreting the results of experimental data. Furthermore,
dark matter may not be spin-1

2 , which creates a need for extending the parametric frame-
work from the four descriptors listed above. In particular, as we shall show, this allows the
existence of new non-relativistic operators to appear in the low energy effective theory.

Motivated by the above we present here a general analysis covering a broad spectrum
of particle and interaction types, starting from the microphysics, which will enable one to
link experiment with fundamental theory while incorporating the new nuclear responses
described in [53].

In this work we build upon the NR-EFT description by examining simplified models which
incorporate the most general renormalizable Lagrangians for scalar, spinor, and vector dark
matter interacting with nucleons via scalar, spinor, and vector mediators, consistent with

4

Relative velocities

DM spin

Nucleon spin

A.L. Fitzpatrick, W.C. Haxton, E. Katz, N. Lubbers, and Y. Xu,  JCAP 1302 (2013) 004, arXiv:1203.3542
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incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [46]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

where the coefficients cα
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
∑

τ=0,1

15∑

i=1
cτ

i Oit
τ (5)

6
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics
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where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
√

E + m

2m

(
ξ

#σ · #p
E+mχ

ξ

)

∼
(

ξ
#σ · #p
2m

ξ

)

, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics
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where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,
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∼
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where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics
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where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,
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∼
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where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics
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where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,
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where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics
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where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
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where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics
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where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
√

E + m

2m

(
ξ

#σ · #p
E+mχ

ξ

)

∼
(

ξ
#σ · #p
2m

ξ

)

, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics

1
2jχ + 1

1
2jN + 1

∑

spins

|M|2

≡
∑

k

∑

τ=0,1

∑

τ ′=0,1

Rk

(
#v⊥2
T ,

#q 2

m2
N

,
{
cτ
i c

τ ′

j

})
W ττ ′

k (#q 2b2),

(3)

where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
√

E + m

2m

(
ξ

#σ · #p
E+mχ

ξ

)

∼
(

ξ
#σ · #p
2m

ξ

)

, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics
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where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
√

E + m

2m

(
ξ

#σ · #p
E+mχ

ξ

)

∼
(

ξ
#σ · #p
2m

ξ

)

, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics
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where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
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2m

(
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E+mχ

ξ

)

∼
(
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#σ · #p
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, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics
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where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
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)

∼
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where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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From the relativistic EFT there are 20 combinations of fermionic bilinears 

From two scalar

and four vector terms

After performing a non-relativistic reduction, these 20 operators can be written in terms of the 15 Oi

2×2

4 × 4

20

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

P µχ̄χ (56)

(57)

P µχ̄γ5χ (58)

(59)

(60)

4

χ̄χ (50)

(51)
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(53)
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4
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4

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

χ̄γµγ5χ (56)

(57)

P µχ̄χ (58)

(59)

P µχ̄γ5χ (60)

(61)

(62)

4

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

χ̄γµγ5χ (56)

(57)

P µχ̄χ (58)

(59)

P µχ̄γ5χ (60)

(61)

(62)

4

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

χ̄γµγ5χ (56)

(57)

P µχ̄χ (58)

(59)

P µχ̄γ5χ (60)

(61)

(62)

4

Sunday, May 17, 2015



From the relativistic EFT there are 20 combinations of fermionic bilinears 

From two scalar

and four vector terms

After performing a non-relativistic reduction, these 20 operators can be written in terms of the 15 Oi

2×2

4 × 4

20

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

P µχ̄χ (56)

(57)

P µχ̄γ5χ (58)

(59)

(60)

4

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

P µχ̄χ (56)

(57)

P µχ̄γ5χ (58)

(59)

(60)

4

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

χ̄γµγ5χ (56)

(57)

P µχ̄χ (58)

(59)

P µχ̄γ5χ (60)

(61)

(62)

4

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

χ̄γµγ5χ (56)

(57)

P µχ̄χ (58)

(59)

P µχ̄γ5χ (60)

(61)

(62)

4

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

χ̄γµγ5χ (56)

(57)

P µχ̄χ (58)

(59)

P µχ̄γ5χ (60)

(61)

(62)

4

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

χ̄γµγ5χ (56)

(57)

P µχ̄χ (58)

(59)

P µχ̄γ5χ (60)

(61)

(62)

4

Sunday, May 17, 2015



Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [51] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [51]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

6

where the coefficients cα
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
∑

τ=0,1

15∑

i=1
cτ

i Oit
τ (5)

where t0 and t1 are the identity matrix and the Pauli matrix σ3 respectively. The nucleus is
composed of nucleons, and these can individually interact with the WIMP. This is incorpo-
rated by considering the operator O(j) as an interaction between a single nucleon, j, and
the WIMP, and then summing over the nucleons.

∑

τ=0,1

15∑

i=1
cτ

i Oit
τ →

∑

τ=0,1

15∑

i=1
cτ

i

A∑

j=1
Oi(j)tτ (j) (6)

where A is the atomic mass number given by the total number of neutrons and protons.
One can do the same reduction with "v⊥,

"v⊥ → {"vχ − "vN(i), i = 1, ..., A}

≡ "v⊥
T − {"̇vN(i), i = 1, ..., A − 1} (7)

where "vχ and "vN(i) are the symmetrized combination of incoming and outgoing velocities
for the WIMP and nucleons respectively. "v⊥

T (here T stands for target, i.e., the nuclear
center-of-mass) is defined as

"v⊥
T = "vχ − 1

2A

A∑

i=1
["vN,in(i) + "vN,out(i)] (8)

This allows for a decomposition of the nucleon velocities into internal velocities "̇vN(i) that
act only on intrinsic nuclear coordinates and ‘in’ and ‘out’ velocities that evolve as a WIMP
scatters off the detector. As an example, the dot product between "v⊥

N and "SN can be
rewritten as

"v⊥ · "SN →
A∑

i=1

1
2 ["vχ,in + "vχ,out − "vN,in(i) − "vN,out(i)] · "SN(i) (9)

= "v⊥
T ·

A∑

i=1

"SN(i) −
{

A∑

i=1

1
2 ["vN,in(i) + "vN,out(i)] · "SN(i)

}

int

(10)

The second term in the curly brackets is internal to the nucleus and acts as an operator on
the ‘in’ and ‘out’ nucleon states. "vN,in can be replaced by "pN,in/M acting on the incoming
state, which can in turn be replaced by i

←−∇/M , and similarly "pN,out/M by −i
−→∇/M on the

7
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In general one can write down the non-relativistic Lagrangian

General isospin couplings can be incorporated

The total interaction can be considered as a sum over single nucleon interactions

The DM-nucleon interactions can then be written 

outgoing nuclear state. Finally, since the nucleus is non-zero in size and individual nucleons
locally interact with the WIMP, nuclear operators built from Oi are accompanied by an addi-
tional spatial operator e−i!q·!x(i) where x(i) is the location of the ith nucleon inside the nucleus.

Starting from Eqn. 6 and using the substitution rules for !v⊥ and including a factor of
e−i!q·!xi , the interaction Lagrangian can be written as a sum of five distinct terms (nuclear
electroweak operators) that only act on internal nucleon states. Their coefficients, on the
other hand, act on WIMP ‘in’ and ‘out’ states. The WIMP-nucleus interaction can then be
written as

∑

τ=0,1

{
lτ
0S + lAτ

0 T +!lτ
5 · !P +!lτ

M · Q +!lτ
E · !R

}
tτ (i) (11)

where

S =
A∑

i=1
e−i!q·!xi

T =
A∑

i=1

1
2M

[
−1

i

←−∇ i · !σ(i)e−i!q·!xi + e−i!q·!xi!σ(i) · 1
i

−→∇ i

]

!P =
A∑

i=1
!σ(i)e−i!q·!xi

!Q =
A∑

i=1

1
2M

[
−1

i

←−∇ ie
−i!q·!xi + e−i!q·!xi

1
i

−→∇ i

]

!R =
A∑

i=1

1
2M

[←−∇ i × !σ(i)e−i!q·!xi + e−i!q·!xi!σ(i) × −→∇ i

]
(12)

and

lτ
0 = cτ

1 + icτ
5
!Sχ ·

(
!q

mN
× !v⊥

T

)

+ cτ
8(!Sχ · !v⊥

T ) + icτ
11

!q · !Sχ

mN

lAτ
0 = −1

2

[

cτ
7 + icτ

14

(
!Sχ · !q

mN

)]

!l5 = 1
2



cτ
3i

(
!q × !v⊥

T

)

mN
+ cτ

4
!Sχ + cτ

6
(!q · !Sχ)!q

m2
N

+ cτ
7!v

⊥
T + icτ

9
(!q × !Sχ)

mN
+ icτ

10
!q

mN





cτ
12(!v⊥

T × !Sχ) + icτ
13

(Sχ · !v⊥
T )!q

mN
+ icτ

14

(
!Sχ · !q

mN

)

!v⊥
T + cτ

15
(!q · !Sχ)(!q × !v⊥

T )
m2

N





!lM = cτ
5

(

i
!q

mN
× !Sχ

)

− !Sχcτ
8

!lE = 1
2



cτ
3

!q

mN
+ icτ

12
!Sχ − cτ

13
(!q × !Sχ)

mN
− icτ

15
(!q · !Sχ)!q

m2
N



 (13)
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outgoing nuclear state. Finally, since the nucleus is non-zero in size and individual nucleons
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m2
N
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These coefficients apply to the dark matter in and out states
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where YJM and !YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, Φ′′

, Σ′
, ∆, Σ′′

, Φ̃′

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [53], and codes have been supplied
to calculate the full amplitude and rate [54].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡ i
!q

mN
· S · !v⊥,

O18 ≡ i
!q

mN
· S · !SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [56] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how different interac-
tions with different nuclei arise from different UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
for maximum discrimination of the UV model parameter space.
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where YJM and !YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, Φ′′

, Σ′
, ∆, Σ′′

, Φ̃′

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [53], and codes have been supplied
to calculate the full amplitude and rate [54].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡ i
!q

mN
· S · !v⊥,

O18 ≡ i
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mN
· S · !SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [56] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how different interac-
tions with different nuclei arise from different UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
for maximum discrimination of the UV model parameter space.
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M =
∑

τ=0,1
〈jχ, Mχ; jN , MN |

{
lτ
0S + lAτ

0 T +!lτ
5 · !P +!lτ

M · Q +!lτ
E · !R

}
tτ (i)|jχ, Mχ; jN , MN〉.

(14)

By using spherical decomposition, the internal nuclear operators S, T, P, Q and R can be
further rewritten in terms of standard nuclear electroweak responses as follows:

M =
∑

τ=0,1
〈jχ, Mχf ; jN , MNf |

(
∑

J=0

√
4π(2J + 1)(−i)J

[
lτ
0MJ0;τ − ilAτ

0
q

mN
Ω̃J0;τ (q)

]
(15)

+
∑

J=1

√
2π(2J + 1)(−i)J

∑

λ±1
(−1)λ

{
lτ
5λ[λΣJ−λ;τ (q) + iΣ′

J−λ;τ (q)]

−i
q

mN
lτ
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mN
lτ
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Where there is an implicit sum over the nucleons,
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!∇i × !MM
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q
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!MM
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2MJM(qxi) (17)
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which can further be reduced to the standard nuclear electroweak responses

X

XX

X

To calculate cross-sections, one needs to square the amplitude, average over initial spins and sum 
over final states.
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〈No| mq q̄q |Ni〉 −→ fN
T qN̄N

〈No| q̄γ5q |Ni〉 −→ ∆q̃N N̄γ5N

〈No| q̄γµq |Ni〉 −→ N N
q N̄γµN

〈No| q̄γµγ5q |Ni〉 −→ ∆N
q N̄γµγ5N

〈No| q̄σµνq |Ni〉 −→ δN
q N̄σµνN

while for the heavy quarks

〈N | mq q̄q |N〉 = 2
27mNF N

T G = 2
27mN



1 −
∑

q=u,d,s

fN
T q



 . (C2)

Summing over all the quarks one finds

hN
1 =

∑

q=u,d,s

hq
1
mN

mq
fN

T q + 2
27fN

T G

∑

q=c,b,t

hq
1
mN

mq
(C3)

The psuedo-scalar bilinear was recently revisited in [59]:

hN
2 =

∑

q=u,d,s

hq
2∆q̃N − ∆G̃N

∑

q=c,b,t

hq
2

mq
(C4)

The vector bilinear essentially gives the number operator:

hN
3 =






2hu
3 + hd

3 N = p

hu
3 + 2hd

3 N = u
(C5)

The psuedo-vector bilinear counts the contributions of spin to the nucleon (note that
sometimes this coupling has a GF factored out to make it dimensionless)

hN
4 =

∑

q=u,d,s

hq
4∆N

q (C6)

Throughout this paper the following values are used (it should be noted that there are
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Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [51] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [51]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN
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)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)
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WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [51] in going from the NR
operators to the final differential WIMP-nucleus cross section.
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WIMP with the individual nucleons in the nucleus. Thus, the
mapping from the nucleon-level effective operators to nuclear
operators is made by the following generalization of Eq. (16),

∑

τ=0,1

15∑

i=1

cτ
i Oi t

τ →
∑

τ=0,1

15∑

i=1

cτ
i

A∑

j=1

Oi(j )tτ (j ). (32)

Now the nuclear operators appearing in this expression are
built from i "q/mN , a c number, "SN , which acts on intrinsic
nuclear coordinates, and the relative velocity operator "v⊥,
which now represents a set of A internal WIMP-nucleus

system velocities, A − 1 of which involve the relative coor-
dinates of bound nucleons (the Jacobi velocities), and one of
which is the velocity of the dark matter (DM) particle relative
to the nuclear center of mass,

"v⊥ →
{ 1

2 ["vχ ,in + "vχ ,out − "vN,in(i) − "vN,out(i)],i = 1, . . . ,A
}

≡ "v⊥
T − { "̇vN,in(i) + "̇vN,out(i),i = 1, . . . ,A − 1}. (33)

The DM particle/nuclear center of mass relative velocity is a
c number,

"v⊥
T = 1

2 ["vχ ,in + "vχ ,out − "vT,in(i) − "vT,out(i)], (34)

while the internal nuclear Jacobi velocities "̇vN are operators acting on intrinsic nuclear coordinates. [That is, for a single-nucleon
(A=1) target, "v⊥

T ≡ "v⊥, while for all nuclear targets, there are A − 1 additional velocity degrees of freedom associated with the
Jacobi internucleon velocities.] This separation is discussed in more detail in Appendix A.

In analogy with Eq. (27), one then obtains the WIMP-nucleus interaction

∑

τ=0,1

{

lτ0

A∑

i=1

e−i "q·"xi + lAτ
0

A∑

i=1

1
2M

[
−1

i

←−∇ i · "σ (i)e−i "q·"xi + e−i "q·"xi "σ (i) · 1
i

−→∇ i

]

+ "lτ5 ·
A∑

i=1

"σ (i)e−i "q·"xi + "lτM ·
A∑

i=1

1
2M

(
−1

i

←−∇ ie
−i "q·"xi + e−i "q·"xi

1
i

−→∇ i

)

+ "lτE ·
A∑

i=1

1
2M

[
←−∇ i × "σ (i)e−i "q·"xi + e−i "q·"xi "σ (i) × −→∇ i]

}

int

tτ (i), (35)

where the subscript “int” instructs one to take the intrinsic part of the nuclear operators (that is, the part dependent on the internal
Jacobi velocities). Comparing to Eq. (27), one sees that three new velocity-dependent densities appear: the nuclear axial charge
operator, familiar as the β decay operator that mediates 0+ ↔ 0− decays; the convection current, familiar from electromagnetism;
and a spin-velocity current that is less commonly discussed, but does arise as a higher-order correction in weak interactions. The
associated WIMP tensors contain the EFT input:

lτ0 = cτ
1 + i

( "q
mN

× "v⊥
T

)
· "Sχcτ

5 + "v⊥
T · "Sχcτ

8 + i
"q

mN

· "Sχcτ
11,

lAτ
0 = −1

2

[
cτ

7 + i
"q

mN

· "Sχcτ
14

]
,

"l5 = 1
2

[
i

"q
mN

× "v⊥
T cτ

3 + "Sχcτ
4 + "q

mN

"q
mN

· "Sχcτ
6 + "v⊥

T cτ
7 + i

"q
mN

× "Sχcτ
9 + i

"q
mN

cτ
10

(36)

+ "v⊥
T × "Sχcτ

12 + i
"q

mN

"v⊥
T · "Sχcτ

13 + i"v⊥
T

"q
mN

· "Sχcτ
14 + "q

mN

× "v⊥
T

"q
mN

· "Sχcτ
15

]
,

"lM = i
"q

mN

× "Sχcτ
5 − "Sχcτ

8 ,

"lE = 1
2

[ "q
mN

cτ
3 + i "Sχcτ

12 − "q
mN

× "Sχcτ
13 − i

"q
mN

"q
mN

· "Sχcτ
15

]
.

In Appendix A the products of plane waves and scalar/vector operators appearing in Eq. (35) are expanded in spherical and
vector spherical harmonics, and the resulting amplitude is squared, averaged over initial spins and summed over final spins. One
obtains

1
2jχ + 1

1
2jN + 1

∑

spins

|M|2nucleus/EFT = 4π

2jN + 1

∑

τ=0,1

∑

τ ′=0,1

{ ∞∑

J=0,2,...

[
Rττ ′

M

(
"v⊥2
T ,

"q2

m2
N

)
〈jN ||MJ ;τ (q)||jN 〉〈jN ||MJ ;τ ′(q)||jN 〉

+ "q2

m2
N

Rττ ′

&′′

(
"v⊥2
T ,

"q2

m2
N

)
〈jN ||&′′

J ;τ (q)||jN 〉〈jN ||&′′
J ;τ ′(q)||jN 〉

065501-9
JBD, L.M. Krauss, J.L. Newstead, and S. Sabharwal, arXiv: 1505.03117

Sunday, May 17, 2015



The full process takes the schematic form

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

qχ (34)

(35)

(36)

2

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

qχ (34)

(35)

(36)

2

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

qχ (34)

(35)

(36)

2

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

qχ (34)

(35)

qφ φχ (36)

2

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

nχ qχ (34)

(35)

qφ φχ (36)

2

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

nχ qχ (34)

(35)

qφ φχ (36)

(37)

χ− nucleus (38)

2

〈No| mq q̄q |Ni〉 −→ fN
T qN̄N

〈No| q̄γ5q |Ni〉 −→ ∆q̃N N̄γ5N

〈No| q̄γµq |Ni〉 −→ N N
q N̄γµN

〈No| q̄γµγ5q |Ni〉 −→ ∆N
q N̄γµγ5N

〈No| q̄σµνq |Ni〉 −→ δN
q N̄σµνN

while for the heavy quarks

〈N | mq q̄q |N〉 = 2
27mNF N

T G = 2
27mN



1 −
∑

q=u,d,s

fN
T q



 . (C2)

Summing over all the quarks one finds

hN
1 =

∑

q=u,d,s

hq
1
mN

mq
fN

T q + 2
27fN

T G

∑

q=c,b,t

hq
1
mN

mq
(C3)

The psuedo-scalar bilinear was recently revisited in [59]:

hN
2 =

∑

q=u,d,s

hq
2∆q̃N − ∆G̃N

∑

q=c,b,t

hq
2

mq
(C4)

The vector bilinear essentially gives the number operator:

hN
3 =






2hu
3 + hd

3 N = p

hu
3 + 2hd

3 N = u
(C5)

The psuedo-vector bilinear counts the contributions of spin to the nucleon (note that
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where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [51] in going from the NR
operators to the final differential WIMP-nucleus cross section.
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WIMP with the individual nucleons in the nucleus. Thus, the
mapping from the nucleon-level effective operators to nuclear
operators is made by the following generalization of Eq. (16),
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system velocities, A − 1 of which involve the relative coor-
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T ≡ "v⊥, while for all nuclear targets, there are A − 1 additional velocity degrees of freedom associated with the
Jacobi internucleon velocities.] This separation is discussed in more detail in Appendix A.

In analogy with Eq. (27), one then obtains the WIMP-nucleus interaction

∑

τ=0,1

{

lτ0

A∑

i=1

e−i "q·"xi + lAτ
0

A∑

i=1

1
2M

[
−1

i

←−∇ i · "σ (i)e−i "q·"xi + e−i "q·"xi "σ (i) · 1
i

−→∇ i

]

+ "lτ5 ·
A∑

i=1

"σ (i)e−i "q·"xi + "lτM ·
A∑

i=1

1
2M

(
−1

i

←−∇ ie
−i "q·"xi + e−i "q·"xi

1
i

−→∇ i

)

+ "lτE ·
A∑

i=1

1
2M

[
←−∇ i × "σ (i)e−i "q·"xi + e−i "q·"xi "σ (i) × −→∇ i]

}

int

tτ (i), (35)

where the subscript “int” instructs one to take the intrinsic part of the nuclear operators (that is, the part dependent on the internal
Jacobi velocities). Comparing to Eq. (27), one sees that three new velocity-dependent densities appear: the nuclear axial charge
operator, familiar as the β decay operator that mediates 0+ ↔ 0− decays; the convection current, familiar from electromagnetism;
and a spin-velocity current that is less commonly discussed, but does arise as a higher-order correction in weak interactions. The
associated WIMP tensors contain the EFT input:

lτ0 = cτ
1 + i

( "q
mN

× "v⊥
T

)
· "Sχcτ

5 + "v⊥
T · "Sχcτ

8 + i
"q

mN

· "Sχcτ
11,

lAτ
0 = −1

2

[
cτ

7 + i
"q

mN

· "Sχcτ
14

]
,

"l5 = 1
2

[
i

"q
mN

× "v⊥
T cτ

3 + "Sχcτ
4 + "q

mN

"q
mN

· "Sχcτ
6 + "v⊥

T cτ
7 + i

"q
mN

× "Sχcτ
9 + i

"q
mN

cτ
10

(36)

+ "v⊥
T × "Sχcτ

12 + i
"q

mN

"v⊥
T · "Sχcτ

13 + i"v⊥
T

"q
mN

· "Sχcτ
14 + "q

mN

× "v⊥
T

"q
mN

· "Sχcτ
15

]
,

"lM = i
"q

mN

× "Sχcτ
5 − "Sχcτ

8 ,

"lE = 1
2

[ "q
mN

cτ
3 + i "Sχcτ

12 − "q
mN

× "Sχcτ
13 − i

"q
mN

"q
mN

· "Sχcτ
15

]
.

In Appendix A the products of plane waves and scalar/vector operators appearing in Eq. (35) are expanded in spherical and
vector spherical harmonics, and the resulting amplitude is squared, averaged over initial spins and summed over final spins. One
obtains

1
2jχ + 1

1
2jN + 1

∑

spins

|M|2nucleus/EFT = 4π

2jN + 1

∑

τ=0,1

∑

τ ′=0,1

{ ∞∑

J=0,2,...

[
Rττ ′

M

(
"v⊥2
T ,

"q2

m2
N

)
〈jN ||MJ ;τ (q)||jN 〉〈jN ||MJ ;τ ′(q)||jN 〉

+ "q2

m2
N

Rττ ′

&′′

(
"v⊥2
T ,

"q2

m2
N

)
〈jN ||&′′

J ;τ (q)||jN 〉〈jN ||&′′
J ;τ ′(q)||jN 〉
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The full process takes the schematic form
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〈No| mq q̄q |Ni〉 −→ fN
T qN̄N

〈No| q̄γ5q |Ni〉 −→ ∆q̃N N̄γ5N

〈No| q̄γµq |Ni〉 −→ N N
q N̄γµN

〈No| q̄γµγ5q |Ni〉 −→ ∆N
q N̄γµγ5N

〈No| q̄σµνq |Ni〉 −→ δN
q N̄σµνN

while for the heavy quarks

〈N | mq q̄q |N〉 = 2
27mNF N

T G = 2
27mN



1 −
∑

q=u,d,s

fN
T q



 . (C2)

Summing over all the quarks one finds

hN
1 =

∑

q=u,d,s

hq
1
mN

mq
fN

T q + 2
27fN

T G

∑

q=c,b,t

hq
1
mN

mq
(C3)

The psuedo-scalar bilinear was recently revisited in [59]:

hN
2 =

∑

q=u,d,s

hq
2∆q̃N − ∆G̃N

∑

q=c,b,t

hq
2

mq
(C4)

The vector bilinear essentially gives the number operator:

hN
3 =






2hu
3 + hd

3 N = p

hu
3 + 2hd

3 N = u
(C5)

The psuedo-vector bilinear counts the contributions of spin to the nucleon (note that
sometimes this coupling has a GF factored out to make it dimensionless)

hN
4 =

∑

q=u,d,s

hq
4∆N

q (C6)

Throughout this paper the following values are used (it should be noted that there are
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with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is

dR

dER
¼ !"

m"mN

Z
jvj>vmin

jvjfðvÞ d#
dER

d3v; (1)

where!" is the local darkmatter density, andm",mN are the
WIMP and nucleus masses, respectively. The integral aver-
ages over the velocity distribution of WIMPs fðvÞ weighted
by the differential cross section d#

dER
. Kinematically the mini-

mum velocity, vmin , that can contribute to a recoil of energy
ER is [5]

vmin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ERmN

p
"
ERmN

$"N
þ %

#
; (2)

where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#

dER
¼ mN

2v2$2
"N

#0F
2ðERÞ: (3)

The WIMP-nucleon cross section can be written in terms

of contributions from neutron and proton scattering, #0 ¼
4$2

"N

& ½Zfp þ ðA& ZÞfn'2, where A and Z are the atomic

mass and number of the detector material, #"n ¼ 4$2
"n

& f2n

and #"p ¼ 4$2
"p

& f2p. Setting the proton and neutron masses
to be equal, an appropriate approximation at the level of
accuracy of relevance here, allows one to write #"n ¼
ðfnfpÞ

2#"p, such that the factor
fn
fp
neatly incorporates isospin

violating interactions. Equation (1) then becomes

dR

dER
¼ #"p

2m"$
2
"p

"
Zþ fn

fp
ðA& ZÞ

#
2
F2ðERÞGðvmin Þ; (4)

where we have defined

Gðvmin Þ ¼ !"

Z
jvj>vmin

fðvÞ
jvj d3v: (5)

Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters

1. Isospin and inelasticity

We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
mentioned earlier. When the isospin factor is not unity or
the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with

the same mass (solid line). A Maxwell-Boltzmann phase-space distribution and the Helm form factor have been assumed (see later
sections). Left: From top to bottom, fn=fp ¼ f1:5; 1; 0:5;&1g. Right: From top to bottom, % ¼ f0; 25; 50; 75; 100g keV.

NEWSTEAD et al. PHYSICAL REVIEW D 88, 076011 (2013)

076011-2

Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [51] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [51]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)
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WIMP with the individual nucleons in the nucleus. Thus, the
mapping from the nucleon-level effective operators to nuclear
operators is made by the following generalization of Eq. (16),

∑

τ=0,1

15∑

i=1

cτ
i Oi t

τ →
∑

τ=0,1

15∑

i=1

cτ
i

A∑

j=1

Oi(j )tτ (j ). (32)

Now the nuclear operators appearing in this expression are
built from i "q/mN , a c number, "SN , which acts on intrinsic
nuclear coordinates, and the relative velocity operator "v⊥,
which now represents a set of A internal WIMP-nucleus

system velocities, A − 1 of which involve the relative coor-
dinates of bound nucleons (the Jacobi velocities), and one of
which is the velocity of the dark matter (DM) particle relative
to the nuclear center of mass,

"v⊥ →
{ 1

2 ["vχ ,in + "vχ ,out − "vN,in(i) − "vN,out(i)],i = 1, . . . ,A
}

≡ "v⊥
T − { "̇vN,in(i) + "̇vN,out(i),i = 1, . . . ,A − 1}. (33)

The DM particle/nuclear center of mass relative velocity is a
c number,

"v⊥
T = 1

2 ["vχ ,in + "vχ ,out − "vT,in(i) − "vT,out(i)], (34)

while the internal nuclear Jacobi velocities "̇vN are operators acting on intrinsic nuclear coordinates. [That is, for a single-nucleon
(A=1) target, "v⊥

T ≡ "v⊥, while for all nuclear targets, there are A − 1 additional velocity degrees of freedom associated with the
Jacobi internucleon velocities.] This separation is discussed in more detail in Appendix A.

In analogy with Eq. (27), one then obtains the WIMP-nucleus interaction

∑

τ=0,1

{

lτ0

A∑

i=1

e−i "q·"xi + lAτ
0

A∑

i=1

1
2M

[
−1

i

←−∇ i · "σ (i)e−i "q·"xi + e−i "q·"xi "σ (i) · 1
i

−→∇ i

]

+ "lτ5 ·
A∑

i=1

"σ (i)e−i "q·"xi + "lτM ·
A∑

i=1

1
2M

(
−1

i

←−∇ ie
−i "q·"xi + e−i "q·"xi

1
i

−→∇ i

)

+ "lτE ·
A∑

i=1

1
2M

[
←−∇ i × "σ (i)e−i "q·"xi + e−i "q·"xi "σ (i) × −→∇ i]

}

int

tτ (i), (35)

where the subscript “int” instructs one to take the intrinsic part of the nuclear operators (that is, the part dependent on the internal
Jacobi velocities). Comparing to Eq. (27), one sees that three new velocity-dependent densities appear: the nuclear axial charge
operator, familiar as the β decay operator that mediates 0+ ↔ 0− decays; the convection current, familiar from electromagnetism;
and a spin-velocity current that is less commonly discussed, but does arise as a higher-order correction in weak interactions. The
associated WIMP tensors contain the EFT input:

lτ0 = cτ
1 + i

( "q
mN

× "v⊥
T

)
· "Sχcτ

5 + "v⊥
T · "Sχcτ

8 + i
"q

mN

· "Sχcτ
11,

lAτ
0 = −1

2

[
cτ

7 + i
"q

mN

· "Sχcτ
14

]
,

"l5 = 1
2

[
i

"q
mN

× "v⊥
T cτ

3 + "Sχcτ
4 + "q

mN

"q
mN

· "Sχcτ
6 + "v⊥

T cτ
7 + i

"q
mN

× "Sχcτ
9 + i

"q
mN

cτ
10

(36)

+ "v⊥
T × "Sχcτ

12 + i
"q

mN

"v⊥
T · "Sχcτ

13 + i"v⊥
T

"q
mN

· "Sχcτ
14 + "q

mN

× "v⊥
T

"q
mN

· "Sχcτ
15

]
,

"lM = i
"q

mN

× "Sχcτ
5 − "Sχcτ

8 ,

"lE = 1
2

[ "q
mN

cτ
3 + i "Sχcτ

12 − "q
mN

× "Sχcτ
13 − i

"q
mN

"q
mN

· "Sχcτ
15

]
.

In Appendix A the products of plane waves and scalar/vector operators appearing in Eq. (35) are expanded in spherical and
vector spherical harmonics, and the resulting amplitude is squared, averaged over initial spins and summed over final spins. One
obtains

1
2jχ + 1

1
2jN + 1

∑

spins

|M|2nucleus/EFT = 4π

2jN + 1

∑

τ=0,1

∑

τ ′=0,1

{ ∞∑

J=0,2,...

[
Rττ ′

M

(
"v⊥2
T ,

"q2

m2
N

)
〈jN ||MJ ;τ (q)||jN 〉〈jN ||MJ ;τ ′(q)||jN 〉

+ "q2

m2
N

Rττ ′

&′′

(
"v⊥2
T ,

"q2

m2
N

)
〈jN ||&′′

J ;τ (q)||jN 〉〈jN ||&′′
J ;τ ′(q)||jN 〉
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For our cases of interest we integrate out the mediator, which amounts to 
assuming the mediator mass is much larger than the recoil momentum of the 
interaction

c = 1 = ! (1)
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2
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1
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For our cases of interest we integrate out the mediator, which amounts to 
assuming the mediator mass is much larger than the recoil momentum of the 
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assume that this gauge charge isn’t shared by quarks. We will couple the WIMP to the
quarks via a heavy mediator in two distinct ways, charged and uncharged mediators, each
with all possible spins consistent with angular momentum conservation. The mediator mass
is chosen to be the heaviest scale in the problem so that we can integrate it out (see appendix
B for details). This leads to relativistic effective WIMP-nucleon interactions, whose NR
limit can then be examined. In the uncharged mediator case we will consider mediators
that are neutral under all SM and WIMP gauge charges, while in the charged case, the
mediator must have both WIMP and SM gauge charges. Given the above as a guide, our
Lagrangian construction is then constrained only by gauge invariance, Lorentz invariance,
renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians

1. Scalar Dark Matter

We begin with a spin-0 scalar WIMP, S, which has some internal charge so that S† is its
hermitian conjugate. To have renormalizable interactions, the neutral mediator can only be
a scalar or a vector. We denote the scalar mediator by φ and the vector mediator by Gµ.
Unless otherwise noted, all of the following coupling constants are real.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LSφq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q

−g1S
†Sφ − g2

2 S†Sφ2 − h1q̄qφ − ih2q̄γ5qφ, (19)

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
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assume that this gauge charge isn’t shared by quarks. We will couple the WIMP to the
quarks via a heavy mediator in two distinct ways, charged and uncharged mediators, each
with all possible spins consistent with angular momentum conservation. The mediator mass
is chosen to be the heaviest scale in the problem so that we can integrate it out (see appendix
B for details). This leads to relativistic effective WIMP-nucleon interactions, whose NR
limit can then be examined. In the uncharged mediator case we will consider mediators
that are neutral under all SM and WIMP gauge charges, while in the charged case, the
mediator must have both WIMP and SM gauge charges. Given the above as a guide, our
Lagrangian construction is then constrained only by gauge invariance, Lorentz invariance,
renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians

1. Scalar Dark Matter

We begin with a spin-0 scalar WIMP, S, which has some internal charge so that S† is its
hermitian conjugate. To have renormalizable interactions, the neutral mediator can only be
a scalar or a vector. We denote the scalar mediator by φ and the vector mediator by Gµ.
Unless otherwise noted, all of the following coupling constants are real.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by
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where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
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assume that this gauge charge isn’t shared by quarks. We will couple the WIMP to the
quarks via a heavy mediator in two distinct ways, charged and uncharged mediators, each
with all possible spins consistent with angular momentum conservation. The mediator mass
is chosen to be the heaviest scale in the problem so that we can integrate it out (see appendix
B for details). This leads to relativistic effective WIMP-nucleon interactions, whose NR
limit can then be examined. In the uncharged mediator case we will consider mediators
that are neutral under all SM and WIMP gauge charges, while in the charged case, the
mediator must have both WIMP and SM gauge charges. Given the above as a guide, our
Lagrangian construction is then constrained only by gauge invariance, Lorentz invariance,
renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians

1. Scalar Dark Matter

We begin with a spin-0 scalar WIMP, S, which has some internal charge so that S† is its
hermitian conjugate. To have renormalizable interactions, the neutral mediator can only be
a scalar or a vector. We denote the scalar mediator by φ and the vector mediator by Gµ.
Unless otherwise noted, all of the following coupling constants are real.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by
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assume that this gauge charge isn’t shared by quarks. We will couple the WIMP to the
quarks via a heavy mediator in two distinct ways, charged and uncharged mediators, each
with all possible spins consistent with angular momentum conservation. The mediator mass
is chosen to be the heaviest scale in the problem so that we can integrate it out (see appendix
B for details). This leads to relativistic effective WIMP-nucleon interactions, whose NR
limit can then be examined. In the uncharged mediator case we will consider mediators
that are neutral under all SM and WIMP gauge charges, while in the charged case, the
mediator must have both WIMP and SM gauge charges. Given the above as a guide, our
Lagrangian construction is then constrained only by gauge invariance, Lorentz invariance,
renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians

1. Scalar Dark Matter

We begin with a spin-0 scalar WIMP, S, which has some internal charge so that S† is its
hermitian conjugate. To have renormalizable interactions, the neutral mediator can only be
a scalar or a vector. We denote the scalar mediator by φ and the vector mediator by Gµ.
Unless otherwise noted, all of the following coupling constants are real.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by
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For our cases of interest we integrate out the mediator, which amounts to 
assuming the mediator mass is much larger than the recoil momentum of the 
interaction
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We have analyzed the cases:

In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of 0, 1

2 and 1. We do however only consider renormalizable inter-
actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP
is either charged under some internal gauge group or a discrete symmetry group (for example
Z2). However, we assume that this gauge charge is not shared by quarks. We will couple
the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged
mediators, each with all possible spins consistent with angular momentum conservation.
The mediator mass is chosen to be the heaviest scale in the problem (and certainly much
greater than the momentum exchange which characterizes the scattering process) so that we
can integrate it out (see appendix B for details). This leads to relativistic effective WIMP-
nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case
we will consider mediators that are neutral under all SM and WIMP gauge charges, while
in the charged case, the mediator must have both WIMP and SM gauge charges. Given the
above as a guide, our Lagrangian construction is then constrained only by gauge invariance,
Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians
1. Scalar Dark Matter
We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by φ and the
vector mediator by Gµ with field strength tensor Gµν . Unless otherwise noted, all of the
following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LSφq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

+1
2∂µφ∂µφ − 1
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4 φ4
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11

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

−1
4GµνGµν + 1

2m2
GGµGµ − λG

4 (GµGµ)2

+iq̄ /Dq − mq q̄q

−g3
2 S†SGµGµ − ig4(S†∂µS − ∂µS†S)Gµ

−h3(q̄γµq)Gµ − h4(q̄γµγ5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by χ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (φ) and vector mediator (Gµ) cases respectively are given below,

Lχφq = iχ̄ /Dχ − mχχ̄χ

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4
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LχGq = iχ̄ /Dχ − mχχ̄χ

−1
4GµνGµν + 1

2m2
GGµGµ

+iq̄D/ q − mq q̄q

−λ3χ̄γµχGµ − λ4χ̄γµγ5χGµ

−h3q̄γµqGµ − h4q̄γµγ5qGµ. (22)

3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are

12

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

nχ qχ (34)

(35)

qφ φχ (36)

(37)

χ− nucleus (38)

(39)

ψ1ψ2Z , ψ3ψ4Z → ψ1ψ2ψ3ψ4 (40)

(41)

Xµ (42)
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spin-0 spin-1/2 spin-1

Dark Matter
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In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of 0, 1

2 and 1. We do however only consider renormalizable inter-
actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP
is either charged under some internal gauge group or a discrete symmetry group (for example
Z2). However, we assume that this gauge charge is not shared by quarks. We will couple
the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged
mediators, each with all possible spins consistent with angular momentum conservation.
The mediator mass is chosen to be the heaviest scale in the problem (and certainly much
greater than the momentum exchange which characterizes the scattering process) so that we
can integrate it out (see appendix B for details). This leads to relativistic effective WIMP-
nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case
we will consider mediators that are neutral under all SM and WIMP gauge charges, while
in the charged case, the mediator must have both WIMP and SM gauge charges. Given the
above as a guide, our Lagrangian construction is then constrained only by gauge invariance,
Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians
1. Scalar Dark Matter
We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by φ and the
vector mediator by Gµ with field strength tensor Gµν . Unless otherwise noted, all of the
following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LSφq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

+1
2∂µφ∂µφ − 1

2m2
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3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q
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2 S†Sφ2 − h1q̄qφ − ih2q̄γ5qφ, (19)
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where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
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2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by χ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (φ) and vector mediator (Gµ) cases respectively are given below,
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After the non-relativistic reduction, we matched onto the Oi operators

where YJM and !YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, Φ′′

, Σ′
, ∆, Σ′′

, Φ̃′

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [51], and codes have been supplied
to calculate the full amplitude and rate [52].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡ i!q

mN
· S · !v⊥,

O18 ≡ i!q

mN
· S · !SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [54] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how different interac-
tions with different nuclei arise from different UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
for maximum discrimination of the UV model parameter space.

10

Two additional non-relativistic operators must be included in the vector dark matter case

Appendix A: Vector Dark Matter

If the WIMP has spin 1, we find two extra operators that haven’t been considered pre-
viously. Specifically, the operators depend on the symmetric combination of polarization
vectors, Sij = 1

2

(
ε†

iεj + ε†
jεi

)
. This necessitates a modification to the WIMP response func-

tions by first modifying the " coefficients given in Eq. 13. Based on our non-relativistic
reduction for vector dark matter, the Lagrangian for vector dark matter and the nucleus,
interacting via an uncharged scalar or vector mediator can be written in general as:

Lvector = c1O1 + c4O4 + c5O5 + c8O8 + c9O9 + c10O10 + c11O11 + c14O14 + c17O17 + c18O18

(A1)

where we’ve defined O17 ≡ i!q
mN

· S · #v⊥ and O18 ≡ i!q
mN

· S · #SN and the ci’s are given in
table IV. To decompose these new operators we replace #v⊥ with the target velocity and the
internucleon velocities and sum over nucleons. O17 can then be put into the form

O17 → i#q

mN
.S.

[

#v⊥
T e−i!q.!xi −

A∑

i=1

1
2M

(
−1

i

←−∇ ie
−i!q·!xi + e−i!q·!xi

1
i

−→∇ i

)

int

]

. (A2)

O18 can be expanded as

O18 → 1
2

i#q

mN
· S · #σ (A3)

Together, all the terms of Lvector give rise to the following " factors from Eq. 13,

"τ
0 = cτ

1 + i

(
#q

mN
× #v⊥

T

)

· #Sχcτ
5 + (#v⊥

T · #Sχ)cτ
8 + i

(
#q

mN
· #Sχ

)

cτ
11 + i

(
#q

mN
· S · #vT

⊥

)

cτ
17

lAτ
0 = −i

(
#q

2mN
· #Sχ

)

cτ
14

#lτ
E = 0 (A4)

#lτ
M = i

(
#q

mN
× #Sχ

)

cτ
5 − #Sχcτ

8 − i

(
#q

mN
· S

)

cτ
17

#lτ
5 = 1

2
#Sχcτ

4 + i

(
#q

mN
× #Sχ

)

cτ
9 + 1

2

(

i
#q

mN

)

cτ
10 + 1

2#v⊥
T

(
#q

2mN
· #Sχ

)

cτ
14 + 1

2

(

i
#q

mN
· S

)

cτ
18

Based on the "’s above, the coefficients of the various nuclear responses are found by squaring
the amplitude and then summing over spins. To simplify calculations, we choose a convenient
basis for polarization vectors, εs

i = δs
i . Recall that the spin can then be written as the anti-

symmetric combination iSk = εijkε†
iεj. The WIMP responses unique to the vector case are

26
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Some EFT Oi terms do not appear
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table IV. To decompose these new operators we replace #v⊥ with the target velocity and the
internucleon velocities and sum over nucleons. O17 can then be put into the form
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O18 can be expanded as
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Together, all the terms of Lvector give rise to the following " factors from Eq. 13,
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Based on the "’s above, the coefficients of the various nuclear responses are found by squaring
the amplitude and then summing over spins. To simplify calculations, we choose a convenient
basis for polarization vectors, εs

i = δs
i . Recall that the spin can then be written as the anti-

symmetric combination iSk = εijkε†
iεj. The WIMP responses unique to the vector case are
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After the non-relativistic reduction, we matched onto the Oi operators

We calculated the leading order operator for each distinct interaction in a minimal fashion: only a 
single set of two couplings is non-zero

where YJM and !YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, Φ′′

, Σ′
, ∆, Σ′′

, Φ̃′

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [51], and codes have been supplied
to calculate the full amplitude and rate [52].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡ i!q

mN
· S · !v⊥,

O18 ≡ i!q

mN
· S · !SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [54] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how different interac-
tions with different nuclei arise from different UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
for maximum discrimination of the UV model parameter space.

10

Two additional non-relativistic operators must be included in the vector dark matter case

Some EFT Oi terms do not appear

Appendix A: Vector Dark Matter

If the WIMP has spin 1, we find two extra operators that haven’t been considered pre-
viously. Specifically, the operators depend on the symmetric combination of polarization
vectors, Sij = 1
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. This necessitates a modification to the WIMP response func-

tions by first modifying the " coefficients given in Eq. 13. Based on our non-relativistic
reduction for vector dark matter, the Lagrangian for vector dark matter and the nucleus,
interacting via an uncharged scalar or vector mediator can be written in general as:
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Based on the "’s above, the coefficients of the various nuclear responses are found by squaring
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iεj. The WIMP responses unique to the vector case are

26

J. Fan, M. Reece, and L-T. Wang, JCAP 1011 (2010) 042, arXiv:1008.1591

Sunday, May 17, 2015



0 10 20 30 40 50
10!19

10!14

10!9

10!4

ER"keV#

re
la

tiv
e

st
re

ng
th !1

!2

!3

!4

!5

!6

!7

!8

!9

!10

!11

!12

!13

!14

!15

!17

!18

FIG. 1. The relative strength of event rates for a 50GeV spin-1
2 WIMP in xenon for each of the

non-relativistic operators in table I, where the coefficients of each operator are set to be equal

to evade the current experimental constraints. For example, a 50 GeV WIMP producing
10 events per tonne per year is sufficiently low to evade the bounds from LUX [21]. For
demonstration purposes we set the couplings to 0.1 (or 0.1i for imaginary) in the various
Lagrangians and find a mediator mass that will produce 10 events/t/y in the signal region
for xenon (5 − 45keV). The calculated masses are given in table V. It is perhaps telling that
the mediator masses span 6 orders of magnitude, from just a few GeV up to a PeV. While
it is unlikely that a full model of thermal relic dark matter could be built around all of
these Lagrangians, it is nevertheless a useful metric to estimate the relative strength of the
different nuclear responses to each of the operators.

In Figs. 2, 3, 4 and 5 we have plotted rates for two common targets. For simplicity and
again for demonstration purposes, we only plot the rates for a single isotope of both ger-
manium and xenon. The choice of isotopes, 73Ge and 131Xe, was made to ensure sensitivity
to spin-dependent responses. As can be seen in the figures, many operators produce rates
with similar recoil energy dependence in the same target, but different nuclei can have very
different responses to the various operators [53]. Thus a complementary choice of nuclear
targets can provide important discriminating information.

To illustrate this discriminating power we plot the ratio of the rates in xenon and ger-
manium in Fig. 5 and 6. We choose to only present ratios for the uncharged mediator
cases of spinor and vector WIMPs since the other cases produce trival results (all operators
being spin independent). To estimate the effect astrophysical uncertainties will have on
discriminating between operators, we plot the rate for a range of astrophysical parame-
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Relative strength of operators, in order to compare which operators dominate when more than one 
are present
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Aside from scalar WIMPs each particular spin produces some non-relativistic operators that are 
unique to that spin

Two non-relativistic operators, O1 and O10, are ubiquitous and arise for all WIMP spins we have 
explored

incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [46]
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)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

where the coefficients cα
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
∑

τ=0,1

15∑
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i Oit
τ (5)
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In five scenarios relativistic operators generate unique non-relativistic operators at leading order.
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Aside from scalar WIMPs each particular spin produces some non-relativistic operators that are 
unique to that spin

Two non-relativistic operators, O1 and O10, are ubiquitous and arise for all WIMP spins we have 
explored

In five scenarios relativistic operators generate unique non-relativistic operators at leading order.

The operators can produce radically different energy dependence for scattering off different 
nuclear targets.  Thus, a complementary use of different target materials will be helpful in order to 
reliably distinguish between different particle physics model possibilities for WIMP dark matter.
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i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
∑

τ=0,1

15∑

i=1
cτ

i Oit
τ (5)
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TABLE VI. List of scenarios with leading operators colored by which are distinguishable via the

ratio dRXe
dE /dRGe

dE .

O1 O2 O3 O4 q2O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O17 O18

(h1, g1) !

(h2, g1) !

(h4, g4) !

Sp
in

-0
W

IM
P

(y1) ! !

(y2) ! !

(y1, y2) !

(h1, λ1) !

(h2, λ1) !

(h1, λ2) !

(h2, λ2) !

(h3, λ3) !

(h4, λ3) ! !

(h3, λ4) ! !

Sp
in

-1 2
W

IM
P

(h4, λ4) !

(l1) ! ! !

(l2) ! ! !

(d1) ! ! !

(d2) ! ! !

(h1, b1) !

(h2, b1) !

(h4, b5) !

(h3, b6) ! ! ! !*
(h4, b6) ! !*

Sp
in

-1
W

IM
P

(h3, b7) !* !* !

(h4, b7) !* ! ! !

(y3) ! ! ! ! ! !

(y4) ! ! ! ! ! !

(y3, y4) ! ! ! !

a

a * indicates the purely imaginary scenario for that coupling
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TABLE V. Leading order operators which can arise from the relativistic Lagrangians considered in

this work, the column ‘L terms’ gives the non-zero couplings for that scenario. Each row represents

a possible leading order direct detection signal. A ‘*’ indicates that the mediator is charged. The

’Eqv. Mm’ column gives the mediator mass required for each scenario to produce ∼10 events

t−1yr−1keV −1 in xenon, with couplings set to 0.1.
WIMP spin Mediator spin L terms leading NR operator Eqv. Mm

0 0 h1, g1 O1 13 TeV
0 0 h2, g1 O10 14 GeV
0 1 h4, g4 O10 8 GeV
0 1

2
∗

y1 O1 3.2 PeV
0 1

2
∗

y2 O1 3.2 PeV
0 1

2
∗

y1, y2 O10 41 GeV
1
2 0 h1, λ1 O1 12.7 TeV
1
2 0 h2, λ1 O10 293 GeV
1
2 0 h1, λ2 O11 14 GeV
1
2 0 h2, λ2 O6 1.9 GeV
1
2 1 h3, λ3 O1 6.3 TeV
1
2 1 h4, λ3 O9 6.4 GeV
1
2 1 h3, λ4 O8 180 GeV
1
2 1 h4, λ4 O4 135 GeV
1
2 0* l1 O1 7.1 TeV
1
2 0* l2 O1 5.5 TeV
1
2 1* d1 O1 5.9 TeV
1
2 1* d2 O1 6.7 TeV
1 0 h1, b1 O1 13 TeV
1 0 h2, b1 O10 10 GeV
1 1 h4, b5 O10 5.1 GeV
1 1 h3, bRe

6 (bIm
6 ) O5(O17) 5.5 GeV(23 GeV)

1 1 h4, bRe
6 (bIm

6 ) O9(O18) 3 GeV(4.6 GeV)
1 1 h3, bRe

7 (bIm
7 ) O11(O8) 186 GeV(228 GeV)

1 1 h4, bRe
7 (bIm

7 ) O14(O4) 65 MeV (172 GeV)
1 1

2
∗

y3 O1 3.2 PeV
1 1

2
∗

y4 O1 3.2 PeV
1 1

2
∗

y3, y4 O11 120 TeV

22

In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of 0, 1

2 and 1. We do however only consider renormalizable inter-
actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP
is either charged under some internal gauge group or a discrete symmetry group (for example
Z2). However, we assume that this gauge charge is not shared by quarks. We will couple
the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged
mediators, each with all possible spins consistent with angular momentum conservation.
The mediator mass is chosen to be the heaviest scale in the problem (and certainly much
greater than the momentum exchange which characterizes the scattering process) so that we
can integrate it out (see appendix B for details). This leads to relativistic effective WIMP-
nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case
we will consider mediators that are neutral under all SM and WIMP gauge charges, while
in the charged case, the mediator must have both WIMP and SM gauge charges. Given the
above as a guide, our Lagrangian construction is then constrained only by gauge invariance,
Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians
1. Scalar Dark Matter
We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by φ and the
vector mediator by Gµ with field strength tensor Gµν . Unless otherwise noted, all of the
following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LSφq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q

−g1mSS†Sφ − g2
2 S†Sφ2 − h1q̄qφ − ih2q̄γ5qφ, (19)
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TABLE VI. List of scenarios with leading operators colored by which are distinguishable via the

ratio dRXe
dE /dRGe
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a * indicates the purely imaginary scenario for that coupling
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this work, the column ‘L terms’ gives the non-zero couplings for that scenario. Each row represents

a possible leading order direct detection signal. A ‘*’ indicates that the mediator is charged. The

’Eqv. Mm’ column gives the mediator mass required for each scenario to produce ∼10 events

t−1yr−1keV −1 in xenon, with couplings set to 0.1.
WIMP spin Mediator spin L terms leading NR operator Eqv. Mm
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2 1 h4, λ4 O4 135 GeV
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2 0* l1 O1 7.1 TeV
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2 0* l2 O1 5.5 TeV
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2 1* d1 O1 5.9 TeV
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2 1* d2 O1 6.7 TeV
1 0 h1, b1 O1 13 TeV
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6 ) O5(O17) 5.5 GeV(23 GeV)
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Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

6
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to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
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O8 !Sχ · !v⊥
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mN
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· !SN
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where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
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In general one can write down the non-relativistic interaction Lagrangian as
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i Oα
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Hermitian vectors are:
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2µN
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where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]
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In general one can write down the non-relativistic interaction Lagrangian as

LNR =
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15∑
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cα

i Oα
i , (4)
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In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of 0, 1

2 and 1. We do however only consider renormalizable inter-
actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP
is either charged under some internal gauge group or a discrete symmetry group (for example
Z2). However, we assume that this gauge charge is not shared by quarks. We will couple
the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged
mediators, each with all possible spins consistent with angular momentum conservation.
The mediator mass is chosen to be the heaviest scale in the problem (and certainly much
greater than the momentum exchange which characterizes the scattering process) so that we
can integrate it out (see appendix B for details). This leads to relativistic effective WIMP-
nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case
we will consider mediators that are neutral under all SM and WIMP gauge charges, while
in the charged case, the mediator must have both WIMP and SM gauge charges. Given the
above as a guide, our Lagrangian construction is then constrained only by gauge invariance,
Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians
1. Scalar Dark Matter
We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by φ and the
vector mediator by Gµ with field strength tensor Gµν . Unless otherwise noted, all of the
following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LSφq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q

−g1mSS†Sφ − g2
2 S†Sφ2 − h1q̄qφ − ih2q̄γ5qφ, (19)
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where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.
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where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
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In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of 0, 1

2 and 1. We do however only consider renormalizable inter-
actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP
is either charged under some internal gauge group or a discrete symmetry group (for example
Z2). However, we assume that this gauge charge is not shared by quarks. We will couple
the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged
mediators, each with all possible spins consistent with angular momentum conservation.
The mediator mass is chosen to be the heaviest scale in the problem (and certainly much
greater than the momentum exchange which characterizes the scattering process) so that we
can integrate it out (see appendix B for details). This leads to relativistic effective WIMP-
nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case
we will consider mediators that are neutral under all SM and WIMP gauge charges, while
in the charged case, the mediator must have both WIMP and SM gauge charges. Given the
above as a guide, our Lagrangian construction is then constrained only by gauge invariance,
Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians
1. Scalar Dark Matter
We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by φ and the
vector mediator by Gµ with field strength tensor Gµν . Unless otherwise noted, all of the
following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LSφq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q

−g1mSS†Sφ − g2
2 S†Sφ2 − h1q̄qφ − ih2q̄γ5qφ, (19)
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spin-0

handed Weyl spinor. The following Fierz transformation and gamma matrix identites were
useful in the charged mediator cases, (a sign difference was found in the final identity when
compared with [60]):

(q̄χ)(χ̄q) =−1
4

[
q̄qχ̄χ + q̄γ � qχ̄γ � χ + 1

2 q̄σ � νqχ̄σ� νχ − q̄γ � γ5qχ̄γ � γ5χ + q̄γ5qχ̄γ5χ
]

(q̄γ5χ)(χ̄γ5q) =−1
4

[
q̄qχ̄χ + q̄γ5qχ̄γ5χ − q̄γ � qχ̄γ � χ + q̄γ � γ5qχ̄γ � γ5χ + 1

2 q̄σ � νqχ̄σ� νχ
]

(q̄χ)(χ̄γ5q) =−1
4

[
q̄qχ̄γ5χ + q̄γ5qχ̄χ − q̄γ � qχ̄γ � γ5χ + q̄γ � γ5qχ̄γ � χ + iε � ναβ q̄σ � νqχ̄σαβχ

]

(q̄γ� χ)(χ̄γ � q) =−
[
q̄qχ̄χ − q̄γ5qχ̄γ5χ − 1

2 q̄γ � qχ̄γ � χ − 1
2 q̄γ � γ5qχ̄γ � γ5χ

]

(q̄γ� γ5χ)(χ̄γ � γ5q) =−
[
−q̄qχ̄χ + q̄γ5qχ̄γ5χ − 1

2 q̄γ � qχ̄γ � χ − 1
2 q̄γ � γ5qχ̄γ � γ5χ

]

(q̄γ� χ)(χ̄γ � γ5q) =−
[
q̄qχ̄γ5χ − q̄γ5qχ̄χ + 1

2 q̄γ � qχ̄γ � γ5χ + 1
2 q̄γ � γ5qχ̄γ � χ

]
(B2)

σ � νγ5 = i

2ε � νρσσρσ (B3)

All of the following operators are collected in terms of the coefficients of the NR operators,
c�, in tables II,III and IV.

TABLE VII. Non-relativistic reduction of operators for a spin-0 WIMP

Scalar Mediator

(S†S)(q̄q) −→
(

�N
1 �1
�2

φ

)
O1

(S†S)(q̄γ5q) −→
(

�N
2 �1
�2

φ

)
O10

Vector Mediator

i(S†∂� S − ∂� S†S)(q̄γ � q) −→ 0

i(S†∂� S − ∂� S†S)(q̄γ � γ5q) −→
(

2� �4�N
4

�2
G

�N
�S

)
O10

Charged Spinor Mediator

(S†S)(q̄q) −→ �
†
1�1−�

†
2�2

�Q�S
f �

� O1

(S†S)(q̄γ5q) −→ i
�

†
2�1−�

†
1�2

�Q�S
∆̃� O10
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FIG. 1. Rates for a 50GeV spin-0 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

FIG. 2. Rates for a 50GeV spin-1
2 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

VI. CONCLUSION

The analysis we have given here builds on previous analyses to provide for the first time,
and in great generality, all of the tools needed, at least in principle, to use event rates in
direct dark matter detectors to constrain fundamental dark matter models, outlining the
steps needed to go from fundamental Lagrangians, to relativistic operators, non-relativistic
operators, and finally nuclear matrix elements. In the process several significant facts have
been elaborated.

• Not all possible non-relativistic operators contributing to nuclear matrix elements in
direct detection will arise from UV complete dark matter models.

• Aside from scalar WIMPs each particular spin produces some non-relativistic operators
that are unique to that spin.

19

! "! #! $! %! &! '! (!

"!!)

"!!%

"!!

"!%

"!)

ER"*+,#

-
.

-
/
R

"t
!
"
0
1!
"
*
+
,
!
"
#

y"

y#

y"y#

FIG. 1. Rates for a 50GeV spin-0 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

FIG. 2. Rates for a 50GeV spin-1
2 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

VI. CONCLUSION
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direct dark matter detectors to constrain fundamental dark matter models, outlining the
steps needed to go from fundamental Lagrangians, to relativistic operators, non-relativistic
operators, and finally nuclear matrix elements. In the process several significant facts have
been elaborated.

• Not all possible non-relativistic operators contributing to nuclear matrix elements in
direct detection will arise from UV complete dark matter models.

• Aside from scalar WIMPs each particular spin produces some non-relativistic operators
that are unique to that spin.
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50 GeV spin-0 WIMP off of 73Ge (dashed) and 131Xe (solid) with 1TeV mediator
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TABLE VI. List of scenarios with leading operators colored by which are distinguishable via the

ratio dRXe
dE /dRGe

dE .

O1 O2 O3 O4 q2O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O17 O18

(h1, g1) !

(h2, g1) !

(h4, g4) !

Sp
in

-0
W

IM
P

(y1) ! !

(y2) ! !

(y1, y2) !

(h1, λ1) !

(h2, λ1) !

(h1, λ2) !

(h2, λ2) !

(h3, λ3) !

(h4, λ3) ! !

(h3, λ4) ! !

Sp
in

-1 2
W

IM
P

(h4, λ4) !

(l1) ! ! !

(l2) ! ! !

(d1) ! ! !

(d2) ! ! !

(h1, b1) !

(h2, b1) !

(h4, b5) !

(h3, b6) ! ! ! !*
(h4, b6) ! !*

Sp
in

-1
W

IM
P

(h3, b7) !* !* !

(h4, b7) !* ! ! !

(y3) ! ! ! ! ! !

(y4) ! ! ! ! ! !

(y3, y4) ! ! ! !

a

a * indicates the purely imaginary scenario for that coupling
25
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TABLE V. Leading order operators which can arise from the relativistic Lagrangians considered in

this work, the column ‘L terms’ gives the non-zero couplings for that scenario. Each row represents

a possible leading order direct detection signal. A ‘*’ indicates that the mediator is charged. The

’Eqv. Mm’ column gives the mediator mass required for each scenario to produce ∼10 events

t−1yr−1keV −1 in xenon, with couplings set to 0.1.
WIMP spin Mediator spin L terms leading NR operator Eqv. Mm

0 0 h1, g1 O1 13 TeV
0 0 h2, g1 O10 14 GeV
0 1 h4, g4 O10 8 GeV
0 1

2
∗

y1 O1 3.2 PeV
0 1

2
∗

y2 O1 3.2 PeV
0 1

2
∗

y1, y2 O10 41 GeV
1
2 0 h1, λ1 O1 12.7 TeV
1
2 0 h2, λ1 O10 293 GeV
1
2 0 h1, λ2 O11 14 GeV
1
2 0 h2, λ2 O6 1.9 GeV
1
2 1 h3, λ3 O1 6.3 TeV
1
2 1 h4, λ3 O9 6.4 GeV
1
2 1 h3, λ4 O8 180 GeV
1
2 1 h4, λ4 O4 135 GeV
1
2 0* l1 O1 7.1 TeV
1
2 0* l2 O1 5.5 TeV
1
2 1* d1 O1 5.9 TeV
1
2 1* d2 O1 6.7 TeV
1 0 h1, b1 O1 13 TeV
1 0 h2, b1 O10 10 GeV
1 1 h4, b5 O10 5.1 GeV
1 1 h3, bRe

6 (bIm
6 ) O5(O17) 5.5 GeV(23 GeV)

1 1 h4, bRe
6 (bIm

6 ) O9(O18) 3 GeV(4.6 GeV)
1 1 h3, bRe

7 (bIm
7 ) O11(O8) 186 GeV(228 GeV)

1 1 h4, bRe
7 (bIm

7 ) O14(O4) 65 MeV (172 GeV)
1 1

2
∗

y3 O1 3.2 PeV
1 1

2
∗

y4 O1 3.2 PeV
1 1

2
∗

y3, y4 O11 120 TeV
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where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

−1
4GµνGµν + 1

2m2
GGµGµ − λG

4 (GµGµ)2

+iq̄ /Dq − mq q̄q

−g3
2 S†SGµGµ − ig4(S†∂µS − ∂µS†S)Gµ

−h3(q̄γµq)Gµ − h4(q̄γµγ5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by χ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (φ) and vector mediator (Gµ) cases respectively are given below,

Lχφq = iχ̄ /Dχ − mχχ̄χ

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q

−λ1φχ̄χ − iλ2φχ̄γ5χ − h1φq̄q − ih2φq̄γ5q, (21)

LχGq = iχ̄ /Dχ − mχχ̄χ

−1
4GµνGµν + 1

2m2
GGµGµ

+iq̄D/ q − mq q̄q

−λ3χ̄γµχGµ − λ4χ̄γµγ5χGµ

−h3q̄γµqGµ − h4q̄γµγ5qGµ. (22)

3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are

12

spin-1/2
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(h4, b6) ! !*

Sp
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W
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P
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a * indicates the purely imaginary scenario for that coupling
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y3 O1 3.2 PeV
1 1

2
∗

y4 O1 3.2 PeV
1 1

2
∗

y3, y4 O11 120 TeV

22

TABLE V. Leading order operators which can arise from the relativistic Lagrangians considered in

this work, the column ‘L terms’ gives the non-zero couplings for that scenario. Each row represents

a possible leading order direct detection signal. A ‘*’ indicates that the mediator is charged. The

’Eqv. Mm’ column gives the mediator mass required for each scenario to produce ∼10 events

t−1yr−1keV −1 in xenon, with couplings set to 0.1.
WIMP spin Mediator spin L terms leading NR operator Eqv. Mm

0 0 h1, g1 O1 13 TeV
0 0 h2, g1 O10 14 GeV
0 1 h4, g4 O10 8 GeV
0 1

2
∗

y1 O1 3.2 PeV
0 1

2
∗

y2 O1 3.2 PeV
0 1

2
∗

y1, y2 O10 41 GeV
1
2 0 h1, λ1 O1 12.7 TeV
1
2 0 h2, λ1 O10 293 GeV
1
2 0 h1, λ2 O11 14 GeV
1
2 0 h2, λ2 O6 1.9 GeV
1
2 1 h3, λ3 O1 6.3 TeV
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6

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

−1
4GµνGµν + 1

2m2
GGµGµ − λG

4 (GµGµ)2

+iq̄ /Dq − mq q̄q

−g3
2 S†SGµGµ − ig4(S†∂µS − ∂µS†S)Gµ

−h3(q̄γµq)Gµ − h4(q̄γµγ5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by χ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (φ) and vector mediator (Gµ) cases respectively are given below,

Lχφq = iχ̄ /Dχ − mχχ̄χ

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q

−λ1φχ̄χ − iλ2φχ̄γ5χ − h1φq̄q − ih2φq̄γ5q, (21)

LχGq = iχ̄ /Dχ − mχχ̄χ

−1
4GµνGµν + 1

2m2
GGµGµ

+iq̄D/ q − mq q̄q

−λ3χ̄γµχGµ − λ4χ̄γµγ5χGµ

−h3q̄γµqGµ − h4q̄γµγ5qGµ. (22)

3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are
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spin-1/2
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where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

−1
4GµνGµν + 1

2m2
GGµGµ − λG

4 (GµGµ)2

+iq̄ /Dq − mq q̄q

−g3
2 S†SGµGµ − ig4(S†∂µS − ∂µS†S)Gµ

−h3(q̄γµq)Gµ − h4(q̄γµγ5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by χ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (φ) and vector mediator (Gµ) cases respectively are given below,

Lχφq = iχ̄ /Dχ − mχχ̄χ

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q

−λ1φχ̄χ − iλ2φχ̄γ5χ − h1φq̄q − ih2φq̄γ5q, (21)

LχGq = iχ̄ /Dχ − mχχ̄χ

−1
4GµνGµν + 1

2m2
GGµGµ

+iq̄D/ q − mq q̄q

−λ3χ̄γµχGµ − λ4χ̄γµγ5χGµ

−h3q̄γµqGµ − h4q̄γµγ5qGµ. (22)

3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are

12

spin-1/2

TABLE VIII. Operators for a spin-1
2 WIMP via a neutral mediator

Scalar Mediator

χ̄χq̄q −→
(

hN
1 λ1
m2

φ

)
O1

χ̄χq̄γ5q −→
(

hN
2 λ1
m2

φ

)
O10

χ̄γ5χq̄q −→
(

−hN
1 λ2mN

m2
φmχ

)
O11

χ̄γ5χq̄γ5q −→
(

hN
2 λ2mN

m2
φmχ

)
O6

Vector Mediator

χ̄γµχq̄γµq −→
(

−hN
3 λ3
m2

G

)
O1

χ̄γµχq̄γµγ5q −→
(

−2hN
4 λ3

m2
G

) (
−O7 + mN

mχ
O9

)

χ̄γµγ5χq̄γµq −→
(

−2hN
3 λ4

m2
G

)
(O8 + O9)

χ̄γµγ5χq̄γµγ5q −→
(

4hN
4 λ4

m2
G

)
O4
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TABLE IX. Non-relativistic reduction of operators for a spin-1
2 WIMP via a charged mediator

(after using Fierz identities)

Charged Scalar Mediator

χ̄χq̄q −→ l†2l2−l†1l1
4m2

Φ
fN

T qO1

χ̄χq̄γ5q −→ i
l†1l2−l†2l1

4m2
Φ

∆q̃N O10

χ̄γ5χq̄q −→ i
l†2l1−l†1l2

4m2
Φ

mN
mχ

fN
T qO11

χ̄γ5χq̄γ5q −→ l†1l1−l†2l2
4m2

Φ

mN
mχ

∆q̃N O6

χ̄γµχq̄γµq −→ − l†1l1+l†2l2
4m2

Φ
N N

q O1

χ̄γµγ5χq̄γµq −→ l†1l2+l†2l1
2m2

Φ
N N

q (O8 + O9)

χ̄γµχq̄γµγ5q −→ l†1l2+l†2l1
2m2

Φ
∆N

q (O7 − mN
mχ

O9)

χ̄γµγ5χq̄γµγ5q −→ − l†1l1+l†2l2
m2

Φ
∆N

q O4

χ̄σµνχq̄σµνq −→ l†2l2−l†1l1
m2

Φ
δN

q O4

εµναβχ̄σµνχq̄σαβq −→ l†2l1−l†1l2
m2

Φ
δN

q (iO10 − imN
mχ

O11 + 4O12)

Charged Vector Mediator

χ̄χq̄q −→ d†
2d2−d†

1d1
4m2

V
fN

T qO1

χ̄χq̄γ5q −→ i
d†

2d1−d†
1d2

4m2
V

∆q̃N O10

χ̄γ5χq̄q −→ i
d†

2d1−d†
1d2

4m2
V

mN
mχ

fN
T qO11

χ̄γ5χq̄γ5q −→ d†
2d2−d†

1d1
4m2

V

mN
mχ

∆q̃N O6

χ̄γµχq̄γµq −→ d†
2d2+d†

1d1
8m2

V
N N

q O1

χ̄γµγ5χq̄γµq −→ −d†
2d1+d†

1d2
4m2

V
N N

q (O8 + O9)

χ̄γµχq̄γµγ5q −→ d†
2d1+d†

1d2
4m2

V
∆N

q (O7 − mN
mχ

O9)

χ̄γµγ5χq̄γµγ5q −→ −d†
2d2+d†

1d1
2m2

V
∆N

q O4
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FIG. 1. Rates for a 50GeV spin-0 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

FIG. 2. Rates for a 50GeV spin-1
2 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

VI. CONCLUSION

The analysis we have given here builds on previous analyses to provide for the first time,
and in great generality, all of the tools needed, at least in principle, to use event rates in
direct dark matter detectors to constrain fundamental dark matter models, outlining the
steps needed to go from fundamental Lagrangians, to relativistic operators, non-relativistic
operators, and finally nuclear matrix elements. In the process several significant facts have
been elaborated.

• Not all possible non-relativistic operators contributing to nuclear matrix elements in
direct detection will arise from UV complete dark matter models.

• Aside from scalar WIMPs each particular spin produces some non-relativistic operators
that are unique to that spin.
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50 GeV spin-1/2 WIMP off of 73Ge (dashed) and 131Xe (solid) for a 1TeV mediator
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FIG. 5. Ratio of rates in xenon and germanium, illustrating the discriminating power of having

multiple nuclear targets. For a 50GeV spin-1
2 WIMP with uncharged mediator (left) and a 50GeV

spin-1 WIMP with uncharged mediator (right), the shaded regions show the upper and lower

bounds due to the astrophysical parameters

differential event rates in these detectors, they can produce radically different energy
dependence for scattering off different nuclear targets. Thus, a complementary use
of different target materials will be necessary to reliably distinguish between different
particle physics model possibilities for WIMP dark matter.

While current detectors have only yielded upper limits, with new generations of larger
detectors with greater energy resolution and lower thresholds coming online, the search for
WIMP dark matter has never been so vibrant and promising. The tools we have provided
here should help experimenters to probe the most useful parameter space, to interpret any
non-zero signals in terms of constraints on fundamental models, and should allow theorists
who build fundamental models to frame predictions in an accurate and simple way so that
they might be directly compared with experiment.
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TABLE VI. List of scenarios with leading operators colored by which are distinguishable via the
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TABLE V. Leading order operators which can arise from the relativistic Lagrangians considered in

this work, the column ‘L terms’ gives the non-zero couplings for that scenario. Each row represents

a possible leading order direct detection signal. A ‘*’ indicates that the mediator is charged. The

’Eqv. Mm’ column gives the mediator mass required for each scenario to produce ∼10 events

t−1yr−1keV −1 in xenon, with couplings set to 0.1.
WIMP spin Mediator spin L terms leading NR operator Eqv. Mm
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2
∗

y1 O1 3.2 PeV
0 1

2
∗

y2 O1 3.2 PeV
0 1

2
∗

y1, y2 O10 41 GeV
1
2 0 h1, λ1 O1 12.7 TeV
1
2 0 h2, λ1 O10 293 GeV
1
2 0 h1, λ2 O11 14 GeV
1
2 0 h2, λ2 O6 1.9 GeV
1
2 1 h3, λ3 O1 6.3 TeV
1
2 1 h4, λ3 O9 6.4 GeV
1
2 1 h3, λ4 O8 180 GeV
1
2 1 h4, λ4 O4 135 GeV
1
2 0* l1 O1 7.1 TeV
1
2 0* l2 O1 5.5 TeV
1
2 1* d1 O1 5.9 TeV
1
2 1* d2 O1 6.7 TeV
1 0 h1, b1 O1 13 TeV
1 0 h2, b1 O10 10 GeV
1 1 h4, b5 O10 5.1 GeV
1 1 h3, bRe

6 (bIm
6 ) O5(O17) 5.5 GeV(23 GeV)

1 1 h4, bRe
6 (bIm

6 ) O9(O18) 3 GeV(4.6 GeV)
1 1 h3, bRe

7 (bIm
7 ) O11(O8) 186 GeV(228 GeV)

1 1 h4, bRe
7 (bIm

7 ) O14(O4) 65 MeV (172 GeV)
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y3, y4 O11 120 TeV
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ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

nχ qχ (34)

(35)

qφ φχ (36)

(37)

χ− nucleus (38)

(39)

ψ1ψ2Z , ψ3ψ4Z → ψ1ψ2ψ3ψ4 (40)

(41)

Xµ (42)
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Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]
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In general one can write down the non-relativistic interaction Lagrangian as
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where YJM and !YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, Φ′′

, Σ′
, ∆, Σ′′

, Φ̃′

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [53], and codes have been supplied
to calculate the full amplitude and rate [54].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,
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TABLE X. Non-relativistic reduction of operators for a spin-1 WIMP

Scalar Mediator

X†
µXµq̄q −→

(
b1hN

1
m2

φ

)
O1

X†
µXµq̄γ5q −→

(
b1hN

2
m2

φ

)
O10

Vector Mediator

(X†
ν∂µXν − ∂µX†

νXν)(q̄γµq) −→ 0

(X†
ν∂µXν − ∂µX†

νXν)(q̄γµγ5q) −→
(

−3b5hN
4

m2
G

mN
mX

)
O10

∂ν(Xν†Xµ + X†
µXν)(q̄γµq) −→

(
Re(b6)hN

3
m2

G

mN
mX

)
(O5 + O6 − q2

m2
N

O4)

∂ν(Xν†Xµ + X†
µXν)(q̄γµγ5q) −→

(
−2Re(b6)hN

4
m2

G

mN
mX

)
O9

∂ν(Xν†Xµ − X†
µXν)(q̄γµq) −→

(
−4Im(b6)hN

3
m2

G

mN
mX

)
O17

∂ν(Xν†Xµ − X†
µXν)(q̄γµγ5q) −→

(
4Im(b6)hN

4
m2

G

mN
mX

)
O18

εµνρσ

(
Xν†∂ρXσ + Xν∂ρXσ†

)
(q̄γµq) −→

(
Re(b7)hN

3
m2

G

mN
mX

)
O11

εµνρσ

(
Xν†∂ρXσ + Xν∂ρXσ†

)
(q̄γµγ5q) −→

(
Re(b7)hN

4
m2

G

mN
mX

)
(i q2

mXmN
O4 − imN

mX
O6 − 2O14)

εµνρσ

(
Xν†∂ρXσ − Xν∂ρXσ†

)
(q̄γµq) −→

(
2Im(b7)hN

3
m2

G

)
(O8 + O9)

εµνρσ

(
Xν†∂ρXσ − Xν∂ρXσ†

)
(q̄γµγ5q) −→

(
4Im(b7)hN

4
m2

G

)
O4

Charged Spinor Mediator

(X†
µXν)(q̄γµγνq) −→

(
y†

3y3−y†
4y4

mQmX

) (
fN

T qO1 + 2δN
q O4

)

(X†
µXν)(q̄γµγνγ5q) −→

(
y†

4y3−y†
3y4

mQmX

)
(i∆N

q̃ O10 + iδN
q O11 − 2iδN

q O12 − 2iδN
q O18)

Appendix C: Quarks to Nucleons

To go from the fundamental interactions of WIMPs with quarks to scattering from point-
like nucleons, one must evaluate the quark (parton) bilinears in the nucleons. For a full
discussion see the appendix of [60] and [61]. We write the nucleon couplings in terms of the
quark couplings times a form factor (in the limit of zero momentum transfer): The scalar
bilinear for light quarks can be evaluated from

〈N | mq q̄q |N〉 = mNfN
T q (C1)
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Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)
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where YJM and !YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, Φ′′

, Σ′
, ∆, Σ′′

, Φ̃′

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [53], and codes have been supplied
to calculate the full amplitude and rate [54].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡ i
!q

mN
· S · !v⊥,

O18 ≡ i
!q

mN
· S · !SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [56] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how different interac-
tions with different nuclei arise from different UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
for maximum discrimination of the UV model parameter space.
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FIG. 4. Rates (left) for a 50GeV spin-1 WIMP in xenon (solid) and germanium (dashed) with

uncharged mediators and imaginary couplings, assuming mediator mass of 1TeV and O(1) coupling

constants. Also shown is the ratio of rates in xenon and germanium (right).

• Aside from scalar WIMPs each particular spin produces some non-relativistic operators
that are unique to that spin.

• Two non-relativistic operators, O1 and O10, are ubiquitous and arise for all WIMP
spins we have explored.

• In 5 scenarios relativistic operators generate unique non-relativistic operators at lead-
ing order.

• Two new non-relativistic operators not previously considered arise at low energies if
spin-1 WIMP dark matter is allowed for.

• While the different operators that can contribute to event rates in detectors using
specific elements or isotopes cannot be distinguished on the basis of their impact on the
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FIG. 6. Ratio of rates in xenon and germanium, illustrating the discriminating power of having

multiple nuclear targets. For a 50GeV spin-1
2 WIMP with uncharged mediator (left) and a 50GeV

spin-1 WIMP with uncharged mediator (right), the shaded regions show the upper and lower

bounds due to the astrophysical parameters

• Two non-relativistic operators, O1 and O10, are ubiquitous and arise for all WIMP
spins we have explored.

• In 5 scenarios, relativistic operators generate unique non-relativistic operators at lead-
ing order.

• Two new non-relativistic operators not previously considered within the context of
the full array of allowed nuclear responses arise at low energies if spin-1 WIMP dark
matter is allowed for.

• While the different operators that can contribute to event rates in detectors using
specific elements or isotopes cannot be distinguished on the basis of their impact on the
differential event rates in these detectors, they can produce radically different energy
dependence for scattering off different nuclear targets. Thus, a complementary use
of different target materials will be necessary to reliably distinguish between different
particle physics model possibilities for WIMP dark matter.

While current detectors have only yielded upper limits, with new generations of larger
detectors with greater energy resolution and lower thresholds coming online, the search for
WIMP dark matter has never been so vibrant and promising. The tools we have provided
here should help experimenters to probe the most useful parameter space, to interpret any
non-zero signals in terms of constraints on fundamental models, and should allow theorists
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We have examined a general array of single WIMP, single mediators interactions
and found non-standard responses arise at leading order for some interaction 
types

Precise model constraints need to be carried out

The use of a variety of detector materials can be significant

An ongoing program with much to do!
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where the coefficients cα
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
∑

τ=0,1

15∑

i=1
cτ

i Oit
τ (5)

where t0 and t1 are the identity matrix and the Pauli matrix σ3 respectively. The nucleus is
composed of nucleons, and these can individually interact with the WIMP. This is incorpo-
rated by considering the operator O(j) as an interaction between a single nucleon, j, and
the WIMP, and then summing over the nucleons.

∑

τ=0,1

15∑

i=1
cτ

i Oit
τ →

∑

τ=0,1

15∑

i=1
cτ

i

A∑

j=1
Oi(j)tτ (j) (6)

where A is the atomic mass number given by the total number of neutrons and protons.
One can do the same reduction with "v⊥,

"v⊥ → {"vχ − "vN(i), i = 1, ..., A}

≡ "v⊥
T − {"̇vN(i), i = 1, ..., A − 1} (7)

where "vχ and "vN(i) are the symmetrized combination of incoming and outgoing velocities
for the WIMP and nucleons respectively. "v⊥

T (here T stands for target, i.e., the nuclear
center-of-mass) is defined as

"v⊥
T = "vχ − 1

2A

A∑

i=1
["vN,in(i) + "vN,out(i)] (8)

This allows for a decomposition of the nucleon velocities into internal velocities "̇vN(i) that
act only on intrinsic nuclear coordinates and ‘in’ and ‘out’ velocities that evolve as a WIMP
scatters off the detector. As an example, the dot product between "v⊥

N and "SN can be
rewritten as

"v⊥ · "SN →
A∑

i=1

1
2 ["vχ,in + "vχ,out − "vN,in(i) − "vN,out(i)] · "SN(i) (9)

= "v⊥
T ·

A∑

i=1

"SN(i) −
{

A∑

i=1

1
2 ["vN,in(i) + "vN,out(i)] · "SN(i)

}

int

(10)

The second term in the curly brackets is internal to the nucleus and acts as an operator on
the ‘in’ and ‘out’ nucleon states. "vN,in can be replaced by "pN,in/M acting on the incoming
state, which can in turn be replaced by i

←−∇/M , and similarly "pN,out/M by −i
−→∇/M on the

7
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One can also decompose the velocity difference into a center-of-mass piece and intrinsic parts

where the nuclear center-of-mass (Target) is described by

The nucleon velocities are decomposed into internal and ‘in’ and ‘out’ segments

Operators are decomposed as in
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The nucleon positions and momenta are replace by operators which account for the non-zero 
nuclear size

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

χ̄γµγ5χ (56)

(57)

P µχ̄χ (58)

(59)

P µχ̄γ5χ (60)

(61)

#vN,in → #pN,in/M → i
←−∇/M (62)

(63)

#vN,in → #pN,out/M → −i
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4

The DM-nucleon interactions can then be written 

outgoing nuclear state. Finally, since the nucleus is non-zero in size and individual nucleons
locally interact with the WIMP, nuclear operators built from Oi are accompanied by an addi-
tional spatial operator e−i!q·!x(i) where x(i) is the location of the ith nucleon inside the nucleus.

Starting from Eqn. 6 and using the substitution rules for !v⊥ and including a factor of
e−i!q·!xi , the interaction Lagrangian can be written as a sum of five distinct terms (nuclear
electroweak operators) that only act on internal nucleon states. Their coefficients, on the
other hand, act on WIMP ‘in’ and ‘out’ states. The WIMP-nucleus interaction can then be
written as

∑

τ=0,1

{
lτ
0S + lAτ

0 T +!lτ
5 · !P +!lτ

M · Q +!lτ
E · !R

}
tτ (i) (11)

where

S =
A∑

i=1
e−i!q·!xi

T =
A∑

i=1

1
2M

[
−1

i

←−∇ i · !σ(i)e−i!q·!xi + e−i!q·!xi!σ(i) · 1
i

−→∇ i

]

!P =
A∑

i=1
!σ(i)e−i!q·!xi

!Q =
A∑

i=1

1
2M

[
−1

i

←−∇ ie
−i!q·!xi + e−i!q·!xi

1
i

−→∇ i

]

!R =
A∑

i=1

1
2M

[←−∇ i × !σ(i)e−i!q·!xi + e−i!q·!xi!σ(i) × −→∇ i

]
(12)

and

lτ
0 = cτ

1 + icτ
5
!Sχ ·

(
!q

mN
× !v⊥

T

)

+ cτ
8(!Sχ · !v⊥

T ) + icτ
11

!q · !Sχ

mN

lAτ
0 = −1

2

[

cτ
7 + icτ

14

(
!Sχ · !q

mN

)]

!l5 = 1
2



cτ
3i

(
!q × !v⊥

T

)

mN
+ cτ

4
!Sχ + cτ

6
(!q · !Sχ)!q

m2
N

+ cτ
7!v

⊥
T + icτ

9
(!q × !Sχ)

mN
+ icτ

10
!q

mN





cτ
12(!v⊥

T × !Sχ) + icτ
13

(Sχ · !v⊥
T )!q

mN
+ icτ

14

(
!Sχ · !q

mN

)

!v⊥
T + cτ

15
(!q · !Sχ)(!q × !v⊥

T )
m2

N





!lM = cτ
5

(

i
!q

mN
× !Sχ

)

− !Sχcτ
8

!lE = 1
2



cτ
3

!q

mN
+ icτ

12
!Sχ − cτ

13
(!q × !Sχ)

mN
− icτ

15
(!q · !Sχ)!q

m2
N



 (13)
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TABLE I. Relativistic amplitudes, their nonrelativistic analogs appropriate for evaluation between Paul spinors, the corresponding results
as linear combinations of the Oi , and the transformation properties of the interactions [even (E) or odd (O)] under parity and time reversal.
Bjorken and Drell spinor and γ matrix conventions are used. The scale mM, which appears as an arbitrary normalization below to ensure that
kinematic factors are dimensionless, would usually be known from the context of the theory.

j Lj
int Nonrelativistic reduction

∑
i ciOi P/T

1 χ̄χN̄N 1χ 1N O1 E/E

2 iχ̄χN̄γ 5N i !q
mN

· !SN O10 O/O

3 iχ̄γ 5χN̄N −i !q
mχ

· !Sχ −mN

mχ
O11 O/O

4 χ̄γ 5χN̄γ 5N − !q
mχ

· !Sχ
!q

mN
· !SN −mN

mχ
O6 E/E

5 χ̄γ µχN̄γµN 1χ 1N O1 E/E

6 χ̄γ µχN̄iσµα
qα

mM
N !q 2

2mN mM
1χ 1N + 2

( !q
mχ

× !Sχ + i!v⊥)
·
( !q

mM
× !SN

) !q 2
2mN mM

O1−2 mN
mM

O3

+2
m2

N
mMmχ

(
q2

m2
N

O4−O6

) E/E

7 χ̄γ µχN̄γµγ 5N −2!SN · !v⊥ + 2
mχ

i !Sχ · (!SN × !q) −2O7 + 2 mN

mχ
O9 O/E

8 iχ̄γ µχN̄iσµα
qα

mM
γ 5N 2i !q

mM
· !SN 2 mN

mM
O10 O/O

9 χ̄ iσµν qν

mM
χN̄γµN − !q 2

2mχ mM
1χ 1N − 2

( !q
mN

× !SN + i!v⊥)
·
( !q

mM
× !Sχ

) − !q 2
2mχ mM

O1+ 2mN
mM

O5

−2 mN
mM

(
!q 2

m2
N

O4−O6

) E/E

10 χ̄ iσµν qν

mM
χN̄iσµα

qα

mM
N 4

( !q
mM

× !Sχ

)
·
( !q

mM
× !SN

)
4
( !q 2

m2
M
O4 − m2

N

m2
M
O6

)
E/E

11 χ̄ iσµν qν

mM
χN̄γ µγ 5N 4i

( !q
mM

× !Sχ

)
· !SN 4 mN

mM
O9 O/E

12 iχ̄ iσµν qν

mM
χN̄iσµα

qα

mM
γ 5N −

[
i !q 2

mχ mM
− 4!v⊥ ·

( !q
mM

× !Sχ

)] !q
mM

· !SN −mN

mχ

!q 2

m2
M
O10 − 4 !q 2

m2
M
O12 − 4 m2

N

m2
M
O15 O/O

13 χ̄γ µγ 5χN̄γµN 2!v⊥ · !Sχ + 2i !Sχ ·
(!SN × !q

mN

)
2O8 + 2O9 O/E

14 χ̄γ µγ 5χN̄iσµα
qα

mM
N 4i !Sχ ·

( !q
mM

× !SN

)
−4 mN

mM
O9 O/E

15 χ̄γ µγ 5χN̄γ µγ 5N −4!Sχ · !SN −4O4 E/E

16 iχ̄γ µγ 5χN̄iσµα
qα

mM
γ 5N 4i!v⊥ · !Sχ

!q
mM

· !SN 4 mN

mM
O13 E/O

17 iχ̄ iσµν qν

mM
γ 5χN̄γµN 2i !q

mM
· !Sχ 2 mN

mM
O11 O/O

18 iχ̄ iσµν qν

mM
γ 5χN̄iσµα

qα

mM
N !q

mM
· !Sχ

[
i !q 2

mN mM
− 4!v⊥ ·

( !q
mM

× !SN

)] !q 2

m2
M
O11 + 4 m2

N

m2
M
O15 O/O

19 iχ̄ iσµν qν

mM
γ 5χN̄γµγ 5N −4i !q

mM
· !Sχ !v⊥ · !SN −4 mN

mM
O14 E/O

20 iχ̄ iσµν qν

mM
γ 5χN̄iσµα

qα

mM
γ 5N 4 !q

mM
· !Sχ

!q
mM

· !SN 4 m2
N

m2
M
O6 E/E

As WIMP searches are motivated in part by the “WIMP
miracle”—WIMPs will naturally freeze-out in the early uni-
verse, when their annihilation rate falls behind the expansion
rate, to produce a relic density today consistent with the dark-
matter density—it is convenient to express the coefficients ci

in weak-scale units. O4 is related by an isospin rotation to the
charge-changing weak axial or Gamow-Teller operator of the
standard model,

c4O4t
1 ≡ c4O4τ3 → GF√

2
O4τ±, (19)

where GF ∼ 1.166 × 10−5 GeV−2 is the Fermi constant and
τ± is the isospin raising or lowering operator. GF defines a
standard-model weak interaction mass scale,

mv ≡ 〈v〉 = (2GF )−1/2 = 246.2 GeV, (20)

where 〈v〉 is the Higgs vacuum expectation value. Conse-
quently, it is natural to characterize experimental constraints
on a given ci in terms of this normalization, that is, in terms
of the dimensionless quantity c̃i , where ci = c̃i/m2

v . This

normalization is employed in the Mathematica script discussed
in Appendix B.

B. EFT power counting and !q/mN : Parametric enhancement

The EFT formulation leads to an attractive power counting
that is helpful in understanding the dependence of laboratory
total cross sections on the physically relevant parameters: the
WIMP velocity !v⊥

T , the ratio of the WIMP-nuclear target
reduced mass µT to mN , and the ratio of µT to the inverse
nuclear size. The scaling behavior we discuss in Sec. IV B takes
on a simple form if mN is used to construct the dimensionless
quantity !q/mN , a parameter related to the relative velocities
of nucleons bound in the nucleus, as explained below. The fact
that internucleon velocities are much greater than the WIMP
velocity leads to a parametric enhancement of the certain
“composite operator” contributions to cross sections.

The introduction of the scale mN would be arbitrary if we
limit ourselves to WIMP-nucleon scattering. Any other choice
would simply lead to the same scaling of the total cross section
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! ¼ "GNMMW

rþ a
; (19)

where R0 is the distance from the Sun to the center of the
Galaxy andMMW is the mass of the MilkyWay, giving [36]

fðqÞ ¼ ð8q4 " 8q2 " 3Þq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" q2

p
ð1" 2q2Þ þ 3sin"1ðqÞ

ð1" q2Þ5=2
;

(20)

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a!

GNMMW

s
; (21)

! ¼ GNMMW

aþ R0
" 1

2
ðv0:v0Þ: (22)

We adopt a value of v0=R0 ¼ 29:45& 0:15 km=s=kpc
[43]. MMW is determined from "# and v0 following the
technique in Hernquist [36]. Finally, while the effect of
microhalos on direct detection experiments has been
shown to be minimal [44], N-body simulations of galactic
halos do show a departure on small scales from the stan-
dard smooth isothermal model. Thus, we also consider here
the results of the Via Lactea numerical simulation [29], for
comparison with the analytic model estimates.

For an illustrative comparison of how uncertainties in
these distributions affect the WIMP scattering rate, each of

the distributions is integrated by Eq. (5) and the results are
shown in Figs. 3 and 4. The MB, Herquist, and Via Lactea
distributions use the standard astrophysical assumptions of
v0 ¼ 220& 20 km s"1, vesc ¼ 544þ64

"46 km=s1, and "# ¼
0:3& 0:1 GeV=cm2 [45]. Note that there is considerable
variation in the favored values of v0 and "# (see [45–47]).
The large uncertainties we adopt cover most of the pro-
posed range of these parameters. Also note that the distri-
butions obtained from the NFW, Burkert, and Einasto
models have smaller uncertainties because they are highly
constrained by a set of dynamical constraints for the
Milky Way (see [48]).

D. Backgrounds

Ultimately, it is the background rate that sets the lower
limit of observable signal rates, so that significant attention
must be paid to both shielding the detector from unwanted
radioactive backgrounds, and also to devising methods to
distinguish between possible signal and background
events, in particular to distinguish candidate WIMP events
which involve single scatter nuclear recoils from multiple
scatter nuclear events and electronic recoils.
The XENON100 detector was able to achieve a predis-

crimination background rate of 5:3' 10"3 differential rate
unit (dru) (events=kg=day=keVn:r:) [11]. For the future
xenon component of the DARWIN detector and argon
DarkSide-50 detector, the prediscrimination electronic
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FIG. 3 (color online). Numerical results of Eq. (5) for, from left: MB, Hernquist, and Via Lactea profiles. The black dashed curve
shows the mean value, while the green and yellow regions show one- and two-sigma errors. Note the errors here are larger than in
Fig. 4 since only v0, "#, and vesc (and for Hernquist, R0, distance to the center of the Galaxy) are used to constrain these models.

0 200 400 600

0.5

1.0

1.5

2.0

vmin km s

v m
in

10
3

0 200 400 600

0.5

1.0

1.5

2.0

vmin km s

v m
in

10
3

0 200 400 600

0.5

1.0

1.5

2.0

vmin km s

v m
in

10
3

FIG. 4 (color online). Numerical results of Eq. (5) for each of the velocity distributions from [31]. From left: NFW, Burkert, and
Einasto profiles. The black dashed curve shows the mean value, while the yellow and green regions show one- and two-sigma errors
due to uncertainty in the 7=8 model parameters from [31].
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; (19)

where R0 is the distance from the Sun to the center of the
Galaxy andMMW is the mass of the MilkyWay, giving [36]
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s
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" 1
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We adopt a value of v0=R0 ¼ 29:45& 0:15 km=s=kpc
[43]. MMW is determined from "# and v0 following the
technique in Hernquist [36]. Finally, while the effect of
microhalos on direct detection experiments has been
shown to be minimal [44], N-body simulations of galactic
halos do show a departure on small scales from the stan-
dard smooth isothermal model. Thus, we also consider here
the results of the Via Lactea numerical simulation [29], for
comparison with the analytic model estimates.

For an illustrative comparison of how uncertainties in
these distributions affect the WIMP scattering rate, each of

the distributions is integrated by Eq. (5) and the results are
shown in Figs. 3 and 4. The MB, Herquist, and Via Lactea
distributions use the standard astrophysical assumptions of
v0 ¼ 220& 20 km s"1, vesc ¼ 544þ64

"46 km=s1, and "# ¼
0:3& 0:1 GeV=cm2 [45]. Note that there is considerable
variation in the favored values of v0 and "# (see [45–47]).
The large uncertainties we adopt cover most of the pro-
posed range of these parameters. Also note that the distri-
butions obtained from the NFW, Burkert, and Einasto
models have smaller uncertainties because they are highly
constrained by a set of dynamical constraints for the
Milky Way (see [48]).

D. Backgrounds

Ultimately, it is the background rate that sets the lower
limit of observable signal rates, so that significant attention
must be paid to both shielding the detector from unwanted
radioactive backgrounds, and also to devising methods to
distinguish between possible signal and background
events, in particular to distinguish candidate WIMP events
which involve single scatter nuclear recoils from multiple
scatter nuclear events and electronic recoils.
The XENON100 detector was able to achieve a predis-

crimination background rate of 5:3' 10"3 differential rate
unit (dru) (events=kg=day=keVn:r:) [11]. For the future
xenon component of the DARWIN detector and argon
DarkSide-50 detector, the prediscrimination electronic
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Fig. 4 since only v0, "#, and vesc (and for Hernquist, R0, distance to the center of the Galaxy) are used to constrain these models.
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SCIENTIFIC REACH OF MULTITON-SCALE DARK . . . PHYSICAL REVIEW D 88, 076011 (2013)

076011-5

! ¼ "GNMMW

rþ a
; (19)

where R0 is the distance from the Sun to the center of the
Galaxy andMMW is the mass of the MilkyWay, giving [36]
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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;
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We adopt a value of v0=R0 ¼ 29:45& 0:15 km=s=kpc
[43]. MMW is determined from "# and v0 following the
technique in Hernquist [36]. Finally, while the effect of
microhalos on direct detection experiments has been
shown to be minimal [44], N-body simulations of galactic
halos do show a departure on small scales from the stan-
dard smooth isothermal model. Thus, we also consider here
the results of the Via Lactea numerical simulation [29], for
comparison with the analytic model estimates.

For an illustrative comparison of how uncertainties in
these distributions affect the WIMP scattering rate, each of

the distributions is integrated by Eq. (5) and the results are
shown in Figs. 3 and 4. The MB, Herquist, and Via Lactea
distributions use the standard astrophysical assumptions of
v0 ¼ 220& 20 km s"1, vesc ¼ 544þ64

"46 km=s1, and "# ¼
0:3& 0:1 GeV=cm2 [45]. Note that there is considerable
variation in the favored values of v0 and "# (see [45–47]).
The large uncertainties we adopt cover most of the pro-
posed range of these parameters. Also note that the distri-
butions obtained from the NFW, Burkert, and Einasto
models have smaller uncertainties because they are highly
constrained by a set of dynamical constraints for the
Milky Way (see [48]).

D. Backgrounds

Ultimately, it is the background rate that sets the lower
limit of observable signal rates, so that significant attention
must be paid to both shielding the detector from unwanted
radioactive backgrounds, and also to devising methods to
distinguish between possible signal and background
events, in particular to distinguish candidate WIMP events
which involve single scatter nuclear recoils from multiple
scatter nuclear events and electronic recoils.
The XENON100 detector was able to achieve a predis-

crimination background rate of 5:3' 10"3 differential rate
unit (dru) (events=kg=day=keVn:r:) [11]. For the future
xenon component of the DARWIN detector and argon
DarkSide-50 detector, the prediscrimination electronic
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FIG. 3. Rates for a 50GeV spin-1 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

FIG. 4. Rates (left) for a 50GeV spin-1 WIMP in xenon (solid) and germanium (dashed) with

uncharged mediators and imaginary couplings, assuming mediator mass of 1TeV and O(1) coupling

constants. Also shown is the ratio of rates in xenon and germanium (right).

• Aside from scalar WIMPs each particular spin produces some non-relativistic operators
that are unique to that spin.

• Two non-relativistic operators, O1 and O10, are ubiquitous and arise for all WIMP
spins we have explored.

• In 5 scenarios relativistic operators generate unique non-relativistic operators at lead-
ing order.

• Two new non-relativistic operators not previously considered arise at low energies if
spin-1 WIMP dark matter is allowed for.

• While the different operators that can contribute to event rates in detectors using
specific elements or isotopes cannot be distinguished on the basis of their impact on the

20

FIG. 1. Rates for a 50GeV spin-0 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

FIG. 2. Rates for a 50GeV spin-1
2 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

VI. CONCLUSION

The analysis we have given here builds on previous analyses to provide for the first time,
and in great generality, all of the tools needed, at least in principle, to use event rates in
direct dark matter detectors to constrain fundamental dark matter models, outlining the
steps needed to go from fundamental Lagrangians, to relativistic operators, non-relativistic
operators, and finally nuclear matrix elements. In the process several significant facts have
been elaborated.

• Not all possible non-relativistic operators contributing to nuclear matrix elements in
direct detection will arise from UV complete dark matter models.

• Aside from scalar WIMPs each particular spin produces some non-relativistic operators
that are unique to that spin.
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〈No| mq q̄q |Ni〉 −→ fN
T qN̄N

〈No| q̄γ5q |Ni〉 −→ ∆q̃N N̄γ5N

〈No| q̄γµq |Ni〉 −→ N N
q N̄γµN

〈No| q̄γµγ5q |Ni〉 −→ ∆N
q N̄γµγ5N

〈No| q̄σµνq |Ni〉 −→ δN
q N̄σµνN

while for the heavy quarks

〈N | mq q̄q |N〉 = 2
27mNF N

T G = 2
27mN



1 −
∑

q=u,d,s

fN
T q



 . (C2)

Summing over all the quarks one finds

hN
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q=u,d,s

hq
1
mN

mq
fN

T q + 2
27fN

T G

∑

q=c,b,t

hq
1
mN

mq
(C3)

The psuedo-scalar bilinear was recently revisited in [54]:

hN
2 =

∑

q=u,d,s

hq
2∆q̃N − ∆G̃N

∑

q=c,b,t

hq
2

mq
(C4)

The vector bilinear essentially gives the number operator:

hN
3 =






2hu
3 + hd

3 N = p

hu
3 + 2hd

3 N = u
(C5)

The psuedo-vector bilinear counts the contributions of spin to the nucleon (note that
sometimes this coupling has a GF factored out to make it dimensionless)

hN
4 =

∑

q=u,d,s

hq
4∆N

q (C6)

Throughout this paper the following values are used (it should be noted that there are
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large uncertainties in these values) [53, 54]:

fn
T u = 0.014 fp

T u = 0.02

fn
T d = 0.036 fp

T d = 0.026

fn
T s = 0.118 fp

T s = 0.118

∆n
u = − 0.427 ∆p

u = 0.842

∆n
d = 0.842 ∆p

d = −0.427

∆n
s = − 0.085 ∆p

s = −0.085

∆ũn = − 108.03 ∆ũp = 110.55

∆d̃n = 108.60 ∆d̃p = −107.17

∆s̃n = − 0.57 ∆s̃p = −3.37

∆G̃n =35.7MeV ∆G̃p = 395.2MeV

(C7)

Assuming a universal coupling of the mediators to all quarks, the nucleon level couplings
are can be written as,

hN
1 = fN

T h1

hN
2 =∆̃Nh2

hN
3 =N Nh3

hN
4 =∆Nh4

(C8)

where we’ve defined,

fn
T = 11.93 fp

T = 12.31

∆̃n = − 0.07 ∆̃p = −0.28

N n = 3 N p = 3

∆n = 0.33 ∆p = 0.33

δn = 0.564 δp = 0.564

. (C9)
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In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of 0, 1

2 and 1. We do however only consider renormalizable inter-
actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP
is either charged under some internal gauge group or a discrete symmetry group (for example
Z2). However, we assume that this gauge charge is not shared by quarks. We will couple
the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged
mediators, each with all possible spins consistent with angular momentum conservation.
The mediator mass is chosen to be the heaviest scale in the problem (and certainly much
greater than the momentum exchange which characterizes the scattering process) so that we
can integrate it out (see appendix B for details). This leads to relativistic effective WIMP-
nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case
we will consider mediators that are neutral under all SM and WIMP gauge charges, while
in the charged case, the mediator must have both WIMP and SM gauge charges. Given the
above as a guide, our Lagrangian construction is then constrained only by gauge invariance,
Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians
1. Scalar Dark Matter
We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by φ and the
vector mediator by Gµ with field strength tensor Gµν . Unless otherwise noted, all of the
following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LSφq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q

−g1mSS†Sφ − g2
2 S†Sφ2 − h1q̄qφ − ih2q̄γ5qφ, (19)

11

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

−1
4GµνGµν + 1

2m2
GGµGµ − λG

4 (GµGµ)2

+iq̄ /Dq − mq q̄q

−g3
2 S†SGµGµ − ig4(S†∂µS − ∂µS†S)Gµ

−h3(q̄γµq)Gµ − h4(q̄γµγ5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by χ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (φ) and vector mediator (Gµ) cases respectively are given below,

Lχφq = iχ̄ /Dχ − mχχ̄χ

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q

−λ1φχ̄χ − iλ2φχ̄γ5χ − h1φq̄q − ih2φq̄γ5q, (21)

LχGq = iχ̄ /Dχ − mχχ̄χ

−1
4GµνGµν + 1

2m2
GGµGµ

+iq̄D/ q − mq q̄q

−λ3χ̄γµχGµ − λ4χ̄γµγ5χGµ

−h3q̄γµqGµ − h4q̄γµγ5qGµ. (22)

3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are

12
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3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are
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many possible interactions because the Lorentz indices on the vectors afford a more diverse
set of terms. The general interaction Lagrangian for the scalar mediation case is

LXφq = −1
2X †

µνX µν + m2
XX†

µXµ − λX

2 (X†
µXµ)2

+1
2(∂µφ)2 − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄ /Dq − mq q̄q

−b1mXφX†
µXµ − b2

2 φ2X†
µXµ − h1φq̄q − ih2φq̄γ5q. (23)

For the case of vector mediation, there are many possible interactions because the Lorentz
indices on the vectors afford a more diverse set of terms. The Lagrangian is given by

LXGq = −1
2X †

µνX µν + m2
XX†

µXµ − λX

2 (X†
µXµ)2

−1
4GµνGµν + 1

2m2
GG2

µ − λG

4 (GµGµ)2 (24)

+iq̄ /Dq − mq q̄q

−b3
2 G2

µ(X†
νXν) − b4

2 (GµGν)(X†
µXν) −

[
ib5X

†
ν∂µXνGµ

+b6X
†
µ∂µXνGν + b7εµνρσ(X†µ∂νXρ)Gσ + h.c.

]

−h3Gµq̄γµq − h4Gµq̄γµγ5q (25)

where, for the Lagrangian to be Hermitian, b6 and b7 are complex (this implies a new source
of CP violation, which will not be considered further here).

A. Charged-mediator Lagrangians

Here we consider the simplest case of mediators that are charged under both the DM
internal symmetry group and SM gauge groups. This is motivated by the absence of spin-
1
2 mediators (s-channel processes) in the previous section. Such a mediator, if neutral, is
forbidden by simultaneous requirements of gauge invariance and renormalizability. Dark
Matter models with mediators endowed with charges from both DM and SM side have been
considered in the literature before [55, 56]. The case of a spin-1

2 mediator carrying SU(3)c

is also motivated by studies of heavy quark models. This allows unique interactions as we
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Matter models with mediators endowed with charges from both DM and SM side have been
considered in the literature before [55, 56]. The case of a spin-1

2 mediator carrying SU(3)c

is also motivated by studies of heavy quark models. This allows unique interactions as we
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show below. In particular they necessitate a direct interaction between quarks and WIMPs
at the level of the Lagrangian.

1. Scalar Dark Matter
Scalar WIMPs with a charged scalar or vector mediator do not lead to any Lorentz

invariant interactions. This is easy to see since both the scalars (or scalar and vector) and
the quark are required in the (gauge invariant) interaction, but there is no way to contract
the spinor indices consistently if the mediating particle is a scalar or vector. Therefore, the
only possibility is that of a spin-1/2 mediator, Q, which acts like a heavy quark. The general
renormalizable action is given by

LSQq = ∂µS†∂µS − m2
SS†S − λS(S†S)2

+iQ̄ /DQ − mQQ̄Q

+iq̄ /Dq − mq q̄q

−(y1SQ̄q + y2SQ̄γ5q + h.c.), (26)

where y1 and y2 are again complex.
2. Spin-1

2 Dark Matter
For a spin-1/2 WIMP, both a charged scalar and charged vector mediator exchange can

lead to novel interactions. The charged scalar is denoted by Φ and the charged vector by Vµ

LχΦq = iχ̄ /Dχ − mχχ̄χ

+(∂µΦ†)(∂µΦ) − m2
ΦΦ†Φ − λΦ

2 (Φ†Φ)2

+iq̄ /Dq − mq q̄q

−(l1Φ†χ̄q + l2Φ†χ̄γ5q + h.c.), (27)

LχV q = iχ̄ /Dχ − mχχ̄χ

−1
2V†

µνVµν + m2
V V †

µ V µ

+iq̄ /Dq − mq q̄q

−(d1χ̄γµqV †
µ + d2χ̄γµγ5qV †

µ + h.c.), (28)

where l1, l2, d1 and d2 are complex.
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show below. In particular they necessitate a direct interaction between quarks and WIMPs
at the level of the Lagrangian.

1. Scalar Dark Matter
Scalar WIMPs with a charged scalar or vector mediator do not lead to any Lorentz

invariant interactions. This is easy to see since both the scalars (or scalar and vector) and
the quark are required in the (gauge invariant) interaction, but there is no way to contract
the spinor indices consistently if the mediating particle is a scalar or vector. Therefore, the
only possibility is that of a spin-1/2 mediator, Q, which acts like a heavy quark. The general
renormalizable action is given by
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+iQ̄ /DQ − mQQ̄Q

+iq̄ /Dq − mq q̄q

−(y1SQ̄q + y2SQ̄γ5q + h.c.), (26)

where y1 and y2 are again complex.
2. Spin-1

2 Dark Matter
For a spin-1/2 WIMP, both a charged scalar and charged vector mediator exchange can

lead to novel interactions. The charged scalar is denoted by Φ and the charged vector by Vµ

LχΦq = iχ̄ /Dχ − mχχ̄χ

+(∂µΦ†)(∂µΦ) − m2
ΦΦ†Φ − λΦ

2 (Φ†Φ)2
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−1
2V†
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µ V µ
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−(d1χ̄γµqV †
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where l1, l2, d1 and d2 are complex.
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3. Vector DM
Here again we only have the case of a spin-1

2 mediated interaction between vector DM
and quarks (again scalar and vector charged mediators aren’t possible because they don’t
lead to Lorentz invariant and renormalizable interactions). The general Lagrangian is given
by

LXQq = −1
2X †

µνX µν + m2
XX†

µXµ − λX

2 (X†
µXµ)2

+iQ̄ /DQ − mQQ̄Q

+iq̄ /Dq − mq q̄q

−(y3XµQ̄γµq + y4XµQ̄γµγ5q + h.c.), (29)

where y3 and y4 are complex.

IV. NON-RELATIVISTIC REDUCTION OF SIMPLIFIED MODELS

After integrating out the heavy mediator we replace quark operators with nucleon oper-
ators (see appendix C), take the non-relativistic limit (see appendix B), and match onto the
operators given in table I. The results of this calculation are presented in terms of the ci

coefficients from [52], described in section II, facilitating a straightforward computation of
amplitudes and rates. The ci’s are given for each of the WIMP spins in tables II, III and IV.
With this general framework in place we can now easily find the leading order NR operators
for each distinct WIMP-nucleus interaction. One can imagine a series of minimal scenarios
in which a combination of two Lagrangian couplings that give rise to a direct detection signal
is non-zero with all others set to zero, and then proceeding in this manner for the entire set.
Each of these scenarios is listed with its leading operators in table V and with all operators
generated in table VI.

TABLE II. Non-zero ci coefficients for a spin−0 WIMP

Uncharged Mediator Charged Mediator

c1
hN

1 g1
m2

φ

y†
1y1−y†

2y2
mQmS

fN
T

c10
−ihN

2 g1
m2

φ
+ 2ig4hN

4
m2

G

mN
mS

i
y†

2y1−y†
1y2

mQmS
∆̃N
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3. Vector DM
Here again we only have the case of a spin-1

2 mediated interaction between vector DM
and quarks (again scalar and vector charged mediators aren’t possible because they don’t
lead to Lorentz invariant and renormalizable interactions). The general Lagrangian is given
by

LXQq = −1
2X †

µνX µν + m2
XX†

µXµ − λX

2 (X†
µXµ)2

+iQ̄ /DQ − mQQ̄Q

+iq̄ /Dq − mq q̄q

−(y3XµQ̄γµq + y4XµQ̄γµγ5q + h.c.), (29)

where y3 and y4 are complex.

IV. NON-RELATIVISTIC REDUCTION OF SIMPLIFIED MODELS

After integrating out the heavy mediator we replace quark operators with nucleon oper-
ators (see appendix C), take the non-relativistic limit (see appendix B), and match onto the
operators given in table I. The results of this calculation are presented in terms of the ci

coefficients from [52], described in section II, facilitating a straightforward computation of
amplitudes and rates. The ci’s are given for each of the WIMP spins in tables II, III and IV.
With this general framework in place we can now easily find the leading order NR operators
for each distinct WIMP-nucleus interaction. One can imagine a series of minimal scenarios
in which a combination of two Lagrangian couplings that give rise to a direct detection signal
is non-zero with all others set to zero, and then proceeding in this manner for the entire set.
Each of these scenarios is listed with its leading operators in table V and with all operators
generated in table VI.

TABLE II. Non-zero ci coefficients for a spin−0 WIMP

Uncharged Mediator Charged Mediator

c1
hN

1 g1
m2

φ

y†
1y1−y†

2y2
mQmS

fN
T

c10
−ihN

2 g1
m2

φ
+ 2ig4hN

4
m2

G

mN
mS

i
y†

2y1−y†
1y2

mQmS
∆̃N

15TABLE III. ci coefficients for a spin-1
2 WIMP

Uncharged Mediator Charged Mediator

c1
hN

1 λ1
m2

φ
− hN

3 λ3
m2

G

(
l†2l2−l†1l1

4m2
Φ

+ d†
2d2−d†

1d1
4m2

V

)
fN

T +
(

− l†2l2+l†1l1
4m2

Φ
+ d†

2d2+d†
1d1

8m2
V

)
N N

c4
4hN

4 λ4
m2

G

l†2l2−l†1l1
m2

Φ
δN −

(
l†1l1+l†2l2

m2
Φ

+ d†
2d2−d†

1d1
2m2

V

)
∆N

c6
hN

2 λ2mN

m2
φmχ

( l†1l1−l†2l2
4m2

Φ
+ d†

2d2−d†
1d1

4m2
V

)mN
mχ

∆̃N

c7
2hN

4 λ3
m2

G
( l†1l2−l†2l1

2m2
Φ

+ d†
1d2+d†

2d1
4m2

V
)∆N

c8 −2hN
3 λ4

m2
G

( l†1l2−l†2l1
2m2

Φ
− d†

1d2+d†
2d1

4m2
V

)N N

c9 −2hN
4 λ3mN

mχm2
G

− 2hN
3 λ4

m2
G

( l†1l2−l†2l1
2m2

Φ
− d†

1d2+d†
2d1

4m2
V

)N N − ( l†1l2−l†2l1
2m2

Φ
− d†

1d2+d†
2d1

4m2
V

)mN
mχ

∆N

c10
hN

2 λ1
m2

φ
i( l†1l2−l†2l1

4m2
Φ

+ d†
2d1−d†

1d2
4m2

V
)∆̃N − i

l†1l2−l†2l1
m2

Φ
δN

c11 −hN
1 λ2mN

m2
φmχ

i( l†2l1−l†1l2
4m2

Φ
+ d†

2d1−d†
1d2

4m2
V

)mN
mχ

fN
T + i

l†1l2−l†2l1
m2

Φ

mN
mχ

δN

c12 0 l†2l1−l†1l2
m2

Φ
δN

TABLE IV. ci coefficients for a spin-1 WIMP

Uncharged Mediator Charged Mediator

c1
b1hN

1
m2

φ

y†
3y3−y†

4y4
mQmX

fN
T

c4
4Im(b7)hN

4
m2

G
2y†

3y3−y†
4y4

mQmX
δN

c5
Re(b6)hN

3
m2

G

mN
mX

0

c8
2Im(b7)hN

3
m2

G
0

c9 −2Re(b6)hN
4

m2
G

mN
mX

+ 2Im(b7)hN
3

m2
G

0

c10
b1hN

2
m2

φ
− 3b5hN

4
m2

G

mN
mX

i
y†

4y3−y†
3y4

mQmX
∆̃N

c11
Re(b7)hN

3
m2

G

mN
mX

i
y†

4y3−y†
3y4

mQmX
δN

c12 0 2i
y†

3y4−y†
4y3

mQmX
δN

c14 −2Re(b7)hN
4

m2
G

mN
mX

0

c17 −4Im(b6)hN
3

m2
G

mN
mX

0

c18
4Im(b6)hN

4
m2

G

mN
mX

−2i
y†

4y3−y†
3y4

mQmX
δN

As described earlier, we find that it is important to consider operators beyond those
incorporated into the standard spin-independent and spin-dependent formalism, i.e. simple
models exist in which one would infer an incorrect rate in current experiments by not in-
cluding these effects. Also importantly, not all of the NR operators are actually generated at
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TABLE III. ci coefficients for a spin-1
2 WIMP

Uncharged Mediator Charged Mediator

c1
hN

1 λ1
m2

φ
− hN

3 λ3
m2

G

(
l†2l2−l†1l1

4m2
Φ

+ d†
2d2−d†

1d1
4m2

V

)
fN

T +
(

− l†2l2+l†1l1
4m2

Φ
+ d†
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8m2
V
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N N
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G
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m2
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m2
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V
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c6
hN
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V

)mN
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∆̃N
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Φ
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4m2

V
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V
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G
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3 λ4

m2
G
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2m2
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2d1

4m2
V
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2m2

Φ
− d†
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2d1

4m2
V

)mN
mχ

∆N

c10
hN

2 λ1
m2

φ
i( l†1l2−l†2l1

4m2
Φ

+ d†
2d1−d†

1d2
4m2

V
)∆̃N − i

l†1l2−l†2l1
m2

Φ
δN

c11 −hN
1 λ2mN

m2
φmχ

i( l†2l1−l†1l2
4m2

Φ
+ d†

2d1−d†
1d2

4m2
V

)mN
mχ

fN
T + i

l†1l2−l†2l1
m2

Φ

mN
mχ

δN

c12 0 l†2l1−l†1l2
m2

Φ
δN
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m2
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φ
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m2
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i
y†
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c11
Re(b7)hN

3
m2

G

mN
mX

i
y†

4y3−y†
3y4

mQmX
δN
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y†
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m2
G
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mX
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3

m2
G

mN
mX
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4
m2

G

mN
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y†
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3y4
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As described earlier, we find that it is important to consider operators beyond those
incorporated into the standard spin-independent and spin-dependent formalism, i.e. simple
models exist in which one would infer an incorrect rate in current experiments by not in-
cluding these effects. Also importantly, not all of the NR operators are actually generated at
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