

Searching for Milky Way Satellite Galaxies with the Dark Energy Survey

Alex Drlica-Wagner
on behalf of the
DES & Fermi-LAT Collaborations

Mitchell Workshop May 19, 2015

Indirect Detection of Dark Matter Annihilation

(Bullock, Geha, Powell)

Milky Way Satellite Galaxies

Walker et al. 2007

Dark Matter Dominated

The stars in dwarf galaxies are moving too fast to be explained by visible mass alone

Galactic Center Comparison

Galactic Center Comparison

Kevork Abazajian @kevaba · Oct 25

@QuantaMagazine @nattyover I corrected the figure for the article to reflect the approx. halo density uncert to 2σ

4

17 1

k

...

Alex Drlica-Wagner | Fermilab

Milky Way Satellite Galaxies Discovery Timeline

Finding Milky Way Satellite Galaxies

Koposov et al. (2008) Walsh et al. (2009) Willman et al. (2010)

Color-Magnitude Domain

Spatial Domain

Segue 1

Milky Way Satellite Galaxies Discovery Timeline

SDSS DR10

DES Year-Que (YIII) X 90 Sermilab

- Imagin Main Survey ar of the survey:
- August 2013 to February 2014 ~12,000 science exposure mag. limit 25.2 (g) ... 23.4 (z)
- Coadded image catalog covering ~1800 deg²
 - ~200 deg² overlapping with **SDSS Stripe-82**
 - ~1600 deg² overlapping with the South Pole Telescope
- **Stellar completeness >50%** down to $g,r \sim 23$
- **Calibration uncertainty:** 2% (relative), 0.5% (absolute)

SDSS DR10

DES Y1A1

Y1A1: A First Look

Y1A1: A First Look

Reticulum II (DES J0335.6-5403)

Eridanus II (DES J0344.3-4331)

arXiv:1503.02584

arXiv:1503.02079

Bechtol et al. (2015) (DES Collaboration) (also see Koposov et al. 2015)

Reticulum II

Additional Objects

Dwarf Galaxies or Globular Clusters?

Dwarf Galaxy Candidates

Milky Way Satellite Galaxies Discovery Timeline

Reticulum II: Newest Dwarf Galaxy?

Reticulum II: Newest Dwarf Galaxy?

- Satellite galaxies tend to be more spatially extended and have a stronger correlation between size and luminosity.
- Satellite galaxies also tend to be more elliptical.
- Reticulum II is consistent with the population of satellite galaxies.

Spectroscopy necessary to definitively distinguish satellite galaxies from

globular clusters... Martin et al 2008 Ultra-faint Dwarf Galaxies Classical Dwarf Galaxies McConnachie, 2012 • Galactic sub-group Globular Clusters ■ Andromeda sub-group ▲ Local Group **Dwarf** ★ Nearby galaxies Reticulum II **Galaxies** UGC4879 • Galactic globular clusters **Dwarf Galaxies AndXIX** 0.2 **Globular Clusters** Reticulum II Globular -5**Clusters** 10 100 1000 M_{v} r_h (pc)

Reticulum II: Spectroscopy Campaign

Magellan/M2FS

Gemini/GMOS

VLT/GIRAFFE

Reticulum II: Newest Dwarf Galaxy

- Velocity peak indicative of a gravitationally bound object
- Dynamical mass calculated from the width of the velocity dispersion (width of the velocity peak)
- Metallicity spread also indicative of deep gravitational potential
- Every measured characteristic of Reticulum II is consistent with the known population of dwarf galaxies

Simon et al. 2015 (DES Collaboration) (see also Walker et al. 2015)

Systemic Velocity

 $v = 62.8 \pm 0.5 \,\mathrm{km}\,\mathrm{s}^{-1}$

Velocity Dispersion

 $\sigma_v = 3.3 \pm 0.7 \,\mathrm{km}\,\mathrm{s}^{-1}$

Metallicity

 $[Fe/H] = -2.65 \pm 0.07$

Metallicity Dispersion

 $\sigma_{\rm [Fe/H]} = 0.28 \pm 0.09$

Dynamical Mass

 $M_{1/2} = 5.6 \pm 2.4 \times 10^5 \,\mathrm{M}_{\odot}$

Mass-to-Light Ratio

 $M/L = 470 \pm 210 \,\mathrm{M}_{\odot}/\,\mathrm{L}_{\odot}$

arXiv:1504.02889

arXiv:1504.03309

Reticulum II: Ultra-faint Dwarf Galaxy

Milky Way Satellite Galaxies Discovery Timeline

Dark Matter Searches in Gamma Rays

- Search for discrete gamma-ray sources coincident with the DES dwarf galaxy candidates
- No significant gamma-ray sources detected over background
- Most significant excess coincident with Reticulum II
 - LAT Collaboration, Pass8: individual p-value = 0.06 (1.5σ)
 - Geringer-Sameth+, Pass 7: individual p-value = $0.01 (2.3\sigma)$

 How does the expected dark matter annihilation signal from Reticulum Il compare to other dwarf galaxies?

arXiv:1503.02632

arXiv:1503.02320

Dark Matter Searches in Gamma Rays

Dark Matter Searches in Gamma Rays

arXiv:1504.02889 arXiv:1504.03060

Looking Forwards x 90 sermilab

Viain Survey
A large spectroscopic campaign is

necessary to classify and characterize the newly discovered systems $10 \text{ tilings x 90 s} \Rightarrow \text{mag. limit 25.2 (g)} \dots 23.4 (z)$

Future sky coverage:

DES Y2: >4,000 deg²

DES Y3+: 5,000 deg² (and greater sensitivity)

LSST: 10,000 deg² (and much greater sensitivity)

- **Increased sensitivity: stellar systems** with larger spatial extent
 - Do galaxies extend to even lower surface brightness?
 - **Nearby ultra-faint dwarf galaxies** can be very spatially extended.

Backup Slides

Finding Milky Way Satellite Galaxies

M3

Maximum Likelihood Analysis

40

Membership Probability:

$$p_i = \frac{\lambda u_i}{\lambda u_i + b_i}$$

 $(u_i = sig prob, b_i = bkg prob)$

Richness:
$$\lambda = \frac{1}{f} \sum_{i \in \text{Stars}} p_i$$

 $(\lambda = normalization = number of stars)$ (f = observable fraction)

Log Likelihood:

$$u_{i} = u_{i,\text{radist}}(l,b) \times u_{i,\text{color}}(m_{1},m_{2},\sigma_{m_{1}}\sigma_{m_{2}})$$

$$\log L = -\sum_{i \in \text{Stars}} \log(1-p_{i}) - f\lambda$$

Maximum Likelihood Analysis

Membership Probability:

$$p_i = \frac{\lambda u_i}{\lambda u_i + b_i}$$

Important for spectroscopic follow up observations

Richness:

$$\lambda = \frac{1}{f} \sum_{i \in \text{Stars}} p_i$$

 $(\lambda = normalization = number of stars)$

(f = observable fraction)

Log Likelihood:

$$u_{i} = u_{i,\text{radisc}}(l,b) \times u_{i,\text{color}}(m_{1},m_{2},\sigma_{m_{1}}\sigma_{m_{2}})$$

$$\log L = -\sum_{i \in \text{Stars}} \log(1-p_{i}) - f\lambda$$

Dark Energy Camera (DECam)

- 570 megapixel camera
- < 20s readout time
- ~3 deg² field-of-view
- Unprecedented sensitivity

The Dark Energy Survey (DES)

- Fist full of fives:
 - 525 nights over 5 years
 - 5,000 deg²
 - 5 filters: *g,r,i,z,Y*
- Constrain the dark energy equation of state with:
 - Supernova
 - Weak Lensing
 - Large Scale Structure
 - Galaxy Clusters
- Unprecedented sensitivity can lead to unexpected discoveries...

SESSION Y2 1:30PM Holiday 1

Dwarf Galaxy Candidates (continued...)

BEASTS OF THE SOUTHERN WILD. DISCOVERY OF A LARGE NUMBER OF ULTRA FAINT SATELLITES IN THE VICINITY OF THE MAGELLANIC CLOUDS.

SERGEY E. KOPOSOV, VASILY BELOKUROV, GABRIEL TORREALBA, AND N. WYN EVANS Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK

(Dated: March 10, 2015)

Draft version March 10, 2015

A NEW FAINT MILKY WAY SATELLITE DISCOVERED IN THE PAN-STARRS1 3π SURVEY

Benjamin P. M. Laevens^{1,2}, Nicolas F. Martin^{1,2}, Rodrigo A. Ibata¹, Hans-Walter Rix², Edouard J. Bernard³, Eric F. Bell⁴, Branimir Sesar², Annette M. N. Ferguson³, Edward F. Schlafly², Colin T. Slater⁴, William S. Burgett⁵, Kenneth C. Chambers⁶, Heather Flewelling⁶, Klaus A. Hodapp⁶, Nicholas Kaiser⁶, Rolf-Peter Kudritzki⁶, Robert H. Lupton⁷, Eugene A. Magnier⁶, Nigel Metcalfe⁸, Jeffrey S. Morgan⁶, Paul A. Price⁷, John L. Tonry⁶, Richard J. Wainscoat⁶, Christopher Waters⁶

Pan-STARRS

Draft version March 20, 2015

A HERO'S DARK HORSE: DISCOVERY OF AN ULTRA-FAINT MILKY WAY SATELLITE IN PEGASUS

Dongwon Kim, Helmut Jerjen, Dougal Mackey, Gary S. Da Costa, and Antonino P. Milone Research School of Astronomy and Astrophysics, The Australian National University, Mt Stromlo Observatory, via Cotter Rd, Weston, ACT 2611, Australia

Draft version March 31, 2015

HYDRA II: A FAINT AND COMPACT MILKY WAY DWARF GALAXY FOUND IN THE SURVEY OF THE MAGELLANIC STELLAR HISTORY

NICOLAS F. MARTIN^{1,2}, DAVID L. NIDEVER³, GURTINA BESLA⁴, KNUT OLSEN⁵, ALISTAIR R. WALKER⁶, A. KATHERINA VIVAS⁶, ROBERT A. GRUENDL^{7,8}, CATHERINE C. KALEIDA^{5,6}, RICARDO R. MUÑOZ^{9,25}, ROBERT D. BLUM⁵, ABHIJIT SAHA⁵, BLAIR C. CONN¹⁰, ERIC F. BELL³, YOU-HUA CHU^{11,8}, MARIA-ROSA L. CIONI^{12,13,14}, THOMAS J. L. DE BOER¹⁵, CARME GALLART^{16,17}, SHOKO JIN¹⁸, ANDREA KUNDER¹³, STEVEN R. MAJEWSKI¹⁹, DAVID MARTINEZ-DELGADO²⁰, ANTONELA MONACHESI²¹, MATTEO MONELLI^{16,17}, LARA MONTEAGUDO^{16,17}, NOELIA E. D. NOËL²², EDWARD W. OLSZEWSKI⁴, GUY S. STRINGFELLOW²³, ROELAND P. VAN DER MAREL²⁴, DENNIS ZARITSKY⁴

Draft version April 3, 2015

DECam Data

DECam Data

DES Data

A Familiar Problem

A Familiar Problem

Upcoming Challenges

Galaxy more abundant than stars a faint magnitudes.

Require better star-galaxy separation

More sensitive and robust search techniques

Small, well characterized signal in a strong, structured background.

- Dotter theoretical isochrone 300 kpc, 10 Gyr, [Fe/H] = -2
- Stellar sources in the HUDF
- Galaxies with fwhm < 0.8 arcsec in the HUDF

Reticulum II: Newest Dwarf Galaxy?

Looking Forward

- A large-scale spectroscopy campaign will be necessary to classify and characterize newly discovered systems
- Future sky coverage:
 - DES Y2: >4,000 deg²
 - DES Y3+: 5,000 deg² (and greater sensitivity)
 - LSST: 10,000 deg² (and much greater sensitivity)
- Increased sensitivity:stellar systems with larger spatial extent
 - Are there ultra-faint dwarf galaxies very nearby?
 - Are there more distant galaxies with extremely low surface brightness?

