Searching for Milky Way Satellite Galaxies with the Dark Energy Survey

Alex Drlica-Wagner on behalf of the
DES \& Fermi-LAT Collaborations

Mitchell Workshop
May 19, 2015

Astrophysics

Indirect Detection of Dark Matter Annihilation

Dark Matter Distribution

Particle Propagation

Particle Detection

Dark Matter Annihilation

Neutral Particles
 (γ, v)

Milky Way Satellite Galaxies

The Milky Way is surrounded by small satellite galaxies

Close to Earth (25 kpc to 250 kpc)

Luminosities range from $10^{7} L_{\odot}$ to $10^{3} L_{\odot}$

Astrophysically simple

Most dark matter dominated objects known

Walker et al. 2007

Dark Matter Dominated

The stars in dwarf galaxies are moving too fast to be explained by visible mass alone

Galactic Center Comparison

Galactic Center Comparison

Gammaray
Space Telescope

Kevork Abazajian @kevaba - Oct 25
@QuantaMagazine @nattyover I corrected the figure for the article to reflect the approx. halo density uncert to 2σ

Finding Milky Way Satellite Galaxies

Milky Way Satellite Galaxies Discovery Timeline

Finding Milky Way Satellite Galaxies

Koposov et al. (2008)
Walsh et al. (2009)
Willman et al. (2010)

Color-Magnitude Domain

-0.5	0.0	1.0	1.5					

Spatial Domain

δ ra (degrees)

Milky Way Satellite Galaxies Discovery Timeline

SDSS DR10

ENERCY SURVEY

DES Year-One (Y1A1)

- Imaging data from the first year of the survey:
August 2013 to February 2014
~12,000 science exposures
- Coadded image catalog
covering ~1800 deg 2
- ~200 deg 2 overlapping with SDSS Stripe-82
- ~1600 deg 2 overlapping with the South Pole Telescope
- Stellar completeness >50\% down to $\mathrm{g}, \mathrm{r} \sim 23$
- Calibration uncertainty:

2\% (relative), 0.5\% (absolute)

SDSS DR10

ENERCY SURVEY

DES Y1A1

ENERCY SURVEY

Y1A1: A First Look

NGC 1851

Y1A1: A First Look

Eridanus II
(DES J0344.3-4331)

DES Collaboration

Reticulum II

DES Collaboration

Belokurov \& Koposov

Additional Objects

arXiv:1503.02584

Dwarf Galaxies or Globular Clusters?

Fermilab

Dwarf Galaxy Candidates

ENERGY SURVEY

Fermilab

Milky Way Satellite Galaxies Discovery Timeline

Reticulum II:

 Newest Dwarf Galaxy?- Satellite galaxies tend to be more spatially extended and have a stronger correlation between size and luminosity.
- Satellite galaxies also tend to be more elliptical.
- Reticulum II is consistent with the population of satellite galaxies.
- Spectroscopy necessary to definitively distinguish satellite galaxies from globular clusters...

Reticulum II: Spectroscopy Campaign
 Reticulum II: Spectroscopy Campaign

THE DARK
ENERGY SURVEY

- Velocity peak indicative of a gravitationally bound object
- Dynamical mass calculated from the width of the
velocity dispersion (width of the velocity peak)
- Metallicity spread also indicative of deep gravitational potential
- Every measured characteristic of Reticulum II is

Systemic Velocity	$v=62.8 \pm 0.5 \mathrm{~km} \mathrm{~s}^{-1}$
Velocity Dispersion	$\sigma_{v}=3.3 \pm 0.7 \mathrm{~km} \mathrm{~s}^{-1}$

Metallicity consistent with the known population of dwarf galaxies Metallicity Dispersion

Simon et al. 2015 (DES Collaboration)
(see also Walker et al. 2015)

Dynamical Mass
Mass-to-Light Ratio
$[\mathrm{Fe} / \mathrm{H}]=-2.65 \pm 0.07$
$\sigma_{[\mathrm{Fe} / \mathrm{H}]}=0.28 \pm 0.09$
$M_{1 / 2}=5.6 \pm 2.4 \times 10^{5} \mathrm{M}_{\odot}$
$M / L=470 \pm 210 \mathrm{M}_{\odot} / \mathrm{L}_{\odot}$

Reticulum II: Ultra-faint Dwarf Galaxy

Dark Matter Searches in Gamma Rays

Dark Matter Searches in Gamma Rays

Dark Matter Searches in Gamma Rays

Gammaray
Space Telescope

Table 1. Reticulum II

Some disagreement between groups about median J-factor...

Groups agree that the expected dark matter signal from Ret II is smaller than that expected from some other dwarf galaxies | Unlikely to see a dark matter |
| :--- |
| signal from Ret II without also |
| seeing it from other galaxies. |

Looking Forward

- A large spectroscopic campaign is necessary to classify and characterize the newly discovered systems
- Future sky coverage:
- DES Y2: >4,000 deg^{2}
- DES Y3+: 5,000 deg 2 (and greater sensitivity)
- LSST: 10,000 deg 2
(and much greater sensitivity)
- Increased sensitivity: stellar systems with larger spatial extent
- Do galaxies extend to even lower

Backup Slides

Finding Milky Way Satellite Galaxies

figure 2.- distribution of stars in central square degree

Fro. 5.-Color-magnitude diagram for M3 stars in the arguments V and $B-V$
"Redness"

Sculptor

Maximum Likelihood Analysis

Membership Probability: $\quad p_{i}=\frac{\lambda u_{i}}{\lambda u_{i}+b_{i}} \quad\left(\mathrm{u}_{\mathrm{i}}=\right.$ sig prob, $\mathrm{b}_{\mathrm{i}}=\mathrm{bkg}$ prob $)$

$$
\begin{array}{ll}
\text { Richness: } \quad \lambda=\frac{1}{f} \sum_{i \in \text { Stars }} p_{i} \quad \begin{array}{l}
(\lambda=\text { normalization }=\text { number of stars }) \\
(\mathrm{f}=\text { observable fraction })
\end{array}
\end{array}
$$

Log Likelihood: $\log L=-\sum_{i \in \operatorname{Stars}} \log \left(1-p_{i}\right)-f \lambda$

Maximum Likelihood Analysis

Log Likelihood: $\log L=-\sum_{i \in \text { Stars }} \log \left(1-p_{i}\right)-f \lambda$

Dark Energy Camera (DECam)

- 570 megapixel camera
- < 20s readout time
- ~3 deg ${ }^{2}$ field-of-view
- Unprecedented sensitivity

The Dark Energy Survey (DES)

- Fist full of fives:
- 525 nights over 5 years
- 5,000 deg^{2}
- 5 filters: g, r, i, z, Y
- Constrain the dark energy equation of state with:
- Supernova
- Weak Lensing
- Large Scale Structure
- Galaxy Clusters
- Unprecedented sensitivity can lead to unexpected discoveries...

SESSION Y2 1:30PM Holiday 1

ENERGY SURVEY

Dwarf Galaxy Candidates (continued...)

BEASTS OF THE SOUTHERN WILD. DISCOVERY OF A LARGE NUMBER OF ULTRA FAINT SATELLITES IN THE VICINITY OF THE MAGELLANIC CLOUDS.

Sergey E. Koposov, Vasily Belokurov, Gabriel Torrealba, and N. Wyn Evans Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK

DES Data

(Dated: March 10, 2015)
Draft version March 10, 2015

A NEW FAINT MILKY WAY SATELLITE DISCOVERED IN THE PAN-STARRS1 3π SURVEY
Benjamin P. M. Laevens ${ }^{1,2}$, Nicolas F. Martin ${ }^{1,2}$, Rodrigo A. Ibata ${ }^{1}$, Hans-Walter Rix ${ }^{2}$, Edouard J. Bernard ${ }^{3}$,
Eric F. Bell ${ }^{4}$, Branimir Sesar ${ }^{2}$, Annette M. N. Ferguson ${ }^{3}$, Edward F. Schlafly ${ }^{2}$, Colin T. Slater ${ }^{4}$, William S'.
Burgett ${ }^{5}$, Kenneth C. Chambers ${ }^{6}$, Heather Flewelling ${ }^{6}$, $\mathrm{Klaus} \mathrm{A}. \mathrm{Hodapp}^{6}$, Nicholas Kaiser ${ }^{6}$, Rolf-Peter
Kudritzki ${ }^{6}$. Robert H. Lupton ${ }^{7}$, Eugene A. Magnier ${ }^{6}$, Nigel Metcalfe ${ }^{8}$, Jeffrey S. Morgan ${ }^{6}$, Paul A. Price ${ }^{7}$, John L. Tonry ${ }^{6}$, Richard J. Wainscoat ${ }^{6}$, Christopher Waters ${ }^{6}$

A HERO'S DARK HORSE: DISCOVERY OF AN ULTRA-FAINT MILKY WAY SATELLITE IN PEGASUS
Dongwon Kim, Helmut Jerjen, Dougal Mackey, Gary S. Da Costa, and Antonino P. Milone
Research School of Astronomy and Astrophysics, The Australian National University, Mt Stromlo Observatory, via Cotter Rd, Weston,
ACT 2611, Australia
Draft version March 31, 2015

DECam Data

HYDRA II: A FAINT AND COMPACT MILKY WAY DWARF GALAXY FOUND IN THE SURVEY OF THE MAGELLANIC STELLAR HISTORY

Nicolas F. Martin ${ }^{1,2}$, David L. Nidever ${ }^{3}$, Gurtina Besla ${ }^{4}$, Knut Olsen ${ }^{5}$, Alistair R. Walker ${ }^{6}$, A. Katherina Vivas ${ }^{6}$, Robert A. Gruendl ${ }^{7,8}$, Catherine C. Kaleida ${ }^{5,6}$, Ricardo R. Muñoz ${ }^{9,25}$, Robert D. Blum ${ }^{5}$, Abhijit Saha ${ }^{5}$, Blair C. Conn ${ }^{10}$, Eric F. Bell ${ }^{3}$, You-Hua Chu ${ }^{11,8}$, Maria-Rosa L. Cioni ${ }^{12,13,14}$, Thomas J. L. de Boer ${ }^{15}$, Carme

Gallart ${ }^{16,17}$, Shoko Jin ${ }^{18}$, Andrea Kunder ${ }^{13}$, Steven R. Majewski ${ }^{19}$, David Martinez-Delgado ${ }^{20}$, Antonela Monachesi ${ }^{21}$, Matteo Monelli ${ }^{16,17}$, Lara Monteagudo ${ }^{16,17}$, Noelia E. D. Noël ${ }^{22}$, Edward W. Olszewski ${ }^{4}$, Guy S. Stringfellow ${ }^{23}$, Roeland P. van der Marel ${ }^{24}$, Dennis Zaritsky ${ }^{4}$

A Familiar Problem

Fermilab

A Familiar Problem

Upcoming Challenges

THE DARK

—— Dotter theoretical isochrone $300 \mathrm{kpc}, 10 \mathrm{Gyr},[\mathrm{Fe} / \mathrm{H}]=-2$

- Stellar sources in the HUDF

Galaxy more abundant than stars a faint magnitudes.

Require better star-galaxy separation

More sensitive and robust search techniques

Small, well characterized signal in a strong, structured background.

- Galaxies with fwhm <0.8 arcsec in the HUDF

Reticulum II: Newest Dwarf Galaxy?

THE DARK

arXiv:1503.02584

Membership probabilities will play an important role targeting spectroscopy

Looking Forward

- A large-scale spectroscopy campaign will be necessary to classify and characterize newly discovered systems
- Future sky coverage:
- DES Y2: >4,000 deg^{2}
- DES Y3+: 5,000 deg^{2} (and greater sensitivity)
- LSST: 10,000 deg 2 (and much greater sensitivity)
- Increased sensitivity:stellar systems with larger spatial extent
- Are there ultra-faint dwarf galaxies very nearby?
- Are there more distant galaxies
 with extremely low surface brightness?

