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Dick Arnowitt’s many contributions to physics have illuminated the
path to a deeper understanding in the theory of gravitation, the
unification of particle physics, the phenomenology of supergravity
and supermatter theories, the phenomenology of string theory,
cosmology, current algebras and many other important topics in
theoretical physics.
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The relations between Dick’s work and my own started out with
the series of key papers he wrote together with Ali Chamseddine
and Pran Nath laying the foundations of supersymmetric
unification phenomenology, starting with the highly cited paper

A.H. Chamseddine, R.L. Arnowitt and P. Nath,

“Locally Supersymmetric Grand Unification,” Phys. Rev. Lett. 49, 970 (1982)

and then continuing on in a major series of other key papers.

This used the general scheme of coupling between supergravity and
matter derived using the N = 1 supergravity tensor calculus

K. S. Stelle and P. C. West,

Phys. Lett. B74 (1978) 330; Phys. Lett. B 77, 376 (1978); Nucl. Phys. B 145, 175 (1978)

S. Ferrara and P. van Nieuwenhuizen,

Phys. Lett. B74 (1978) 333; Phys. Lett. B 76, 404 (1978); Phys. Lett. B 78, 573 (1978)
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Dick and I collaborated directly in just one paper, but the topic
was illustrative of his general approach to the implementation of
mathematical structure taken from more formal work, then applied
to important topics of physical concern. In this case, it was one of
my infrequent forrays into phenomenology: the CP problem,

R.L. Arnowitt, M.J. Duff and K.S. Stelle,

“Supersymmetry and the Neutron Electric Dipole Moment,” Phys. Rev. D43 (1991) 3085

which focused on CP violation following from nonminimal super
Yang-Mills kinetic terms involving spontaneous supersymmetry
breaking. This then to a more detailed consideration of the
neutron electric dipole moment in

R.L. Arnowitt, J.L. Lopez and D.V. Nanopoulos,

“Keeping the Demon of SUSY at Bay,” Phys. Rev. D42 (1990) 2423.

typically retitled in rather prissy fashion by Phys. Rev. D as

“Electric Dipole Moment of the Neutron in Supersymmetric Theories.”
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The universe as a membrane

Dick’s interests in cosmology, developed through something like
35-40 papers, were a natural extension of his pioneering work in
the dynamics of general relativity and in particle physics
phenomenology. The idea of the universe as a braneworld, dates
back to the work of Rubakov and Shaposhnikov in 1983. Dick’s
work in this direction, often together with Pran Nath or Bhaskar
Dutta, is another topic on which Dick’s interests and mine have
had parallels.

Now let’s switch to a somewhat more detailed investigation of a
key problem in this approach: how to get gravity to localise its
effects on a subsurface of a higher-dimensional spacetime.

B. Crampton, C.N. Pope and K.S. Stelle,

“Braneworld localisation in hyperbolic spacetime,” JHEP 1412 (2014) 035.
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Attempts in a supergravity context to achieve a localization of
gravity on a brane embedded in an infinite transverse space were
made by Randall and Sundrum (RS II) Phys. Rev. Lett. 83 (1999) 4690 and by
Karch and Randall JHEP 0105 (2001) 008 using patched-together sections
of AdS5 space with a delta-function source at the joining surface.
This produced a “volcano potential” for the effective Schrödinger
problem in the direction transverse to the brane, giving rise to a
bound state concentrating gravity in the 4D directions.
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Another approach: Salam-Sezgin theory and its embedding

Abdus Salam and Ergin Sezgin constructed in 1984 a version of 6D
minimal (chiral, i.e. (1,0)) supergravity coupled to a 6D 2-form
tensor multiplet and a 6D super-Maxwell multiplet which gauges
the U(1) R-symmetry of the theory. Phys.Lett. B147 (1984) 47 This
Einstein-tensor-Maxwell system has the bosonic Lagrangian

LSS = 1
2R −

1
4g2 e

σFµνF
µν − 1

6e
−2σGµνρG

µνρ − 1
2∂µσ∂

µσ − g2e−σ

Gµνρ = 3∂[µBνρ] + 3F[µνAρ]

Note the positive potential term for the scalar field σ. This is a key
feature of all R-symmetry gauged models generalizing the
Salam-Sezgin model, leading to models with noncompact
symmetries. For example, upon coupling to yet more vector
multiplets, the sigma-model target space can have a structure
SO(p, q)/(SO(p)× SO(q)).
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H(2,2) embedding of the Salam-Sezgin theory
A way to obtain the Salam-Sezgin theory from M theory was given
by Cvetič, Gibbons & Pope. Nucl. Phys. B677 (2004) 164 This employed a
reduction from 10D type IIA supergravity on the space H(2,2), or,
equivalently, from 11D supergravity on S1 ×H(2,2). The H(2,2)

space is a cohomogeneity-one 3D hyperbolic space which can be
obtained by embedding into R4 via the condition
µ2

1 + µ2
2 − µ2

3 − µ2
4 = 1. This embedding condition is SO(2, 2)

invariant, but the embedding R4 space has SO(4) symmetry, so the
isometries of this space are just SO(2, 2) ∩ SO(4) = SO(2)× SO(2).
The cohomogeneity-one H(2,2) metric is
ds2

3 = cosh 2ρdρ2 + cosh2ρdα2 + sinh2ρdβ2.

Since H(2,2) admits a natural SO(2, 2) group action, the resulting
7D supergravity theory has maximal (32 supercharge)
supersymmetry and a gauged SO(2, 2) symmetry, linearly realized
on SO(2)× SO(2). Note how this fits neatly into the general
scheme of extended Salam-Sezgin gauged models.
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The Kaluza-Klein spectrum

Reduction on the non-compact H(2,2) space from ten to seven
dimensions, despite its mathematical consistency, does not provide
a full physical basis for compactification to 4D, however. The chief
problem is that the truncated Kaluza-Klein modes form a
continuum instead of a discrete set with mass gaps. Moreover, the
wavefunction of “reduced” 4D states when viewed from 10D or
11D includes a non-normalizable factor owing to the infinite H(2,2)

directions. This infinite transverse volume also has the
consequence that the resulting 4D Newton constant vanishes.
Accordingly, the higher-dimensional supergravity theory does not
naturally localize gravity in the lower-dimensional subspace when
handled by ordinary Kaluza-Klein methods.
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Bound states and mass gaps Crampton, Pope & K.S.S., JHEP 1412 (2014) 035; 1408.7072

An approach to solving the non-localization problem of gravity on
the 4D subspace of the ground-state Salam-Sezgin (SS) solution is
to look for a normalizable transverse-space wavefunction with a
mass gap before the onset of the continuous massive Kaluza-Klein
spectrum. This could be viewed as analogous to an effective field
theory for a system confined to a metal by a nonzero work
function.

General study of the fluctuation spectra about brane solutions
shows that the mass spectrum of the spin-two fluctuations about a
brane background is given by the spectrum of the scalar Laplacian
in the transverse embedding space of the brane
Csaki, Erlich, Hollowood & Shirman, Nucl.Phys. B581 (2000) 309; Bachas & Estes, JHEP 1106 (2011) 005

(10)F =
1√

− det g(10)

∂M

(√
− det g(10)g

MN
(10)∂NF

)
= H

1
4

SS( (4) + g24θ,φ,y ,ψ,χ + g24rad)

HSS = (cosh 2ρ)−1 warp factor; 4rad =
∂2

∂ρ2
+

2

tanh(2ρ)

∂
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The directions θ, φ, y , ψ & χ are all compact, and one can employ
ordinary Kaluza-Klein methods for reduction on them by
truncating to the invariant sector for these coordinates, i.e. making
an S-wave reduction.

To handle the noncompact radial direction ρ, one needs to expand
in eigenmodes of 4rad. The ansatz for 4D metric fluctuations
simply replaces ηµν in the 10D metric by ηµν + hµν(x , ρ), where
one may take ∂µhµν = ηµνhµν = 0

hµν(x , ρ) =
∑
i

hλiµν(x)ξλi (ρ) +

∫ ∞
Λedge

dλ hλµν(x)ξλ(ρ)

in which the ξλi are discrete eigenmodes and the ξλ are continuous
Kaluza-Klein eigenmodes of the scalar Laplacian 4rad; their
eigenvalues give the Kaluza-Klein masses m2 = g2λ in 4D from

(10)h
λ
µν = 0 using 4θ,φ,y ,ψ,χh

λ
µν(x , ρ) = 0:

4radξλ(ρ) = −λξλ(ρ)

(4)h
λ
µν(x) = (g2λ)hλµν(x)
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The Schrödinger problem

One can rewrite the 4rad eigenvalue problem as a Schrödinger
equation by making the substitution

Ψλ =
√

sinh(2ρ)ξλ

after which the first derivative term is eliminated and the
eigenfunction equation takes the Schrödinger equation form

−d2Ψλ

dρ2
+ V (ρ)Ψλ = λΨλ

where the potential is

V (ρ) = 2− 1

tanh2(2ρ)
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The general behavior of candidate Ψλ eigenfunctions cannot be
given in terms of simple functions, but for λ = 0 the Schrödinger
equation luckily can be solved exactly. In this case, one has a clear
link between behaviors near the origin and at infinity, and one can
also then implement the requirement of L2 normalizability at
infinity. The exact result is

Ψ0(ρ) =
√

sinh(2ρ)ξ0(ρ) =
2
√

3

π

√
sinh(2ρ) log(tanh ρ)

Note, however, that ξ0 = 2
√

3
π log(tanh ρ) is logarithmically singular

as ρ→ 0.
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H(2,2) Schrödinger equation potential (orange) and zero-mode Ψ0 (purple)
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The Salam-Sezgin background with an NS5-brane inclusion
Justifying the singularity of the ξ(ρ) bound state as ρ→ 0 requires
introduction of some other element into the solution. It turns out
that what can be included nicely is an NS5-brane.

NS5-brane
wrapped on H (2,2)

H(2,2) space with an NS5-brane source wrapped around its ‘waist’
and smeared on a transverse S2
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The braneworld Newton constant
Reducing to 4D on the NS-5 modified SS solution, gravity has an
effective action

g3

16πG(10)

V(5)

∫
dρ
√
gEHH

∫
d4x(∂µhστ (x)∂µhστ (x)|ξ(ρ)|2 + . . .)

where V(5) = g−4π2`y is the volume of the 5 compact directions.

In a conventional Kaluza-Klein reduction where ξ(ρ) = const, the
ρ integral diverges and one consequently finds G(4) = 0 for the 4D
Newton constant. For the ξ0(ρ) ∝ log tanh ρ bound state in the SS
+ NS5 geometry, however, the integral now converges and one
obtains instead a finite 4D Newton constant. The corresponding
gravitational coupling constant κ(4) =

√
32πG(4) is

κ(4) =
√

32πg

√
G(10)

V(5)

∫
dρ sinh 2ρ(1− k cosh 2ρ log tanh ρ)ξ3

(
∫
dρ sinh 2ρ(1− k cosh 2ρ log tanh ρ)ξ2)

3
2

= 144
√

6ζ(3)

(
G(10)g

5

π7`y

) 1
2 (1 + 2k)

(2 + 3k)
3
2

.
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This brings us back to Dick, who, among his many investigations
in cosmology, considered precisely the same question:
R.L. Arnowitt and J. Dent,

“Gravitational forces in the brane world,” Phys. Rev. D 71 (2005) 124024.

He is greatly missed, but his memory will persist for all the
important things he taught us and for the enlightenment he gave
us in our attempts to understand the physical world.
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