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Direct Detection Search Strategies

Counting
After eliminating convential sources of backgrounds anything left
over must be Wimps
Current limits show <1keV/kg/year.

Annual Modulation
WIMP detection rate varies slightly due to
Earth’s motion through halo.
This technique requires precise control over
the experiment’s condition throughout the year.

Diurnal Modulation
The WIMP rate varies due to Earths rotation.
This requires directional detectors to interpret a signal as a WIMP
signal.
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Direct Detection of Dark Matter – Principals of
detection

Charge

Light Phonons

General Trend: Im-
proved Surface ef-
fects and Scalability
going from Phonon
→ Charge → Light
detection

General Trend: Im-
proved Resolution,
Threshold and Noise
going from Light →
Charge → Phonon de-
tection
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Direct Detection of Dark Matter – The Experiments

Charge

Light Phonons

SuperCDMS,
CDMSII, EDEL-
WEISS

LUX, Darkside,
XENON, ZEPLIN

DAMIC, CoGeNT

DAMA, DM-
Ice, XMASS,
DEAP3600

CRESST-I

ROSEBUD,
CRESST
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Common issues to Direct detection Experiments

Minimizing Backgrounds is the name of the game
Sensitivity without backgrounds: ∝ (t)
Sensitivity with backgrounds and background subtraction: ∝ (t)

1
2

Once systematic limits are reached, there are no more sensitivity
improvements.

Background Sources:
Decay Chains from, Th, Co, U, Kr etc. in the surrounding material as
well as neutrons induced by cosmic rays.

γ and β events are electron recoils and can be separated
α events tend to not be a big issue for most experiments
Neutrons from fission decays in the surrounding materials and
neutrons induced by cosmic rays are difficult to separate from
WIMPs and great care must be taken to go deep underground as
well as use clean materials
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Current Landscape – Motivation for low-mass WIMPs
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SuperCDMS – Overview

Upgrade to CDMS II
15 Ge Cryogenic
Solid State Detectors
operated at
50–60 mK
Continuous operation
from March 2012 to
July 2014
9 kg of total target
mass
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Cryogenic Solid State Detectors

The Technique: Collect heat
(phonons) in addition to ionization
or light from solid state detectors
held at cryogenic temperatures
(<∼60mK).

Strength of this technique:

Proven excellent
background discrimination
Purity of detector materials
Low thresholds and very
good energy resolution

Weakness of this technique:

Difficult to scale to large
detector masses.
Surface effects can mimic
a WIMP signal

“God made the bulk; surfaces were
invented by the devil.” – Wolfgang Pauli

Current and planed experiments using
this technique:

SuperCDMS Soudan/SNOLAB,
EDELWEISS II/III, CRESST II/III, Eureca
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WIMP interaction in CDMS

*This slide contains an embedded version of this video http://youtu.be/Xw-TrHv6vlQ which will play when opened with Adobe

Reader or Okular (tested). Using other PDF viewers the video may not work.
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SuperCDMS – The iZIP

+2V charge
0V phonon

0V phonon
-2V charge

Ge

(a)

phonon

charge

(c)

Both phonon and ionization sensors layouts are shown in panels
(a) and (b).
The crystals are biased at +2V and −2V, which produces a large
electric field in the bulk as well as near the surfaces, to pull
electrons and holes to opposite crystal faces.
The electrode configuration is optimized to produce an E-field (b)
that helps eliminate surface events.
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Low Mass WIMPs with SuperCDMS
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Low Mass WIMPs with SuperCDMS
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Lowering the thresholds is the name of the game!
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Low Mass WIMPs with SuperCDMS
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Background dominates
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Threshold
expected background

Lowering the thresholds and the background is the name of the game!
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SuperCDMS low-threshold backgrounds

Two SCDMS detectors cartoon

210Pb or 210Bi decay
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Internal Activation External γ

210Pb decay chain

Aprox. signal region
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SuperCDMS low-threshold analysis strategy

SuperCDMS low-threshold analysis strategy
Choose only the 7 detectors with the lowest thresholds
(∼ 1.3–5 keV thresholds)
Model the backgrounds using a GEANT4 simulation of the
dominant background (210Pb decay chain events)
Use machine learning (BDT) to get discrimination between signal
and background
Do a blind analysis optimized for exclusion
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SuperCDMS low-threshold background model
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machine learning parameter. A 10 GeV/c2 WIMP signature is also
shown in gray.
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SuperCDMS low-threshold result
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The figure on the left shows the final events, as well as the region a
WIMP signal would be expected. The figure on the right shows the
final limit of this analysis.

Phys. Rev. Lett. 112, 241302 (2014), arXiv:1402.7137,
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SuperCDMS low-threshold result – The 3 T5Z3 events

The figure on the left shows a charge simulation for a fully functioning
detector (e−: blue, h+: red). T5Z3 has a short on the outer ionization
sensor. Using COMSOL to produce an accurate E-field shows that the
same simulated event produces a much different result.
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SuperCDMS low-threshold result – The 3 T5Z3 events
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Good
detector

T5Z3
Simulation
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Likelihood Analysis of CDMS II data
The SuperCDMS-LT analysis did not employ a Likelihood
technique.
In the presence of backgrounds Likelihood techniques promise
better sensitivity and discovery potential.
CDMS II as a test bench for a Likelihood Analysis.
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The Likelihood
Analysis canvas
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Likelihood Analysis of CDMS II data
Surface Events (SE) come from a 210Pb decay chain simulation,
while Electron Recoil (ER) events are approximated by 133Ba
calibration data.
This is done for both single (energy deposition in only one
detector) and multiple (multiple detectors have an energy
deposition) scatter events.
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The Likelihood
Analysis canvas
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Likelihood Analysis of CDMS II data
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Looking at both phonon
energy and ionization energy
projections, we observe that
in order to match data, both
the SE simulation and the
calibration data is needed.
Fitting the data shows good
agreement with the model!
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Likelihood Analysis of CDMS II data – Result
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Phys. Rev. D 91, 052021 (2015), arXiv:1410.1003
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The importance of an accurate signal model

Traditional Counting experiment in Dark Matter Physics
A signal ‘box’ is created, and cuts are optimized to remove background events
from this signal box, and allow signal events to pass the cuts.
Often the expected background in the ‘signal box’ is zero events – any event
ending up in the signal box is interesting!

Improved Dark Matter search techniques
Build a background model from simulations/calibration data in order to help
machine learning algorithms distinguish background from signal events.
Use Likelihood analysis to improve limits as well as the discovery potential.
This means cuts can be looser, and more background is allowed into the ‘signal
box’.
Depends on an accurate background model and an accurate signal model.
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Effective field theory approach (work by Kristi
Schneck)

Standard analysis considers
only two dark matter operators
Effective field theory proposes
12 additional operators
New dependencies on
momentum transfer and
velocity
New nuclear responses
related to < L > and < L ·S >

Framework also allows for
interference between
operators

Fitzpatrick, Haxton, et al.
arXiv: 1203.3542, 1211.2818, 1308.6288, 1405.6690
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All EFT operators
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EFT signals in direct detection experiments

Momentum-transfer and
velocity dependence in EFT
models affects shape of
spectrum
Analysis and limit algorithms
require modeling signal as well
as background
This could lead to bias if true
dark matter spectrum doesn’t
match spectrum expected by
limit algorithms

Work done by Kristi Schneck and
published here: arXiv:1503.03379
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Single-operator exclusion limits

Compute 90% C.L. upper limits on single-operator isoscalar scattering
for CDMS and LUX using the optimum interval method
Variations in strength of interaction and shape of energy spectrum can
be seen in resulting limits
Limit using alternate halo model (dashed) is weaker at low mass when
only tail of WIMP spectrum is above threshold
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Limits of the CDMS II Likelihood analysis – EFT
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We can recompute the sensitivity assuming either a standard interaction (O1) or the
modified interaction (O3). The figure shows that significantly different results are
obtained depending on the input signal PDF.

Peter Redl (Stanford University) The SuperCDMS Dark Matter Experiment May 21st , 2015 31 / 33



40 60 80 100 120

40

60

80

mm

Conclusions

Data analysis for SuperCDMS Soudan is currently ongoing and
showing that we benefit from using advanced analysis techniques.
SuperCDMS SNOLAB is funded and is moving forward, with the
promise of being the worlds best low-mass WIMP detector.
We made a lot of progress understanding our detectors, and
improving our analysis techniques.
The new effective fields theory framework developed by Liam
Fitzpatrick (theory) and Kristi Schneck (experiment) allow us to
probe non-standard WIMP interaction theories with current data.
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Thank you for your attention

The South pole circa -44C. Nice
and warm in government issued
clothing.

Soudan mine head frame, circa
-35C. Very cold in my California
‘optimized’ clothing.
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SuperCDMS SNOLAB – the Future

The SCDMS SNOLAB
experiment is funded and
moving forward.
More Target mass, with a
mix of Ge and Si
detectors.
Deeper mine (SNOLAB)
to reduce cosmic ray
induced neutrons.
Better material screening
to reduce intrinsic
radioactivity by a factor of
200.
Potential for an active
neutron veto.
Detectors with lower
thresholds; achieved
through optimized
fabrication processes and
improved electronics.
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Backup Slides – G2 Event Rate Comparison
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Ge: Blue,
Si: Red,
Xe: black
EFT result in G2
experiments if 10
events are
observed in Ge
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