## **Direct Dark Matter Detection**

Status and Outlook 2015

Rafael F. Lang, Purdue University rafael@purdue.edu Mitchell Workshop, Texas A&M, May 19, 2015

### Dark Matter Has Been Discovered

colliders

- But what are the quanta of Dark Matter?
- Study interactions !

direct astrophysics a positrons gammas indirect neutrinos

### The Dark Side is Among Us



Milky Way requires Dark Matter to sustain rotation: Evidence for Dark Matter in your lab  $\rho_{\rm DM}(r=r_{\odot}) = (0.42 \pm 0.04) \, {\rm GeV/cm}^3 \approx 0.3 \, {\rm GeV/cm}^3$ See Fabio's talk Thursday

Rafael Lang: Direct Dark Matter Detection

504.06325

Berton

Pato

### You're In For A Ride

- Axions: · ADMX
- WIMPs: · Overview

## Status & Outlook for selected experiments roughly sorted by $m_{\gamma}\uparrow$ or $\sigma\downarrow$

- · CRESST-II
- · CDMSLite
- · SuperCDMS
- $\cdot$  PICO
- · XMASS
- DEAP-3600
- $\cdot$  XENON100
- · LUX
- · XENON1T

# ADMX Resonant Axion Search

• Microwave cavity, up to 8T, down to 100mK



Rafael Lang: Direct Dark Matter Detection



Rosenberg UCLA2014

5

### **ADMX Resonant Axion Search**

- Microwave cavity, up to 8T, down to 100mK
- Very rich signature



### **ADMX Resonant Axion Search**

- Microwave cavity, up to 8T, down to 100mK ightarrow
- Very rich signature
- Initial data this summer, then scan frequencies



Rafael Lang: Direct Dark Matter Detection

 $\overline{7}$ 

### You're In For A Ride

- Axions: · ADMX
- WIMPs: · Overview

# Status & Outlook for selected experiments roughly sorted by $m_{\chi}\uparrow$ or $\sigma\downarrow$

- · CRESST-II
- · CDMSLite
- · SuperCDMS
- $\cdot PICO$
- · XMASS
- · DEAP-3600
- $\cdot$  XENON100
- · LUX
- $\cdot XENON1T$



### Back of the Envelope

Rate: ~events per year, per kg or ton of target  $N = n_{\text{target}} \Phi \sigma_{\chi,N} A^2$  or  $\propto \sigma_{\chi,N} J(J+1)$ 



Coherent Scattering: Heavy target  $\frac{\lambda_{\text{deBroglie}}}{2\pi} = \frac{\hbar}{p} = \frac{\hbar c}{mc^2 v/c} \sim \frac{197 \text{ MeV fm}}{100 \text{ GeV } 10^{-3}} \approx \text{fm} \approx r_{\text{nucleus}}$ 

Recoil Energies: Low threshold

$$E_{\rm r,max} \sim \frac{p_{\chi}^2}{2m_{\rm N}} \sim \frac{(100 \,{\rm GeV/c^2 \times 10^{-3}c})^2}{2 \times 100 \,{\rm GeV/c^2}} = 50 \,{\rm keV}$$

### Recoil Spectrum

Recoil spectrum: Simple falling exponential

 $\frac{\mathrm{d}N}{\mathrm{d}E_r} \propto \Phi \propto \langle v \rangle \propto \int_{v_{\chi}}^{\infty} \frac{f_{\mathrm{MB}}(v)}{v} \,\mathrm{d}v \propto \mathrm{e}^{-v_{\chi}^2} \propto \mathrm{e}^{-E_r}$ 



### **Discrimination:** Need Information

### $e^{-}/\gamma$ : electronic recoil



 $\alpha/n/WIMPs:$  nuclear recoil



Signal

### Discriminate by measuring two parameters

- Energy
- Ionization yield
- Scintillation yield
- Pulse decay time
- Acoustic signal

Most dangerous: Detector artefacts! → Extract as much information as possible

### Outstanding Performance

- Very good control of systematic uncertainties (%-level)
- Elaborate analyses (e.g. machine learning)
- Sensitivity doubles every year (exceeding Moore's law)



310.8327

Rafael Lang: Direct Dark Matter Detection

### Advanced Analyses

e.g. CDMS-II re-analysis of existing data ("5D  $\chi^2$ ")



## In parallel: Theory developments

 Nuclear Physics known at %-level too:



 Transition from spin-dependent/independent to effective field theory approach

Fan, Reece & Wang 1008.1591, Fitzpatrick+ 1203.3542, 1211.2818 Anand, Fitzpatrick & Haxton 1405.6690, Catena 1406.0524 see also the code packages 1308.6288 and 1307.5955 SuperCDMS 1503.03379

## **Effective Theory**

- Vastly different sensiullettivities of various targets: Variety indispensable
- Some require dedicated analyses
- Use relativistic or non- $\bullet$ relativistic operators?
- Present results for each operator individually?

See Pyungwon's talk for pitfalls





542 $\mathfrak{C}$ 

### Overview

- Axions: · ADMX
- WIMPs: · Status of the field

# Status & Outlook for selected experiments roughly sorted by $m_{\chi}\uparrow$ or $\sigma\downarrow$

- · CRESST-II
- · CDMSLite
- · SuperCDMS
- $\cdot PICO$
- · XMASS
- DEAP-3600
- · XENON100
- · LUX
- $\cdot$  XENON1T

cryogenic

bubbles

single phase

LXe TPCs

### CRESST-II @Gran Sasso

Scintillating 300g CaWO<sub>4</sub> calorimeters

thermometer threshold <20eV

light absorber

CaWO<sub>4</sub> clamps / & target /

phaseImage: Constraint of thermometertransitionscintillatingthermometerreflector

### CRESST-II: Multi-Target Built-In



Rafael Lang: Direct Dark Matter Detection

# SuperCDMS2015 still at SoudanThen move to SNOLAB

Segmented detector, up to 1.4kg Ge each & 60kg total Germanium or Silicon calorimeters Cooled to mK to collect phonons Interleaved electrodes for ionization



See Peter's talk Thursday comm

Blas

### SuperCDMS first analysis

577 kg days optimized for ~GeV WIMPs:



Rafael Lang: Direct Dark Matter Detection

Expect  $6.2^{+1.1}_{-0.8}$  events Observe 11 (8+3) Excludes CoGeNT (and CDMS-Si) excess



20



## PICO @SNOLAB (=COUPP/PICASSO)

- Bubble chambers
- CF<sub>3</sub>I or C<sub>3</sub>F<sub>8</sub> targets: spin-dependent / light WIMPs
- Nucleate if  $\int_R dE/dx$  sufficient detector blind (<10<sup>-10</sup>) to electronic recoils
- Only integral energy spectrum; measure with different thresholds



## PICO Results 2015

### Photograph:

Harris LLWI2015



Acoustic signal: Alphas pop louder than nuclear recoils, discriminate >98%



# <sup>3</sup>ICO 1503.00008

### PICO recent limit and outlook

- Limits from 2.9kg C<sub>3</sub>F<sub>8</sub> chamber
- 211 kg days total at 4 thresholds (3-8keV)
- 12 events observed (1 expected), correlated with expansion cycles (corrosion particles?)
- Leading spin-dependent (proton only) limits



Soon: >3000 kg days from 25kg  $CF_3I$  chamber (PICO 60)

## XMASS @ Kamioka

- Single-phase liquid xenon
- 642 2.5" hex PMTs
- 830kg total, 100kg fiducial ullet
- Position from PMT hit ulletpattern; self-shielding
- Patched after initial run, data taking since Nov 2013, rate ~1 evt/keV/ton/day





### Inelastic Scattering cross-check limits, measure halo 10 <sup>129</sup>Xe elastic $\overline{Z}$ $10^{-5}$ <sup>131</sup>Xe elastic $\chi$ $10^{-6}$ $\chi$ <sup>129</sup>Xe inelastic dR/dE<sub>R</sub> (kg<sup>-1</sup>d<sup>-1</sup> keV<sup>-1</sup> <sup>131</sup>Xe inelastic 10<sup>-7</sup> 10-8 10 10<sup>-10</sup> 10<sup>-11</sup> 0825 10<sup>-12</sup> $^{129}Xe^* \longrightarrow ^{129}Xe^+\gamma_{40keV}$ <sup>129</sup>Xe 10<sup>-13</sup> 50 100 150 250 300 0 200 $E_{\mathbf{p}}$ (keV) <sup>7</sup>10<sup>-34</sup> <sup>7</sup>10<sup>-35</sup> <sup>7</sup>10<sup>-35</sup> <sup>7</sup>10<sup>-36</sup> <sup>7</sup>10<sup>-36</sup> <sup>7</sup>10<sup>-37</sup> <sup>7</sup>10<sup>-38</sup> <sup>7</sup>10<sup>-38</sup> tandard Halo Model Baudis+ Double Power Law 1401.4737Tsallis Model 0.1 $g(v_{min})/g(0)$ 0.01 XMASS XENON10 0.001 -HWIN 10<sup>-39</sup> Elastic G<sub>10-40</sub> 10<sup>-4</sup> 100 200 500 700 800 $10^{2}$ 300 400 600 10<sup>3</sup> WIMP mass [GeV] v<sub>min</sub> (km/s)

Rafael Lang: Direct Dark Matter Detection

309

### DEAP-3600 @ SNOLAB

- Single phase liquid argon
- Acrylic vessel
- 3.6t argon total, 1t fiducial
- 255 8" PMTs
- Pulse shape discrimination
- 10<sup>-46</sup>cm<sup>2</sup> sensitivity after 3 years
- LAr data this summer



## Xenon Time Projection Chambers



28

### Extreme Low-Energy Sensitivity

Detect even individual electrons liberated in an interaction:





<sup>127</sup>Xe EC (from cosmic activation) calibration as low as 190eV

### LUX @Soudan



### tritium background calibration



Rafael Lang: Direct Dark Matter Detection



## LUX: Xenon TPC

first results: 85 live days, 118 kg non-blind analysis strongest limit to-date





## **XENON1T Background Optimization**



### Probing Coherent Neutrino Scattering



### Expect XENON1T Data this Fall



### Summary

- Direct Dark Matter detection a mature field; Systematics under control, advanced detectors & elaborate analyses.
- CDMS and LXe TPC experiments extract ample information; allow discovery claim from a single detector.
- Require confirmation though: We are in thin air. Span orders of magnitude in parameter space with only little experimental redundancy.
- Sensitivity is at level of best-motivated models; Covers most of expected parameter space within a couple years.

### **Thermal Relics Scatter**

### Production: collider searches



Annihilation: indirect searches



Scattering: direct detection



### Simple Non-Relativistic Scattering

 $v_{\odot} \approx 232 \, \text{km/s}$ 

June  $v_{\oplus,||} \approx 15 \,\mathrm{km/s}$ 

December

 $v_{\oplus},$ 

60

Expect modulation of • rate • spectral shape only at percent level: Need 100s of events

### DAMA/LIBRA

### 230kg ultra-pure NaI(Tl) scintillators by far largest and longest exposure but no discrimination



### DAMA/LIBRA Data



g

### CoGeNT

440g P-type point-contact Ge detector now >3 years of continuous data taking



conventional coaxial HPGe

P-type pointcontact HPGe threshold 400eV

### **CoGeNT** Data



exponential rise at low energy  ${\sim}2\sigma$  modulation after 3.4 years; high amplitude

### **CoGeNT** With Background



Rafael Lang: Direct Dark Matter Detection



 $\sim$ 

### MALBEK (MAJORANA)

- p-type point contact Ge detectors (like CoGeNT)
- here: preliminary results





Rafael Lang: Direct Dark Matter Detection

### **CDMS-II Silicon Results 2013**



140 kg days shown here also another data set with 56 kg days & 0 events

background

signal

3 events observed expected  $0.4^{+0.2}_{-0.1}(\text{stat})^{+0.4}_{-0.2}(\text{sys})$ statistically significant? origin of signal?