The Supersymmetric Standard Models with a Pseudo-Dirac Gluino from Hybrid F- and D-Term Supersymmetry Breakings

Tianjun Li

Institute of Theoretical Physics, Chinese Academy of Sciences

Arnowitt Symposium and Mitchell Workshop on Collider and Dark Matter Physics, May 18 - May 22, 2015

R. Ding, TL, F. Staub, C. Tian and B. Zhu, arXiv:1502.03614 [hep-ph], and in preparation.

Introduction

Motivation and Model Building

Phenomenological Study

Conclusion

イロト イヨト イヨト イヨト

Introduction

Motivation and Model Building

Phenomenological Study

Conclusion

イロト イヨト イヨト イヨト

Standard Model:

- ► Fine-tuning problems:
 - cosmological constant problem; gauge hierarchy problem; strong CP problem; SM fermion masses and mixings; ...
- Aesthetic problems: interaction and fermion unification; gauge coupling unification; charge quantization; too many parameters; ...

<ロ> <同> <同> <同> < 同> < 同>

The Supersymmetric Standard Models:

- Solving the gauge hierarchy problem
- Gauge coupling unification
- Radiatively electroweak symmetry breaking
- Natural dark matter candidates
- Electroweak baryogenesis
- Electroweak precision: R parity

The Grand Unified Theories: SU(5), and SO(10)

- Unification of the gauge interactions, and unifications of the SM fermions
- Charge quantization
- Gauge coupling unification in the MSSM, and Yukawa unification
- Radiative electroweak symmetry breaking due to the large top quark Yukawa coupling
- Weak mixing angle at weak scale M_Z
- Neutrino masses and mixings by seesaw mechanism

String Models:

- Calabi-Yau compactification of heterotic string theory
- Orbifold compactification of heterotic string theory
- D-brane models on Type II orientifolds
- Free fermionic string model builing
- *F*-Theory Model Building

Supersymmetry is a bridge between the low energy phenomenology and high-energy fundamental physics.

- 4 回 2 - 4 □ 2 - 4 □

Particle Physics Paradigm

String Theory \rightarrow String Models \rightarrow GUTs \rightarrow SSMs \rightarrow SM

イロト イヨト イヨト イヨト

Higgs boson mass in the MSSM:

- The SM-like Higgs boson mass is around 125 GeV.
- The tree-level Higgs boson mass is smaller than M_Z .
- The Higgs boson mass is enhanced by the top quarks/squarks loop corrections.
- The maximal stop mixing is needed to relax the fine-tuning.

The LHC Supersymmetry Search Contraints

- ▶ The gluino mass $m_{\tilde{g}}$ and first two-generation squark mass $m_{\tilde{q}}$ should be heavier than about 1.7 TeV if they are roughly degenerate $m_{\tilde{q}} \sim m_{\tilde{g}}$.
- The gluino mass low bound is around 1.33 TeV for $m_{\tilde{g}} \ll m_{\tilde{q}}$.
- ► The first two-generation squark mass m_{q̃} is heavier than about 850 GeV for m_{q̃} ≪ m_{g̃}.
- ► The stop/sbottom mass low bounds are around 600-700 GeV.
- If the LSP is heavy enough, all the bounds will be gone or relaxed. All sparticles can be within 1 TeV except gluino.
- The SSMs are fine-tuned!!!

<ロ> (日) (日) (日) (日) (日)

Introduction

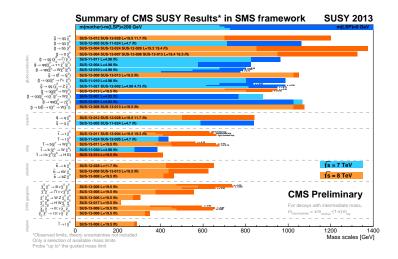
Motivation and Model Building Phenomenological Study Conclusion

ATLAS SUSY Searches* - 95% CL Lower Limits

CUTY late Faiss (Cd(fb-1))

Status: Feb 2015

ATLAS Preliminary
√s = 7, 8 TeV


<ロ> (四) (四) (三) (三) (三) (三)

	Model	e, μ, τ, γ	Jets	ET	JL dt[fb	1) Mass limit	Reference
Inclusive Searches	MSUGRA/CMSSM 第7:	$\begin{array}{c} 0 \\ 0 \\ 1 \gamma \\ 0 \\ 2 r, \mu \\ 1.2 r, \mu \\ 1.2 \tau + 0.1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 r, \mu (Z) \\ 0 \end{array}$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	44 339 000 100 100 100 100 100 100 100 100 10	1401.7875 1405.7875 1411.1559 1405.7875 1501.03555 1501.03555 1407.0803 ATLAS-COMF-2012-1420 ATLAS-COMF-2012-152 1502.01518
3 rd gen. § med.	$\begin{array}{c} \tilde{s} \rightarrow b \tilde{b} \tilde{\tilde{t}}_{1}^{0} \\ \tilde{s} \rightarrow a \tilde{t}_{1}^{0} \\ \tilde{s} \rightarrow a \tilde{t} \tilde{t}_{1}^{0} \\ \tilde{s} \rightarrow b \tilde{t} \tilde{t}_{1}^{1} \end{array}$	0 0 0-1 e, µ 0-1 e, µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes	20.1 20.3 20.1 20.1	হ 1155 TeV ল্যী-জ০০০∀ হ 1157 W ল্যী-জ০০০∀ হ 1154 TeV ল্যী-জ০০০∀ হ 1154 TeV ল্যী-জ০০০∀	1407.0500 1308.1841 1407.0500 1407.0500
3 rd gen, squarks direct production	$ \begin{array}{l} \ddot{b}_{1}\dot{b}_{1},\dot{b}_{2}\rightarrow b\tilde{t}_{1}^{D} \\ \dot{b}_{1}\dot{b}_{1},\dot{b}_{1}\rightarrow d\tilde{t}_{1}^{D} \\ \dot{b}_{1}\dot{b}_{1},\dot{b}_{1}\rightarrow d\tilde{t}_{1}^{D} \\ \dot{t}_{1}\dot{t}_{1},\dot{t}_{1}\rightarrow d\tilde{t}_{1}^{D} \\ \dot{t}_{1}\dot{t}_{1},\dot{t}_{1}\rightarrow d\tilde{t}_{1}^{D} \\ \dot{t}_{1}\dot{t}_{1},\dot{t}_{1}\rightarrow d\tilde{t}_{1}^{D} \\ \dot{t}_{1}\dot{t}_{1},\dot{t}\rightarrow d\tilde{t}_{1}^{D} \\ \dot{t}_{1}\dot{t}_{1},\dot{t}\rightarrow d\tilde{t}_{1}^{D} \\ \dot{t}_{1}\dot{t}_{1}(nabural GMSB) \\ \dot{t}_{2}\dot{t}_{2},\dot{t}_{2}\rightarrow t_{1}^{D}+Z \end{array} $	0 2 e, µ (SS) 1-2 e, µ 2 e, µ 0-1 e, µ 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b 0-2 jets 1-2 b 1-2 b	Yes Yes Yes Yes Yes tag Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.3 20.3 20.3 20.3	 104-00 GV ペリールのの ペリールの() 258-04 GW ペリールの() 258-04 GW ペリールの() ペリールの()<!--</td--><td>1308.2631 1404.2500 1209.2102,1407.0563 1403.4653,1412.4742 1407.0563,1406.1122 1407.0568 1403.5222 1403.5222</td>	1308.2631 1404.2500 1209.2102,1407.0563 1403.4653,1412.4742 1407.0563,1406.1122 1407.0568 1403.5222 1403.5222
EW direct	$ \begin{array}{l} \tilde{t}_{L,R}\tilde{t}_{L,R},\tilde{t}\rightarrow d\tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*},\tilde{x}_{1}^{*}\rightarrow \tilde{t}\rightarrow d\tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*},\tilde{x}_{1}^{*}\rightarrow \tilde{t}\rightarrow \tilde{t}\rightarrow$	2 ε.μ 2 ε.μ 2 τ 3 ε.μ 2 ·3 ε.μ γγ ε.μ.γ 4 ε.μ	0 0 0-2 jets 0-2 <i>b</i> 0	Yas Yas Yas Yas Yas Yas Yas	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3		1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-leved $\tilde{\chi}_{1}^{+}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, GMSB, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}, \tilde{G}, \log e \log \tilde{\chi}_{1}^{0})$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \tilde{\chi}_{1}^{0} \log e \log \tilde{\chi}_{1}^{0}$	Disapp. trk 0 trk ,μ) 1-2 μ 2 γ 1 μ, displ. vtr	1 jet 1-5 jets - - -	Yes Yes Yes	20.3 27.9 19.1 19.1 20.3 20.3	275 GeV 225 GeV 41 (ිාස්)ා 40 W × (1) 62.5 a 2 GeV 2.7 GeV 10 (5.6 GeV 15 µ cr()) 10 GeV (10 µ cr()) 10 GeV 1 GeV 10 (GeV 10 µ cr()) 10 GeV 10 (GeV 10 µ cr()) 10 GeV 10 (GeV 10 µ cr()) 10 GeV 10 (GeV 10 GeV 10 (GeV 10 µ cr())	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
ND	$ \begin{array}{l} \label{eq:LFV} Fp \mapsto \tilde{F}_{1} + X, \tilde{r}_{1} \to e + \mu \\ LFV \; Fp \mapsto \tilde{F}_{1} + X, \tilde{r}_{1} \to e(\mu) + \tau \\ Bilnear \; RFV \; CMSSM \\ \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{1}, \tilde{\mathcal{K}}_{1}^{+} \to W_{1}^{0}, \tilde{\mathcal{K}}_{1}^{0} \to cer_{p}, ep\tilde{r}_{p}, \\ \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{1}, \tilde{\mathcal{K}}_{1}^{+} \to W_{1}^{0}, \tilde{\mathcal{K}}_{1} \to cer\tilde{r}_{p}, \\ \tilde{\mathcal{K}}^{+} \tilde{\mathcal{K}}_{1}, \tilde{\mathcal{K}}_{1}^{+} \to W_{1}^{0}, \tilde{\mathcal{K}}_{1} \to cer\tilde{r}, \\ \tilde{\mathcal{K}}^{+} S \to \tilde{r}_{1}^{0}, \tilde{t}_{1} \to bx \\ \end{array} $	$\begin{array}{c} 2 e, \mu \\ 1 e, \mu + \tau \\ 2 e, \mu (\mathrm{SS}) \\ 4 e, \mu \\ 3 e, \mu + \tau \\ 0 \\ 2 e, \mu (\mathrm{SS}) \end{array}$	0-3 b 6-7 jets 0-3 b	Yas Yas Yas Yas	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	5. სამება კალიმა 2. სამება კალიმა კალიმა 2. მ. სამება კალიმა კალიმა 2. მ. სამება კალიმა	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$		Yes 8 TeV data	20.3 10	کا ۲۰ ۲۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰	1501.01325

Maga limit

*Only a selection of the available mass limits on new states or phenomena is shown. All limits auoted are observed minus 1 or theoretical signal cross section uncertainty.

Tianjun Li

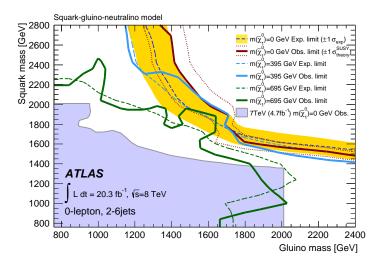
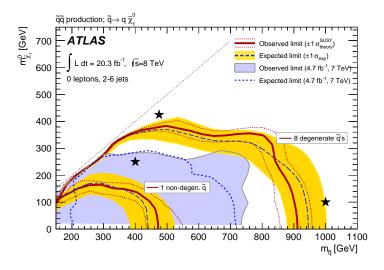
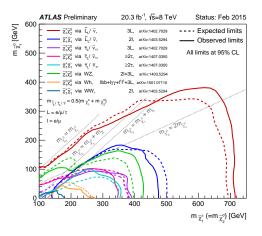



Image: A math the second se


< ≣⇒

イロン イヨン イヨン イヨン

Introduction

Motivation and Model Building Phenomenological Study Conclusion

・ロン ・聞 と ・ 聞 と ・ 聞 と

Fine-Tuning Definition I:

Electroweak symmetry breaking condition

$$\mu^2 + \frac{1}{2}M_Z^2 = \frac{\overline{m}_{\mathcal{H}_d}^2 - \overline{m}_{\mathcal{H}_u}^2 \tan^2\beta}{\tan^2\beta - 1}$$

Fine-tuning Definition I¹: the quantitative measure Δ_{FT} for fine-tuning is the maximum of the logarithmic derivative of M_Z with respect to all the fundamental parameters a_i at the GUT scale

$$\Delta_{\mathrm{FT}} = \mathrm{Max}\{\Delta_i^{\mathrm{GUT}}\}, \quad \Delta_i^{\mathrm{GUT}} = \left|\frac{\partial \mathrm{ln}(M_Z)}{\partial \mathrm{ln}(a_i^{\mathrm{GUT}})}\right|$$

Natural Solution to the Fine-Tuning Problem

Natural Solution: if there is one and only one mass parameter M_* in the SSMs, M_Z is a trivial function of M_*

$$M_Z^n = f_n(c_i) M_*^n.$$

 $\frac{\partial \ln(M_Z^n)}{\partial \ln(M_*^n)} \simeq \frac{M_*^n}{M_Z^n} \frac{\partial M_Z^n}{\partial M_*^n} \simeq \frac{M_*^n}{M_Z^n} \frac{\delta M_Z^n}{\delta M_*^n} \simeq \frac{1}{f_n} f_n \simeq \mathcal{O}(1) .$

<ロ> <同> <同> <同> < 同> < 同>

Supernatural Supersymmetry ²

- The Kähler potential and superpotential can be calculated in principle or at least inspired from a fundamental theory such as string theory with suitable compactifications. In other words, one cannot add arbitrary high-dimensional terms in the Kähler potential and superpotential, at least at leading order.
- There is one and only one chiral superfield or modulus which breaks supersymmetry. And all the supersymmetry breaking soft terms are obtained from the above Kähler potential and superpotential.
- All the other mass parameters, if there exist like the μ term in the MSSM, must arise from supersymmetry breaking.

Supernatural Supersymmetry

- The F SU(5)³ and the MSSM⁴ with no-scale supergravity⁵ and Giudice-Masiero Mechanism⁶.
- The NMSSM ⁷ with M-theory soft terms ⁸.

³T. Leggett, T. Li, J. A. Maxin, D. V. Nanopoulos and J. W. Walker, arXiv:1403.3099 [hep-ph]; Phys. Lett. B 740, 66 (2015) [arXiv:1408.4459 [hep-ph]].

⁴G. Du, T. Li, D. V. Nanopoulos and S. Raza, arXiv:1502.06893 [hep-ph].

⁵E. Cremmer, S. Ferrara, C. Kounnas and D. V. Nanopoulos, Phys. Lett. B **133**, 61 (1983); A. B. Lahanas and D. V. Nanopoulos, Phys. Rept. **145**, 1 (1987).

⁶G. F. Giudice and A. Masiero, Phys. Lett. B **206**, 480 (1988).

¹T. Li, S. Raza, X.-C. Wang, in preparation.

⁸T. Li, Phys. Rev. D **59**, 107902 (1999) [hep-ph/9804243].

Fine-Tuning Definition II

Higgs potential:

$$V = \overline{m}_h^2 |h|^2 + rac{\lambda_h}{4} |h|^4 \; .$$

Higgs boson mass

$$m_h^2 = -2\overline{m}_h^2 \;,\;\; \overline{m}_h^2 \;\;\simeq\;\; |\mu|^2 + m_{H_u}^2|_{
m tree} + m_{H_u}^2|_{
m rad} \;.$$

▶ The fine-tuning measure ⁹:

$$\Delta_{
m FT} \equiv rac{2 \delta \overline{m}_h^2}{m_h^2} \; .$$

Fine-Tuning Definition II

- The μ term or effective μ term is smaller than 400 GeV.
- ► The squar root $M_{\tilde{t}} \equiv \sqrt{m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2}$ of the sum of the two stop mass squares is smaller than 1.2 TeV.
- ► The gluino mass is lighter than 1.5 TeV.

The MSSM and NMSSM with non-universal soft terms are fine.

Fine-Tuning Definition III

 The minimization condition for electroweak symmetry breaking

$$rac{M_Z^2}{2} = rac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2eta}{ an^2eta - 1} - \mu^2 \; .$$

The fine-tuning measure ¹⁰

$$\Delta_{\rm FT} \equiv {\rm Max}\{\frac{2C_i}{M_Z^2}\} \; .$$

¹⁰H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, Phys. Rev. D **87**, no. 11, 115028 (2013) [arXiv:1212.2655 [hep-ph]].

Comments on Fine-Tuning: the viable SSMs are fine-tuned.

- Fine-Tuning Definition III is weak ¹¹.
- Fine-Tuning Definition II is medium.
- ▶ Fine-Tuning Definition I is much stronger ¹².

¹¹H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, Phys. Rev. Lett. **109**, 161802 (2012) [arXiv:1207.3343 [hep-ph]]. H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, Phys. Rev. D **87**, no. 11, 115028 (2013) [arXiv:1212.2655 [hep-ph]].

Supersymmetric SMs:

- Natural supersymmetry ¹³.
- Supersymmetric models with a TeV-scale squarks that can escape/relax the missing energy constraints: *R* parity violation ¹⁴; compressed supersymmetry ¹⁵; stealth supersymmetry ¹⁶; etc.
- Supersymmetric models with sub-TeV squarks that decrease the cross sections: supersoft supersymmetry ¹⁷.

¹³S. Dimopoulos and G. F. Giudice, Phys. Lett. B **357**, 573 (1995) [hep-ph/9507282]; A. G. Cohen, D. B. Kaplan and A. E. Nelson, Phys. Lett. B **388**, 588 (1996) [hep-ph/9607394].

D. B. Kaplan and A. E. Nelson, Phys. Lett. B **388**, 588 (1996) [hep-ph/960/394].

¹⁴ R. Barbier, C. Berat, M. Besancon, M. Chemtob, A. Deandrea, E. Dudas, P. Fayet and S. Lavignac *et al.*, Phys. Rept. **420**, 1 (2005) [hep-ph/0406039].

¹⁵ T. J. LeCompte and S. P. Martin, Phys. Rev. D 84, 015004 (2011) [arXiv:1105.4304 [hep-ph]]; Phys. Rev. D 85, 035023 (2012) [arXiv:1111.6897 [hep-ph]].

¹⁶ J. Fan, M. Reece and J. T. Ruderman, JHEP **1111**, 012 (2011) [arXiv:1105.5135 [hep-ph]]; arXiv:1201.4875 [hep-ph].

¹⁷ G. D. Kribs and A. Martin, arXiv:1203.4821 [hep-ph], and references therein> 🛛 🗇 🔪 🤆 🖹 > 🛛 🛓 🛷 🔍

Supersymmetric SMs:

- Displaced Supersymmetry ¹⁸.
- Radiative Natural Supersymmetry ¹⁹.
- Double Invisible Supersymmetry ²⁰.
- ▶ Heavy LSP Supersymmetry ²¹.
- ► Supernatural Supersymmetry ²².

¹⁸ P. W. Graham, D. E. Kaplan, S. Rajendran and P. Saraswat, JHEP **1207**, 149 (2012) [arXiv:1204.6038 [hep-ph]].

¹⁹ H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, Phys. Rev. Lett. **109**, 161802 (2012) [arXiv:1207.3343 [hep-ph]]. H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, Phys. Rev. D **87**, no. 11, 115028 (2013) [arXiv:1212.2655 [hep-ph]].

²⁰ J. Guo, Z. Kang, J. Li, T. Li and Y. Liu, arXiv:1312.2821 [hep-ph]; D. S. M. Alves, J. Liu and N. Weiner, arXiv:1312.4965 [hep-ph].

²¹T. Cheng, J. Li and T. Li, arXiv:1407.0888 [hep-ph].

²² T. Leggett, T. Li, J. A. Maxin, D. V. Nanopoulos and J. W. Walker, arXiv:1403.3099 [hep-ph]; Phys. Lett. B 740, 66 (2015) [arXiv:1408.4459 [hep-ph]]; G. Du, T. Li, D. V. Nanopoulos and S. Raza, arXiv:1502.06893 [hep-ph].

Introduction

Motivation and Model Building

Phenomenological Study

Conclusion

・ロン ・団 と ・ 国 と ・ 国 と

Goal for the natural SSMs

- Naturalness, dark matter, gauge coupling unification, and Higgs boson mass.
- The LHC SUSY search constraints.
- Consistence with GUTs and/or string models.

Intuition

The pre-LHC SSMs like the mSUGRA/CMSSM work well, what is the minimal and viable modification to these particle spectra which keep all the merits of the pre-LHC SSMs?

²³G. D. Kribs and A. Martin, Phys. Rev. D 85, 115014 (2012) [arXiv:1203.4821 [hep-ph]]

Intuition

- The pre-LHC SSMs like the mSUGRA/CMSSM work well, what is the minimal and viable modification to these particle spectra which keep all the merits of the pre-LHC SSMs?
- All the sparticles in the SSMs can still be within about 1 TeV as long as the gluino is heavier than 3 TeV, which is obviously an simple modification to the SSM spectra before the LHC.

²³G. D. Kribs and A. Martin, Phys. Rev. D 85, 115014 (2012) [arXiv:1203.4821 [hep-ph]]; => < =>

Intuition

- The pre-LHC SSMs like the mSUGRA/CMSSM work well, what is the minimal and viable modification to these particle spectra which keep all the merits of the pre-LHC SSMs?
- All the sparticles in the SSMs can still be within about 1 TeV as long as the gluino is heavier than 3 TeV, which is obviously an simple modification to the SSM spectra before the LHC.
- Such a heavy gluino will not induce the SUSY electroweak fine-tuning problem and lift the squark masses via RGE running if it is (pseudo-)Dirac like the supersoft supersymmetry ²³

$$\delta m_{H_u}^2 = -\frac{3\lambda_t^2}{8\pi^2} M_t^2 \log \frac{M_D^2}{M_t^2} \,.$$

²³G. D. Kribs and A. Martin, Phys. Rev. D 85, 115014 (2012) [arXiv:1203.4821 [hep-ph]]4 📃 → 4 🗮 → 🛛 🚊 → 🤈 < 🖓

Problems in the SSMs with Dirac gauginos ²⁵

$\blacktriangleright \mu$ problem

The Giudice-Masiero mechanism etc does not work.

No Higgs quartic coupling from D term.

The D-term contribution to the Higgs quartic coupling vanishes, i.e., D = 0.

No dark matter

The right-handed slepton may be the LSP.

The SM gauge symmetry breaking

The scalar components of adjoint superfields might be tachyonic and then break the SM gauge symmetry.

²⁴A. E. Nelson and T. S. Roy, arXiv:1501.03251 [hep-ph].

²⁵P. J. Fox, A. E. Nelson and N. Weiner, JHEP 0208, 035 (2002) [hep-ph/0206096] → < = → < = → ○ < ○

Problems in the SSMs with Dirac gauginos ²⁵

• μ problem

The Giudice-Masiero mechanism etc does not work.

▶ No Higgs quartic coupling from *D* term.

The D-term contribution to the Higgs quartic coupling vanishes, i.e., D = 0.

No dark matter

The right-handed slepton may be the LSP.

The SM gauge symmetry breaking

The scalar components of adjoint superfields might be tachyonic and then break the SM gauge symmetry.

The first three problems can be solved in gravity mediation, while the last problem was solved recently 24 .

²⁴ A. E. Nelson and T. S. Roy, arXiv:1501.03251 [hep-ph].

²⁵P. J. Fox, A. E. Nelson and N. Weiner, JHEP 0208, 035 (2002) [hep-ph/0206096] → < = → < = → ○ < ○

The SSMs with a Pseudo-Dirac Gluino ²⁶

- The hybrid F- and D-term SUSY breakings.
- ► All the sparticles in the MSSM obtain SUSY breaking soft terms from the traditional gravity mediation.
- Only gluino receives an extra Dirac mass from the *D*-term SUSY breaking.
- All the MSSM sparticles except gluino can be within about 1 TeV as the pre-LHC SSMs.

²⁶R. Ding, T. Li, F. Staub, C. Tian and B. Zhu, arXiv:1502.03614 [hep-ph]□ → < (□) → < (≡) → (≡) → (≡) → (≡) → (□) →

► The merits of the pre-LHC SSMs are preserved.

Naturalness, dark matter, muon anomalous magnetic moment, etc

- Evading the LHC SUSY search constraints.
- Solving the problems in the SSMs with Dirac gauginos via F-term gravity mediation.

∢ ≣⇒

• The merits of the pre-LHC SSMs are preserved.

Naturalness, dark matter, muon anomalous magnetic moment, etc

- Evading the LHC SUSY search constraints.
- Solving the problems in the SSMs with Dirac gauginos via F-term gravity mediation.

Such supersymmetry breakings can be realized by an anomalous $U(1)_X$ gauge symmetry inspired from string models.

- Gauge coupling unification?
- Higgs boson mass?

・ロン ・団 と ・ 国 と ・ 国 と

- Gauge coupling unification?
- Higgs boson mass?

Solution: vector-like particles. Their uniform contributions to the one-loop beta functions of the SM gauge couplings: $\Delta b = 3$ and $\Delta b = 4$.

- ∢ ≣ ▶

The SSM with $\Delta b = 3$

Particles	Quantum Numbers	Particles	Quantum Numbers
φ	(8, 1, 0)	Т	(1,3,0)
XL	(1, 2, -1/2)	XL ^c	(1,2,1/2)
XEi	(1, 1, -1)	XE ^c	(1, 1, 1)
S	(1, 1, 0)		

Table: The extra vector-like particles and their quantum numbers in the SSM with $\Delta b = 3$. Here, i = 1, 2, and we do not have to introduce S except for Dirac gaugino case since it is an SM singlet.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日

The SSM with $\Delta b = 4$

Particles	Quantum Numbers	Particles	Quantum Numbers
Φ	(8 , 1 , 0)		
XD	(3 , 1 , - 1 / 3)	XD ^c	$(\bar{3}, 1, 1/3)$
T_+	(1, 3, 1)	<i>T_</i>	(1, 3, -1)

Table: The extra vector-like particles and their quantum numbers in the SSM with $\Delta b = 4$.

< □ > < □ > < □ > < □ > < □ > .

The SSM with $\Delta b = 4$

- The $SU(2)_L \times U(1)_Y$ Dirac gaugino masses are forbidden.
- The neutrino masses and mixings can be generated via Type II seesaw mechanism.

- < ∃ >

The string realizations

- ► We usually do not have the vector-like particles T₊ and T₋ since they arise from an symmetric **15** representations of SU(5).
- ► The symmetric 15 representation of SU(5) or flipped SU(5) can indeed be obtained in the Type IIA orientifold on T⁶/(Z₂ × Z₂) with intersecting D6-branes ²⁷.
- ► Embeding SU(2)_L into a diagonal gauge group of SU(2)_A × SU(2)_B in a particular Z₃ × Z₃ orbifold of the heterotic string ²⁸.

²⁷ M. Cvetic, I. Papadimitriou and G. Shiu, Nucl. Phys. B **659**, 193 (2003) [Nucl. Phys. B **696**, 298 (2004)] [hep-th/0212177]; C. M. Chen, T. Li and D. V. Nanopoulos, Nucl. Phys. B **751**, 260 (2006) [hep-th/0604107].

²⁸ P. Langacker and B. D. Nelson, Phys. Rev. D **72**, 053013 (2005) [hep-ph/0507063].> → (Ξ) > (Ξ) >

 The new superpotential terms with universal vector-like particles are

$$W = M_V(T_+T_- + XD^cXD) + \lambda H_u T_- H_u + \lambda' H_d T_+ H_d.$$

The corresponding SUSY breaking soft terms are

$$\begin{split} -\mathcal{L}_{soft} &= B_T T_- T_+ + B_D X D^c X D + T_\lambda H_u T_- H_u \\ &+ M_D G \Phi + \text{h.c.} + \tilde{\phi}^{\dagger} m_{\tilde{\phi}}^2 \tilde{\phi}. \end{split}$$

イロト イヨト イヨト イヨト

SUSY Breaking

Inspired from string models, we shall consider the anomalous U(1)_X gauge symmetry, and introduce two SM singlet fields S and S' with U(1)_X charges 0 and -1.

$$V_D = \frac{g_X^2}{2} D^2 = \frac{g_X^2}{2} \left(\sum_i q_i^X |Q_i^X|^2 - |S'|^2 + \xi \right)^2$$

The Fayet-Iliopoulos term is ²⁹

$$\xi = \frac{g_X^2 \operatorname{Tr} q^X}{384\pi^2} M_{\rm Pl}^2 \,.$$

The superpotential via instanton effect

$$W_{\rm Instanton} = M_I SS'$$
.

Tianjun Li ITP-CAS

²⁹M. Cvetic, L. L. Everett and J. Wang, Phys. Rev. D 59, 107901 (1999) [hep-ph/9808321] + (=) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (

SUSY Breaking

The minimum of the potential

$$\begin{split} \langle S \rangle &= 0 \ , \ \ \langle S' \rangle^2 = \xi - M_I^2/g_X^2 \ , \ \ \langle F_{S'} \rangle = 0 \ , \\ \langle F_S \rangle &= M_I \sqrt{\xi - M_I^2/g_X^2} \ , \ \ \langle D \rangle = M_I^2/g_X^2 \ . \end{split}$$

Because S is neutral under U(1)_X, the traditional gravity mediation can be realized via the non-zero F_S. This is key difference between our model and the previous model ³⁰.

³⁰G. R. Dvali and A. Pomarol, Phys. Rev. Lett. 77, 3728 (1996) [hep-ph/9607383] 🗇 → < 🖹 → 🛛 🖹 → 🛇 < ເ

SUSY Breaking Soft Terms from D-Term

The Dirac mass for gluino/Φ and soft scalar masses for Φ and T_{+/-} can be generated respectively via the following operators ³¹

$$\int d^2\theta \left(\frac{\overline{D}^2 D^\alpha V'}{M_*} W_{3,\alpha} \Phi + \frac{\overline{D}^2 (D^\alpha V' D_\alpha X')}{M_*} X'' \right)$$

▶ The similar operators for H_d/H_u and XD^c/XD are assumed to be suppressed by a factor 5.

³¹A. E. Nelson and T. S. Roy, arXiv:1501.03251 [hep-ph]. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Box \rangle$

SUSY Breaking Scale

- We choose $M_* = M_{\text{Pl}}$, $M_I = 10^8 \text{ GeV}$, $\text{Tr}q^X = 2$, and $g_X = 10^{-3}/a$. So we get $D = 10^{22}/a^2 \text{ GeV}^2$ and $F_S = 5.5a \times 10^{21} \text{ GeV}^2$. For $a = 2^{-1/2}$, we have $D/F_S = 5.1$.
- We choose $M_I = 1.25 \times 10^5 \text{ GeV}$, $\text{Tr}q^X = 2$, and $g_X = 0.8$. So we have $D = 2.44 \times 10^{10} \text{ GeV}^2$ and $F_S = 5.5 \times 10^{21} \text{ GeV}^2$. And then the messenger scale M_* around is 10^6 GeV.

The relatively heavy masses for Dirac gluino and scalar components of $T_{+/-}$ and Φ from *D*-term due to $D/F_S \sim 5$.

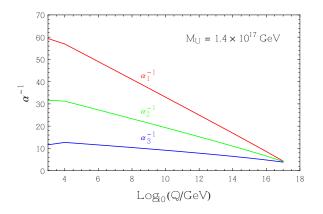
イロン イ部ン イヨン イヨン 三日

Introduction

Motivation and Model Building

Phenomenological Study

Conclusion



イロト イヨト イヨト イヨト

Gauge Coupling Unification and Implication

- For $M_V = M_D = 5$ TeV, the GUT scale is around 10^{17} GeV.
- ► To avoid the Landau pole problem for gauge couplings, we need M_V ≥ 3 TeV and M_D ≥ 3 TeV.
- Problem: the contribution to Higgs boson mass from $\lambda H_u T_- H_u$ will be suppressed.

イロト イヨト イヨト イヨト

Non-Decoupling Effect

For $m_{T_+} \ge M_V$, the Higgs boson mass is increased by

$$\Delta m_h^2 = \lambda_{\rm eff}^2 \sin^4\beta v^2 \ , \ \lambda_{\rm eff}^2 \equiv \lambda^2 (m_{T_+}^2/(M_V^2 + m_{T_+}^2)) \, . \label{eq:deltambda}$$

► Unlike the Dirac NMSSM ³², this contribution does not vanish at large tan β limit, which is properly accommodated with some interesting low energy constraints such as the following Δa_{μ} .

³²X. Lu, H. Murayama, J. T. Ruderman and K. Tobioka, Phys. Rev. Lett. **112**, 191803 (2014) [arXiv:1308.0792 [hep-ph]].

- We implement our model in the Mathematica package SARAH, which is used to generate the various relevant outputs necessary for our analysis.
- We use the Fortran modules for SPheno to calculate the mass spectra and precision observables, and the model files for CalcHEP which are used together with micrOMEGAs to calculate the dark matter relic density and direct detection rates.

Phenomenological Constraints:

- All the current experimental constraints from the LEP, LHC, and B physics experiments, etc.
- ► The Higgs mass range is taken from 123 GeV to 127 GeV.
- The anomalous magnetic moment of the muon ³³

$$\Delta a_{\mu} \equiv a_{\mu}(\exp) - a_{\mu}(SM) = (28.6 \pm 8.0) \times 10^{-10}.$$

³³M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C 71, 1515 (2011) [Eur. Phys. J. C 72, 1874 (2012)] [arXiv:1010.4180 [hep-ph]]; K. Hagiwara, R. Liao, A. D. Martin, D. Nomura and T. Teubner, J. Phys. G 38, 085003 (2011) [arXiv:1105.3149 [hep-ph]].

The Input parameters

$\tan\beta$	λ_{eff}	μ	B_{μ}	<i>M</i> ₁	<i>M</i> ₂
[5,60]	[0.1, 0.7]	[0.3, 1]	$[10^{-3}, 1]$	[0.01, 0.1]	[0.5, 1]
M _D	$m_{ ilde{Q},1\&2}$	$m_{ ilde{Q},3}$	$m_{\tilde{L},1\&2}$	m _{Ĩ,3}	m _Φ
[3, 5]	[0.8, 0.9]	[0.4, 0.7]	[0.1, 0.5]	[0.07, 0.16]	$\left[\sqrt{3},\sqrt{5}\right]$

Table: The input parameter ranges or values used in our scans. All the mass parameters are given in appropriate power of TeV. Here, M_i are gaugino masses, μ is the bilinear Higgs mass in the superpotential and B_{μ} is the corresponding soft mass. We consider the universal scalar mass for the left- and right-handed squarks (sleptons) $\hat{Q} \in \{\tilde{q}, \tilde{d}, \tilde{u}\}$ ($\tilde{L} \in \{\tilde{l}, \tilde{e}\}$) and the degenerated first and second generations. We choose $M_3 = 0.6$ TeV and the vanishing trilinear soft terms for three generations.

イロト イヨト イヨト イヨト

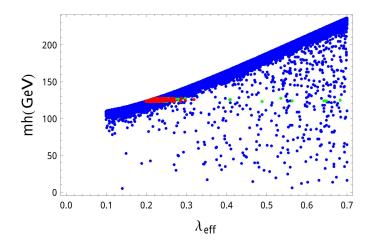


Figure: The Higgs mass versus λ_{eff} . The blue points provide the spectra without tachyons. In addition to satisfy the Higgs mass requirement, the green and red points have Δa_{μ} within 3σ and 1σ ranges, respectively.

- For moderate values of λ_{eff} around 0.2 0.3, Δa_μ can be within 1σ range and the Higgs mass falls into the desirable range.
- The electroweak symmetry breaking can be realized even in the range of small μ, which alleviates the following fine-tuning problem.

Image: A matrix and a matrix

- < ∃ >

The Fine-Tuning Measure: The Third Definition

$$\Delta_{\rm EW} = \frac{2}{M_Z^2} \max(C_{H_d}, C_{H_u}, C_{\mu}, C_{B_{\mu}}, C_{\delta m_{H_u}^2}) ,$$

where

$$\begin{split} C_{H_d} &= \left| \frac{m_{H_d^2}}{\tan^2 \beta - 1} \right|, \ C_{H_u} = \left| \frac{m_{H_u^2} \tan^2 \beta}{\tan^2 \beta - 1} \right|, \\ C_{\mu} &= \left| \mu^2 \right|, \ C_{B_{\mu}} = \left| B_{\mu} \right|, \\ C_{\delta m_{H_u}^2} &= \frac{(\lambda M_V)^2}{16\pi^2} \log \left(\frac{M_V^2 + m_{T_+}^2}{M_V^2} \right). \end{split}$$

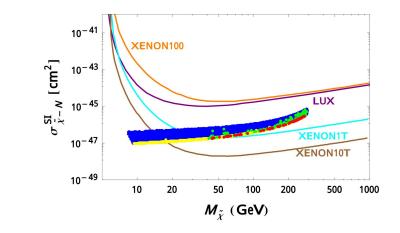
イロト イヨト イヨト イヨト

The Fine-Tuning Measure

- The entire fine-tuning measure is given by C_{μ} while the other terms $C_{H_{d,u}}$, $C_{B_{\mu}}$ and $C_{\delta m^2_{H_{u}}}$ are negligible.
- The fine-tuning measure can be as low as 50 for the viable parameter space.
- It seems that the fine-tuning measure from high energy definition will be small as well.

Dark Matter

- ► The LSP neutralino-stau coannihilation scenario and the 2σ interval combined range $0.1153 < \Omega_{CDM}h^2 < 0.1221$.
- ► The input parameters


 $\mu = 0.5 \; {\rm TeV}, \; B_{\mu} = 0.15 \; {\rm TeV}^2, \; M_2 = 0.5 \; {\rm TeV}, \; M_3 = 0.6 \; {\rm TeV}, \; M_D = 3 \; {\rm TeV}, \; \lambda_{\rm eff} = 0.22, \; m_{\Phi} = 0.23 \; {\rm TeV}, \; M_{\Phi} = 0.15 \; {\rm TeV}, \; M_{\Phi} = 0.$

2 TeV, $m_{\tilde{Q},1\&2} = m_{\tilde{L},1\&2} = 1$ TeV, $m_{\tilde{Q},3} = 0.404$ TeV,

 $5 < an eta < 30, \ 10 \ {
m GeV} < M_1 < 300 \ {
m GeV}, \ 90 \ {
m GeV} < m_{\widetilde{L},3} < 300 \ {
m GeV}.$

- The relatively large values for µ and M₂ of 500 GeV to suppress the Higgsino and wino components of the LSP neutralino and the direct detection rates.
- A small mass splitting between the light stau and LSP neutralino to get an efficient coannihilation and to soften the LEP bounds on SUSY searches.
- The fine-tuning measure is $\Delta_{EW} \simeq 60$.

イロン イ部ン イヨン イヨン 三日

Figure: The spin-independent LSP neutralino-nucleon cross section versus the LSP mass. The blue points have the particle spectra without tachyons. The yellow points satisfy the Higgs mass requirement and have Δa_{μ} within 3σ range. The green points have the correct relic density. And the red points satisfy all the current constraints.

イロン イヨン イヨン イヨン

Tianjun Li ITP-CAS

- The spin-independent cross sections are about one or two orders of magnitude below the current best limit provided by the LUX experiment.
- The points with the LSP masses above 22 (15) GeV are within the reach of the projected XENON1T (XENON10T) sensitivity.
- The current constraints on spin-dependent cross sections are much weaker.

$\widetilde{\chi}_{i}^{0}$	$\widetilde{\chi}_i^{\pm}$	$\widetilde{\nu}_e, \widetilde{\nu}_{ au}$	$\widetilde{e}_R, \widetilde{e}_L$	$\widetilde{ au_i}$		
(204,446,502,561)	(446,561)	(800,257)	(802,805)	(211,309)		
$\widetilde{u}_R, \widetilde{u}_L$	\widetilde{t}_i	$\widetilde{d}_R, \widetilde{d}_L$	<i>b</i> _i	$H^{0,\pm}/A^0$		
(956,958)	(920,927)	(957,962)	(897,938)	$\simeq 705$		

Table: The particle spectrum (in GeV) for a benchmark point with pseudo-Dirac gluino masses 2927 GeV and 3470 GeV for tan $\beta = 29$, $M_1 = 0.21$ TeV, $\mu = 0.5$ TeV, $B_{\mu} = 0.02$ TeV², $M_2 = 0.5$ TeV, $M_3 = 0.6$ TeV, $M_D = 3$ TeV, $\lambda_{eff} = 0.22$, $m_{\Phi} = 1.92$ TeV, $m_{\bar{Q},1\&2} = 0.6$ TeV, $m_{\bar{L},1\&2} = 0.8$ TeV $m_{\bar{L},3} = 0.26$ TeV, $m_{\bar{Q},3} = 0.55$ TeV. In this benchmark point, we have $m_h = 124.8$ GeV, $\Delta_{\rm EW} = 60.4$, $\Omega_{\chi_1^0} h^2 = 0.1187$, $\Delta a_{\mu} = 9.96 \times 10^{-10}$, and the spin independent cross section $\sigma_{\chi_-N}^{\rm SI} = 2.85 \times 10^{-46}$ cm².

イロン イヨン イヨン イヨン

2

The ATLAS $Z + E_T^{\text{miss}}$ Excess

- A recent ATLAS search in a channel with two leptons, consistent with the production of a Z-boson, large missing transverse momentum (E_T^{miss}), and at least two jets, reports a 3σ excess for 20.3 fb⁻¹ of integrated luminosity at a center of mass energy of 8 TeV.
- The similar search at the CMS has no excess.
- The cuts used in the two searches are different, and the observed ATLAS excess may be consistent with the CMS results.

$m_{\tilde{g}_{1,2}}$ (GeV)	$M_{\tilde{q}_{L,R}^{1,2}}$ (GeV)	All Events	Cut1	Cut2	Cut3	Cut4	Cut5	Cut6	Cut7	$\sigma(ilde{q} ilde{q})_{ m LO}~(m pb)$	K	NSig
2825.9	687.8	80000	3223	3206	2967	2899	1280	1007	932	0.041	1.94	18.82
2825.5	694.6	80000	3233	3213	2998	2928	1328	1101	1018	0.038	1.94	19.20
2824.9	704.0	80000	3290	3274	3049	2997	1409	1168	1108	0.035	1.95	19.09
2824.2	715.9	80000	3398	3381	3156	3100	1581	1332	1233	0.031	1.95	18.95
2823.5	730.0	80000	3353	3332	3102	3036	1558	1347	1255	0.027	1.97	16.94
2822.7	746.4	80000	3434	3414	3169	3114	1682	1499	1397	0.023	1.98	16.19
2821.8	764.8	80000	3419	3400	3178	3120	1743	1587	1500	0.019	2.00	14.69
2821.0	785.0	80000	3531	3514	3237	3198	1876	1733	1613	0.016	2.02	13.25
2820.0	806.9	80000	3521	3510	3245	3186	1995	1870	1736	0.013	2.05	11.8
2819.1	830.3	80000	3469	3453	3203	3163	2043	1947	1829	0.011	2.07	10.20
2818.2	855.1	80000	3663	3642	3371	3328	2256	2153	2018	0.009	2.09	9.24

TABLE VI: Cut efficiency and signal events for DiracNMSSM in the ATLAS cut flow at 8 TeV LHC with

luminosity $\mathcal{L} = 20.3 \text{ fb}^{-1}$. The N_{Sig} with red color can explain the ATLAS Z-excess in 3σ level.

Figure: Preliminary results: the ATLAS $Z + E_T^{\text{miss}}$ Excess from squark productions.

<ロ> (四) (四) (三) (三) (三) (三)

Introduction

Motivation and Model Building

Phenomenological Study

Conclusion

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

- ► The SSMs with a pseudo-Dirac gluino from hybrid *F* and *D*-term SUSY breakings, which can be achieved via an anomalous *U*(1)_X gauge symmetry inspired from string models.
- All the MSSM particles obtain the SUSY breaking soft terms from the traditional gravity mediation and can have masses within about 1 TeV except gluino, which has a heavy Dirac mass above 3 TeV from *D*-term SUSY breaking.
- The gauge coupling unification and Higgs boson mass can be obtained by introducing extra vector-like particles.
- This kind of models keeps the merits of pre-LHC SSMs and solves the possible problems in the SSMs with Dirac gauginos.