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Dark Matter = ??

Situated at the nexus of particle physics, astrophysics, and cosmology
* Dynamic interplay between theory and current experiments

* Of fundamental importance: literally 23% of the universe!

* Necessarily involves physics beyond the Standard Model

j> One of the most compelling
mysteries facing physics today!




Traditional view of dark matter:

* One or several dark-matter particle(s) y which carry entire DM
abundance: €2, =Qcpy =0.26 (WMAP).

* Such particle(s) must be hyperstable, with lifetimes exceeding the age
of the universe by many orders of magnitude ~ 10%¢s.
* Most DM scenarios take this form.

Indeed, any particle which decays too rapidly into SM
states is likely to upset BBN and light-element abundances,

and also leave undesirable imprints in the CMB and

diffuse photon/X-ray backgrounds.

Stability is thus critical for traditional dark matter. The resulting theory
1s essentially “frozen in time”: Ccpy 1S constant, etc.



Dynamical Dark Matter (DDM):

Let's suppose the dark matter of the universe consists of N states,
with N>>1 ... an entire ensemble of states!

* No state individually needs to carry the full {2cpp so long as

the sum of their abundances matches Qcpyr.

* In particular, individual components can have a wide variety of
abundances, some large but some small.

But a given dark-matter component need not be stable if its
abundance at the time of its decay is sufficiently small.
A sufficiently small abundance assures that the disruptive effects

of the decay of such a particle will be minimal, and that all
constraints from BBN, CMB, etc. will continue to be satisfied.



DDM therefore rests on an alternative concept ---

a balancing of decay widths against abundances:

States with larger abundances must have smaller decay widths,
but states with smaller abundances can have larger decay widths.
As long as decay widths are balanced against abundances across our entire
dark-sector ensemble, all phenomenological constraints can be satistied!

Thus, dark-matter stability 1s no longer required!



Dvnamical Dark Matter (DDM): an alternative framework for dark-

matter physics in which the notion of dark-matter stability 1s replaced
by a balancing of lifetimes against cosmological abundances across an
ensemble of individual dark-matter components with different masses,
lifetimes, and abundances.

This is the most general dark sector that can be contemplated,
and reduces to the standard picture of a single stable particle as
the number of states in the ensemble 1s taken to one.

Otherwise, if the number of states is enlarged, the notion of
dark-matter stability generalizes into something far richer:
a balancing of lifetimes against abundances. The dark

sector becomes truly dynamical!




‘Dynamical Dark Matter”: The Basic Picture:

A Snapshot of the Cosmic Pie: Past, Present, and Future
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Because of its non-trivial structure, the DDM ensemble --- unlike most

traditional dark-matter candidates --- cannot be characterized in terms

of a single mass, decay width, or set of scattering amplitudes.
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The DDM ensemble must therefore be characterized in
terms of parameters (e.g., scaling relations or other
internal correlations and constraints) which describe
the behavior of its constituents as a whole.
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As a consequence, phenomenological
bounds on dark matter in the DDM
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This is clearly a major re-envisioning of the dark
sector, and calls for re-thinking and re-evaluating
much of what we currently expect of dark matter.

KRD & B. Thomas, arXiv: 1106.4546

KRD & B. Thomas, arXiv: 1107.0721

KRD & B. Thomas, arXiv: 1203.1923

KRD, S. Su & B. Thomas, arXiv: 1204.4183

KRD, J. Kumar & B. Thomas, arXiv: 1208.0336
KRD, J. Kumar & B. Thomas, arXiv: 1306.2959
KRD, J, Kumar, B. Thomas & D. Yaylali, 1406.4868
KRD, S. Su & B. Thomas, arXiv: 1407.2606 .....

* Dark-matter equation of state: do we still have w=0? No, much more subtle...

* Are such DDM ensembles of states easy to realize? Yes! (extra dimensions; string
theory; axiverse, etc. In fact, DDM is the kind of dark matter string theory gives!)

* Can we make actual explicit models in this framework which really satisty every
collider, astrophysical, and cosmological bound currently known for dark matter? Yes!

(and phenomenological bounds are satisfied in new, surprising ways)

* Implications for collider searches for dark matter? Unusual and distinctive collider
kinematics. Invariant mass spectra, MT?2 distributions, ...

* Implications for direct-detection experiments? Distinctive recoil-energy spectra with
entirely new shapes and properties!

* Implications for indirect detection? e.g. positron excess easy to accommodate, with no
downturn in positron flux expected... a “plateau” is actually a smoking gun for DDM!



Experimental signatures of DDM

How can we distinguish DDM...

* at colliders (LHC)
* at the next generation of direct-detection experiments

(e.g., XENON 100/1T, SuperCMS, LUX, PANDA-X)
* at indirect-detection experiments (e.g., AMS-02, ...)

... relative to more traditional dark-matter candidates?

KRD, S. Su, and B. Thomas, arXiv: 1204.4183
KRD, J. Kumar, and B. Thomas, arXiv: 1208.0336
KRD, J. Kumar, and B. Thomas, arXiv: 1306.2959



This can indeed be done --- both at collider experiments...

DDM Models
0.0025 L} W— * KRD, S. Su, and B. Thomas, arXiv: 1204.4183
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> oool ] particles by the decays of additional heavy fields.
5_5 I * Evidence of a DDM ensemble can be ascertained
~ I in characteristic features imprinted on the
0.0005 | invariant-mass distributions of these SM particles.
0 " 200 400 600 s00 1000 l*[l[l-
] .o TP EE Traditional DM [T T 13 1 a1
mj; [GeV] mg=10GeV  Xe detector
_ :r;f:['zl.y 10 uph
- Am—co
° ° ° I 10~ —_— Ame o
... and at direct-detection experiments. = DDM
* KRD, J. Kumar and B. Thomas, arXiv: 1208.0336 5 D "Il Models — 1;::10;3::,
. . . 1 -
* DDM ensembles can also give rise to o \
distinctive features in recoil-energy spectra. é \ \
~ 10°E_ -
= |
These examples 1llustrate that DDM ensembles i\\
_ [
give rise to observable effects which can serve to Y0 w0 e so 100 120 140

distinguish them from traditional DM candidates.

Traditional DM







o
]M Mﬁ m\ﬁ Lﬂﬂ l‘uumﬁﬁ!!!




Over the past year, many other DDM projects have all with

Brooks Thomas
and ...

been completed, or are actively in progress...

* New strategies for probing non-minimal dark sectors at colliders:

. _ . . . . . w/ Shufang Su
interplay and correlations between different kinematic variables, their 1407.2606

distributions, and potential cuts.
* New effects in direct detection: velocity suppression --- normally

w/ Jason Kumar &

‘ . _ David Yaylali
overcome through special nuclear-physics effects. Thus direct- 1312 777;

believed to render pseudoscalar couplings irrelevant --- can be

detection experiments can indeed be sensitive to pseudoscalar DM/SM
couplings, especially if 1sospin-violating effects are included. w/ Jason Kumar &
* Enhanced complementarities for multi-component dark sectors 4 paid Yaylali

* Cosmology with multiple scalar fields: Mixing, mass generation, and  1406.4869 (PRL)

phase transitions in the early universe
* Mixing effects can enhance and/or suppress dissipation of total
energy density and alter distribution across different modes
: w/ Jeff Kost
(1socurvature)
* Parametric resonances and other non-monotonicities emerge
* Re-overdamping: new behaviors beyond pure vacuum energy or

matter.



And also... all with

Brooks Thomas

* Other realizations of DDM ensembles and ...

* “Deconstructed DDM” --- resembles KK towers but with w/ Barath Coleppa &
numerous unexpected discretization effects with new Shufang Su
phenomenologies.

* “Random-matrix DDM” --- ensembles from large hidden-sector W/ Jake Fennick &

. , X
gauge groups --- new scaling behaviors emerge Jason Kumar

* DDM 1n string theory: not just KK states, but also string oscillator

states!
* Density of states grows exponentially w/ Fei Huang &
: .. Shufang Su
* Hagedorn behavior, phase transitions, etc.
Moreover, this 1s mathematically equivalent to a strongly coupled
dark sector with DM ensemble = hadron-like bound-state spectrum. w/ Jake Fennick

* Designing DDM ensembles via new thermal freezeout mechanisms. 4 & Jason Kumar

* General decay constraints on multi-component dark sectors. <«
* DDM effects on

* Structure formation: complex behavior for Jeans instabilities

w/ Jason Kumar
& Pat Stengel

(Just Brooks &
me!)

* Non-trivial halo structures



Indeed, we are only at the tip of the iceberg...

Almost every traditional line of investigation in dark-
matter physics can be re-evaluated in this context
(from structure formation to collider
phenomenology, and everything in between).

The Dynamical Dark Matter framework 1s rich and
we have only begun to explore its properties.
DDM provides new, non-minimal, “dynamical”
ways to think about old problems and challenges in
dark-matter physics.



But perhaps most importantly...

The Take-Home Message

Dynamical Dark Matter is the most general way of
thinking about the dark sector...

* Stability and minimality are not fundamental properties of the dark sector!

* All that is required is a phenomenological balancing of lifetimes against
abundances. A much richer dynamical dark sector is possible!

* The resulting physics can satisfy all astrophysical, cosmological, and collider
constraints on dark matter, and yet simultaneously give rise to new theoretical
insights and new experimentally distinct signatures.

It 1s time we shed our theoretical prejudices and embrace all the
possibilities that dark-sector non-minimality and instability allow!




A Tale of Two Timescales:

Mixing, Mass Generation,
and Phase Transitions in the Early Universe

Keith R. Dienes
work with Jeff Kost and Brooks Thomas

Thanks, Jeff, for the slides!

[arXiv: 1505.xXxxXX]
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Scalar DDM Ensembles

* One important class of dark-matter candidate consists of
scalar singlets.

e |In fact, scalar singlets appear in many theories beyond the
Standard Model, e.qg.

e axions, to solve the strong CP problem
* string moduli, involved in compactification, etc.

* As a result, scalar fields play an important general role in early-
universe cosmology...

What is the cosmology of a DDM ensemble of scalar fields?
What is the cosmology of multiple scalar fields more generally?
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Scalars in the Early Universe

* One important question naturally arises for all such scalar fields:

What early dynamics can occur that would

- significantly affect the late-time abundances
(energy densities, i.e. the sizes of the slices
of the cosmic pie) of these fields?
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Scalars in the Early Universe

* One important question naturally arises for all such scalar fields:

What early dynamics can occur that would

- significantly affect the late-time abundances
(energy densities, I.e. the sizes of the slices
of the cosmic pie) of these fields?

» Two features are often found in models of scalars that can do this:
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Scalars in the Early Universe

* One important question naturally arises for all such scalar fields:

What early dynamics can occur that would

- significantly affect the late-time abundances
(energy densities, i.e. the sizes of the slices
of the cosmic pie) of these fields?

» Two features are often found in models of scalars that can do this:

the fields can undergo a
mass-generating
cosmological phase transition
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Scalars in the Early Universe

* One important question naturally arises for all such scalar fields:

What early dynamics can occur that would

- significantly affect the late-time abundances
(energy densities, i.e. the sizes of the slices
of the cosmic pie) of these fields?

 Two features are often found in models of scalars that can do this:

the fields can undergo a
mass-generating
cosmological phase transition

In scenarios with multiple scalars,
non-trivial mixing amongst the fields.
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Scalars in the Early Universe

* One important question naturally arises for all such scalar fields:

What early dynamics can occur that would

- significantly affect the late-time abundances
(energy densities, i.e. the sizes of the slices
of the cosmic pie) of these fields?

 Two features are often found in models of scalars that can do this:

the fields can undergo a
mass-generating
cosmological phase transition

INn scenarios with multiple scalars,
non-trivial mixing amongst the fields.

Let us briefly review each of these... A
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(1) Mass-Generating Phase Transitions

In a flat cosmology, where spatial variation N ) )
in the fields is assumed negligible, they gb ‘|‘ BH(t)¢ ‘|— T (t)¢ — O

evolve according to the equation of motion:
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(1) Mass-Generating Phase Transitions
In a flat logy, wh tial variati i )
in he fieds 1 asstmed neligibe, ey & -+ 311 (1)) + m*(t)p = 0
L
\

evolve according to the equation of motion:

Hubble damping field mass?
H(t) ~ 1/t
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(1) Mass-Generating Phase Transitions
In a flat cosmology, where spatial variation
in the fields is asstljrr\:ved negligillale,vthleyI ¢ + 3 ( )¢ + m (t

evolve according to the equation of motion:

Review the case of a constant mass m first: | Hubble damping

fleld mass?
H(t) ~ 1/t
A \
SR
2.
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(1) Mass-Generating Phase Transitions
In a flat cosmology, where spatial variation
in the fields is asstljrr\:ved negligilIJIe,VthleyI ¢ + 3 ( )¢ + m (t

evolve according to the equation of motion:

Review the case of a constant mass m first: | Hubble damping

fleld mass?
H(t) ~ 1/t
critical damping
z S threshold reached
A when 3H=2m
s
e,
EN
m(t)
| >
26 t ZAS
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(1) Mass-Generating Phase Transitions
In a flat cosmology, where spatial variation
in the fields is asstljrr\:ved negligillale,vthleyI ¢ + 3 ( )¢ + m (t

evolve according to the equation of motion:

Review the case of a constant mass m first: | Hubble damping

fleld mass®
H(t) ~ 1/t
critical damping
r S threshold reached
A when 3H=2m
s
e,
EN
m(t)
overdamped ) @ "--~__
SH >2m | Rl T
vacuum :
. énergy
| >
t¢ t ZAS
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(1) Mass-Generating Phase Transitions
In a flat cosmology, where spatial variation
in the fields is asstljrr\:ved negligillale,vthleyI ¢ + 3 ( )¢ + m (t

evolve according to the equation of motion:

Review the case of a constant mass m first: | Hubble damping
H(t) ~ 1/t

fleld mass?

critical damping
r S threshold reached
A when 3H=2m
s
2
=R

mit) B
overdamped ) : (underdamped
3H >2m | SH < 2m

vacuum ;
_ energy ) U matter
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(1) Mass-Generating Phase Transitions

In a flat cosmology, where spatial variation

In the fields is assumed negligible, they

evolve according to the equation of motion:

¢+ug¢+w

Review the case of a constant mass m first: | Hubble damping

fleld mass?
H(t) ~ 1/t
critical damping >A
4 threshold reached S| . .| PP
AN when 3H=2m g |
\6\»\ . ©
@\\ 3 10—3
LN ]
\\ C
.. O -
" o 10
m(t) %
overdamped underdamped ; 107
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vacuum : 9
: m r 10
. energy ) i \{ atte / -< . I ]
" vacuum ¢ damping {  matter
10 energy : transition !
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(1) Mass-Generating Phase Transitions
In a flat cosmology, where spatial variation
In the fields is assumed negligible, they ¢ —|_ 3 ( )¢ —|_ m (t

evolve according to the equation of motion:

Review the case of a constant mass m first: | Hubble damping

fleld mass®
H(t) ~ 1/t
radiation-
critical damping > A . 7 ng{cér;géed
4 threshold reached i L PRPo P :
N when 3H=2m é 10 AN
@/\\ 2 103 matter- I ;
A S dominated 1 :
T S universe i} §
s\ ()] . 4 |: :
> S 107 : :
m(t) g |
overdamped ) : (underdamped ; 107 i
3H>2m | : | 3H <2m |
. energy ) i \{ J -< |
: o’y vacuum i damping i  matter
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. > 1 1000 108 10°
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(1) Mass-Generating Phase Transitions
In a flat logy, wh tial variati i )
in he fieds 1 asstmed negligibe, ey & -+ 311 (1)) + m*(t)p = 0
L
\

evolve according to the equation of motion:

Hubble damping field mass?
H(t) ~ 1/t
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(1) Mass-Generating Phase Transitions
In a flat logy, wh tial variati i )
in he fieds 1 asstmed negligibe, ey & -+ 311 (1)) + m*(t)p = 0
L
\

evolve according to the equation of motion:

Consider if the mass is generated Hubble damping -

instantaneously at time ¢ H (t) ~ 1 /t
A \
SN
) s\
m(t)

ta flc >t A
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(1) Mass-Generating Phase Transitions

In a flat cosmology, where spatial variation
In the fields is assumed negligible, they
evolve according to the equation of motion:

Consider if the mass is generated
instantaneously at time ¢

A

\Y
o M
EZNR
s

A
= g

¢

ta l¢ t

b4+ 3H (t)¢ 2 = 0
<b+/%_)¢+7ﬂ\_)<b W

Hubble damping field mass?
H(t) ~ 1/t

* Energy density remains zero
until mass is generated at ;.

 Otherwise, evolution is similar to

the constant-m scenario.
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(1) Mass-Generating Phase Transitions
In a flat cosmology, where spatial variation
In the fields is assumed negligible, they ¢ —|_ 3 ( )¢ —|_ m (t

evolve according to the equation of motion:

Allow a non-zero generation timescale Ap | Hubble damping

fleld mass?
H(t) ~ 1/t
A \
SN
SN
e m(t
o mO
.
bate t ZAS
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(1) Mass-Generating Phase Transitions
In a flat cosmology, where spatial variation
In the fields is assumed negligible, they ¢ —|_ 3 ( )¢ —|_ m (t

evolve according to the equation of motion:

fleld mass?

Allow a non-zero generation timescale Ap | Hubble damping
H(t) ~ 1/t

A

\
=N
T,
o
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-
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(1) Mass-Generating Phase Transitions
In a flat cosmology, where spatial variation
In the fields is assumed negligible, they ¢ —|_ 3 ( )¢ —|_ m (t

evolve according to the equation of motion:

Allow a non-zero generation timescale Ap | Hubble damping

fleld mass®
H(t) ~ 1/t
A
i) /mon-zero Aqtypically leads to )
- suppression of late-time
abundance as compared to an
o Instantaneous transition, in the
specific models where it has
n led thus far.
\bee studied thus fa .
Turner, 1986
>
t I\
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(1) Mass-Generating Phase Transitions
In a flat cosmology, where spatial variation
in the fields is as%ﬁrr\:ved negligitl)le,vthé:yI ¢ + 3H ( )¢ + m (t

evolve according to the equation of motion:

Allow a non-zero generation timescale Ap | Hubble damping

fleld mass®
H(t) ~ 1/t
For example, in the case of — —— actual axign :
the QCD axion, this function ¥ - toy model| /~ ]
has been explicitly 1 0al ]
calculated...: -
)
: : : : ~—0.6 .
« A combination of detailed lattice E
studies and a variety of other ~_ |
approaches have helped determine 294 ]
the axion mass as a function of = | i
temperature near its mass- E 0.2 i -
generating phase transition : i
at 7 = : )| PR : | i
I'= Aqcp e 0.1 1 10 100
[most recently Wantz, Shellard (2010)] t/tc ZAS
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(2) Non-Trivial Mixing Amongst the Fields
' ith Itipl lars, th N '
I scenaros it mullplesealars. bre. 311 (1) + M2 (1)dp — O

coupling the equations of motion: T

non-diagonal
mass® matrix
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(2) Non-Trivial Mixing Amongst the Fields
' ith multipl lars, th " '
can be non-tivial mixing amongst the fislds, 5. + SH (1), + M, (t)py = 0

coupling the equations of motion: T

non-diagonal
mass® matrix

(also found to suppress their (total) )
- cosmological abundance, in the case
of axions under certain cosmological
\circumstances. y
KRD, Dudas, Gherghetta, 1999
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. )
Both of these effects have occasionally been studied in

Isolation, but what happens when we introduce them
simultaneously, as would occur in a DDM ensemble?
\ DO any new phenomena emerge? )
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The Question...
N

Both of these effects have occasionally been studied in
Isolation, but what happens when we introduce them
simultaneously, as would occur in a DDM ensemble?

J

\ Do any new phenomena emerge?

* Atacit assumption might be that P i,
the general picture is essentially 10! °
unchanged for each mass —
eigenstate. 10-
g o~ %
To what extent is such an [SY L “\
5 -7
assumption true? 10 e
- - -9
e This is the fundamental 10 o
question we shall now explore. | " ecwum | damping | mater
10 energy : transition :
1 1000 108 10°
E/to J/\
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A Toy Model

 To study these issues, rather than restricting ourselves by focusing
on a specific model, we construct a general toy model.

« Our toy model is simple enough to be tractable, yet rich enough to
Incorporate all the effects of interest:

@ a mass-generating phase transition with non-zero width

@ non-zero mixing between its fields.
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A Toy Model

 To study these issues, rather than restricting ourselves by focusing
on a specific model, we construct a general toy model.

« Our toy model is simple enough to be tractable, yet rich enough to
Incorporate all the effects of interest:

@ a mass-generating phase transition with non-zero width

@ non-zero mixing between its fields.

* To do this, we require only two real scalar fields gbo, ¢1 with an
explicitly time-dependent potential:

V(dn.o1t) = 3 50k M] (1)
k.t

(time-dependent) mass matrix A
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A Toy Model

> (0 0
= (0 a7

at early times, allow for
a non-zero mass component

an[eAuabla ssew

0 - A
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A Toy Model

M2 = (Y O
2 —2 2
0 M M2 = n Moy My
o M2 me, Ty
at early times, allow for
a non-zero mass component generated mass
components
4 )

(M ()

. / Ao(t)

an[eAuabla ssew

0 N Z,
ta 15 A@'X
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Evolution of the Mass Matrix
> (0 o
M (O M? 0 m(2)0 m(zn
0 M2 T\m2, ™2

M?* =
at early times, allow for
a non-zero mass component generated mass
: components

parametrize the mixing that

r N (B is generated by angle §
(

an[eAuabla sseul

0 N Z,
ta 4 A@'X
Jeff Kost

A Tale of Two Timescales




A Toy Model

> (0 0
M _<O M2) _/\/12:(0 0)+(m(2)0 m(%l)

—2 ==

0 M?

time-dependent function that takes
the width A~ as a parameter:

at early times, allow for Moy 1y
a non-zero mass component generated mass
components
Ag ——
— parametrize the mixing that
4 N\ "N\~ ¥ (t is generated by angle §
| |
A ! :
. . \ ( 4 smoothly interpolate between the
P <A 0 early and late regimes, with some
M 7

an[eAuabla sseul
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A Toy Model

> (0 0
= (0 a7

at early times, allow for
a non-zero mass component

0 0 m2, m
M2 _ ( ) 4 (_00 _01)
0 M? mgl m%l

= g
%\ Ag
B
4 YAl A Y4 )\1(ﬂ
A ' )
4| Aot
N Y ) R
3 : I
m I [
& I I
(‘_D. I i
re) I f i
o) I . I
= I I
S VAR
o /L
OQ A I | I és
tg

WA

=2

generated mass
components

—— —

parametrize the mixing that
is generated by angle {

smoothly interpolate between the
early and late regimes, with some
time-dependent function that takes
the width Ay as a parameter.

Thus, model is equipped with
free parameters: @ , Ay, and
t¢; (in addition to other

generated mass parameters),
all of which can impact the
late-time abundance.
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St CEERHEE)

0 ]\,[2 2 —2

M? =
at early times, allow for Moy MMy
a non-zero mass component Rl
components
\Q\\ A W
N G

))/\ parametrize the mixing that
~ N\ /A~ : \\ : ~ A (ﬂ is generated by angle §
A I
DA R3] M Ao

e Thus, even with only two fields, our toy model captures the
non-trivial interplay between
* Non-zero width of mass-generating phase transition
* Non-trivial mixing
e Overdamped/underdamped dynamical transition

Uk —— — I — ﬂ
tg I8 .
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- ) G

[2 —2 —2
at early times allow for 0 M Mo 11y
a non-zero mass component generated mass
2N components
VS?\\ AG —~
‘.
))/~ I parameterize the mixing that
e N T N\/ 0 (ﬂ is generated, by some angle
| \\ | 1
A I
I Is 1
Al o) [ SmgoneRoRe benigen e

* \We eliminate explicit dependence on the constant mass M
by using the dimensionless time variable 7 = Mt

 All quantities with mass dimension are understood from this
point on to be written implicitly as fractions of M.

Uk —— — T — ﬂ
tg I8
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Performing Calculations

 The time-dependence in the mass® matrix (in the region of the phase
transition) restricts our ability to find analytical solutions, so we solve this
system numerically in most scenarios.
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Performing Calculations

 The time-dependence in the mass® matrix (in the region of the phase
transition) restricts our ability to find analytical solutions, so we solve this
system numerically in most scenarios.

\

This requires a considerable amount of numerical work:

e Our system can be “stiff”, depending on its mass spectrum
and the damping phase of the fields (which are both time-dependent).
* Must therefore use a combination of implicit and explicit methods
(“Runge-Kutta-Fehlberg” and multi-step “Backwards Differentiation
Formula” in a predictor-corrector form) to ensure stability of solutions.
 Field solutions will be evaluated at “late times” --- this requires a
careful definition in our implementation, to ensure that asymptotic
behavior has truly emerged.
« An adaptive error algorithm must be employed to ensure
efficiency, due to the stark changes in behavior that the fields
undergo before and after the phase transition, damping transition, etc.

A\
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What to Calculate?

* Only interested in how the late-time energy density varies compared
to various benchmarks (i.e. zero mixing, zero phase transition width).
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What to Calculate?

« Only interested in how the late-time energy density varies compared
to various benchmarks (i.e. zero mixing, zero phase transition width).

e Concentrate on two particular quantities in what follows:

o= Total (late-time) energy density,

p / p(g — O) normalized to what it would have
been with zero mixing and zero
phase transition width

— = — Tells how total energy density
(/0 )\0 P )\1 ) / P IS apportioned between fields

A\
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Distribution of Components

lighter field
dominates
|Q
~
|
| mixing
| c’f saturation
~ (fraction
- of maximum
heavier field possible mixing)
dominates
0.1 1 10 100 1000
Ag A
—
phase transition timescale AZRIZ;N:
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Distribution of Components

As the width of the phase
transition is increased,
energy density shifts
completely to lighter field!

lighter field
dominates
|Q
&
| mixing
| c’f saturation
~ (fraction
- of maximum
heavier fielo possible mixing)
dominates
1000
T
phase transition timescale A
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Distribution of Components

As the width of the phase
transition is increased,
energy density shifts
completely to lighter field!

| non-monotonicities
” appear in highly

| saturated mixing
regime!

lighter field
dominates

(P, — P ) P

mixing
saturation
(fraction

of maximum

heavier field possible mixing)

dominates

—
phase transition timescale ZAl
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Late-Time Total Energy Density Comparison

not all fields oscillating

Immediately at mass

generation ‘ . -
ﬁ[‘m: L0J -

-——
———————

p/p(&=0)

1.0

0.5

0.8.

phase transition timescale

matter
dominated
epoch
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Late-Time Total Energy Density Comparison

not all fields oscillating

immediately at mass an enhancement
generation / develops for small
‘ — ) — mixing, while a
15407 — 1 OJ / -
o € ' suppression
""""""" develops when mixing
is highly saturated!
cflil\ 1.0
1N _
(Q
~— Pt
_ \ e
T - £=0.50 \ /f/ |
_: -\ /7 .’/ ]
_ €090 Vs _ matter
| ———£=0.99 \..\\__/./ dominated
- —.— £=0.999 l MD|, epoch
0. ‘ ‘
0.1 0.5 1 5 10 50
Ag
—
phase transition timescale ZAl
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Late-Time Total Energy Density Comparison

not all fields oscillating
immediately at mass an enhancement

generation / develops for small
\f —10] — mixing, while a
L57G — — J / suppression

mixing h?ﬁ ho | e develops when mixing
effect with rapid is highly saturated!
phase transition _ |
(inthisregime) = {7
[
W
(Q
~ ~.
_ \ s
I Q 0 5L e £=0.50 \ //f/ i
= AN y; :/ ]
_ éi—o-go \ S——_ / | matter
| ———£=0.99 \..\\__/./ dominated
- —.— £=0.999 l MD|, epoch
0 | |
0.1 0.5 1 5 10 50
Ag A
—
phase transition timescale AZRIZ;N A
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Late-Time Total Energy Density Comparison

not all fields oscillating
immediately at mass an enhancement

generation / develops for small
\f —10] — mixing, while a
L57G — — J / suppression

mixing h?ﬁ ho | e develops when mixing
effect with rapid is highly saturated!
phase transition _ |
(inthisregime) = 1
[
W
(Q
—~ ~.
_ \ 7
1 Q 0 5L e £=0.50 \ //f/ i
.. I — : / ]
non-trivial phase 82090 BN/ matter
transition timescale | ———£=0.99 \e 7 dominated
allows mixing to . F=0.999 T l MD | epoch
leave imprint at 0.9 R =10 0
late times! 1 0-5 > >
Ag A
—
phase transition timescale AZRIZ;N A
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Late-Time Total Energy Density Comparison

| 5l —— 720.00 £-0.90 _
gp— £=0.20 ——— £=0.99
| oo £=0.50 —-— £=0.999

_ '\l\\ //;f”' N radiation
- "~ dominated
=10 T l RD |/ epoch
0. e
8.1 05 1 5 10 50
Ag A
—
phase transition timescale AZRIZ;N:
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Late-Time Total Energy Density Comparison

1.5

p/p(&=0)

0.5

0.8‘

= e — ~
N
| o o  — \.. \\
\“ \
i N\
‘\\

 —7=0.00 £=0.90 |
gp— £=0.20 ——— £=0.99
| oo £=0.50 —.— 320,999/

.
.
.
.
.
. 3
.
L
*e

phase transition timescale

| follows similar

behavior to matter-
dominated epoch

radiation
dominated
epoch
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Late-Time Total Energy Density Comparison

| 5L —— £=0.00 £=0.90 |
S £=0.20 ——— £=0.99 | follows similar
R 7-0.50 —.—. F=0.999 - beha_lwor to matter-
\ 1dominated epoch
~ | " ~
(QL Y F— \.\\
~— / ~\\\ ........
1 Q Y N\ =
N\
_ \i\\ _ e radiation
= 1.0 "~ [: dominated
. : =10 T RD|.
mixing now 0 G o o epoch
suppresses '8.1 0.5 1 5 10 50
energy dens!ty A
phase transition! phase transition timescale .
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Late-Time Total Energy Density Comparison

(This regime is )
Insensitive to
radiation/matter

\domination

flelds immediately
begin oscillating at
mass generation

1000

phase transition timescale
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Late-Time Total Energy Density Comparison

(This regime is )

insensitive to
radiation/matter
\domination

flelds immediately
begin oscillating at
mass generation

large suppressions:
become increasingly
dramatic as the

. | 7] mixing is saturated!
—R\ TG = 10 (note this is a log-plot)
0.1
— 7-0.00
1072 o Z=
§_O.20 ¥ \“.__,‘\\\ -
10—3 s éi=090 "‘-‘\.0 \\
——— £=0.99 N
I \*.
——r £=0.999
0.1 1 10 100 1000
Ag

phase transition timescale
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Late-Time Total Energy Density Comparison

mixing again has
no effect when the
phase transition Is

rapid. 1

S

-
I

I

~ 10-2|
o 1077
iy ,

I

fields immediately large suppressions:
begin oscillating at become increasingly
mass generation | dramatic as the

0.1}

mixing Is saturated!
(note this is a log-plot)

(This regime is ) . £=0.999

insensitiveto | 04~ —
radiation/matter 0.1 ! 10 100 1000
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Late-Time Total Energy Density Comparison

mixing again has
no effect when the
phase transition Is

rapid. 1

S

-
I

I

~ 10-2|
o 1077
iy ,

I

fields immediately large suppressions:
begin oscillating at become increasingly
mass generation | dramatic as the

0.1}

mixing Is saturated!
(note this is a log-plot)

again, a sequence
non-
monotonicities

In the saturated
mixing regime!

(This regime is ) . £=0.999

insensitiveto | 04~ —
radiation/matter 0.1 ! 10 100 1000
\domination ) Ag

A\

phase transition timescale .
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Origin of Non-Monotonic Behavior

 The non-monotonicities seen in the highly mixing saturated curves are due
to a special property of the mass spectrum in this regime:

4 F040 I esiiII
1
T 520.70 i :':;/’ ----------
R £=0.90 i $f
3 - _ 1
_ £=0.99 i
|
1
1
1
N, |
1
1
%
L 1
AQ {‘~~~ ________________
O bireor e vn on vnqe e we =2 " | ; |

].—ZAG ].—AG 1 ].+AG 1+2AG A
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Origin of Non-Monotonic Behavior

 The non-monotonicities seen in the highly mixing saturated curves are due
to a special property of the mass spectrum in this regime:

i —§:0.40 | lighter mass
- £=0.70 i eigenvalue develops
S £-0.90 ] a “pulse” when
3 £-0.99 | mixing is highly
i saturated
= 2 |
%
N
)\2
1-20¢  1-Ac N1 1+A; 1+2Ag A
} A
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Origin of Non-Monotonic Behavior

« The non-monotonicities seen in the highly mixing saturated curves are due
to a special property of the mass spectrum in this regime:

ﬁroduces an \

effective l :
parametl‘lc | — éi=O4:O i Ilghter mass
irlffﬁe“ﬁ‘“ﬁt‘;r e £=0.70 | eigenvalue develops
A forga i S £=0.90 i a “pulse” when
_ 3l d | LA
discrete spectrum| | ¢=0.99 ! ;n;i(l;?gt'e%h'ghly
\of widths Ac ) ' i
= 2 |
| 2 5
X
DY
resonant j
enhancement in - )\2 .
energy density . 0 ‘
;S:ﬁg'ﬁtg'ﬁ‘g;g: } 1-20;  1-Ap N 1+4Ag  142Ag 7
¢ - IA\
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Origin of Non-Monotonic Behavior

» Recall: a parametric resonance occurs when a parameter in the system
modulates at frequencies that are certain (integer) multiples of the

natural frequency.
A

. d

l

1
i
04

(lighter) scalar mass

-

A\
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Origin of Non-Monotonic Behavior

» Recall: a parametric resonance occurs when a parameter in the system
modulates at frequencies that are certain (integer) multiples of the
natural frequency.

4 « Locally, the pulse
c‘?) ) \ appears periodic_,
g 3 / with some effective
h e s x m EEoEEoEEEE oA CERREI R ........ E I frequency weﬁ‘.
©
O
7
=
Q
Jod
=
k=l
=
0
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Origin of Non-Monotonic Behavior

» Recall: a parametric resonance occurs when a parameter in the system
modulates at frequencies that are certain (integer) multiples of the
natural frequency.

4 « Locally, the pulse
3’, appears periodic,
© < / with some effective
E I - o v e ........ . - frequency weﬁ
= 5 5 5
c_g e Aresonant
7 enhancement
co IS produced when
Q
£ Weff = 2A0/7
= where 77 is an
Integer.
0

A\
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The Resonant Enhancement on the Lighter Field

* These resonances can be quite dramatic, e.g. for the lighter field:

01 1 10 100 1000

Ag A
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The Resonant Enhancement on the Lighter Field

* These resonances can be quite dramatic, e.g. for the lighter field:

10}
<§ | '
< | —— £=0.80
| Q . _ .
J— £=0.90 R
0.1} £=0.95 (the abundance of the
3 lighter field can be
T ¢=0.97 | enhanced by several
= £=0.99 (orders of magnitude! )
o1 1 10 100 1000
S A\
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A “Re-Overdamping” Phenomenon
 This pulse also has other implications:

overdamped overdamped

A N\

A\
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A “Re-Overdamping” Phenomenon

* This pulse also has other implications: /7 “Re-overdamping”: N\

overdamped overdamped

e The field which has already
commenced oscillations returns
\ to an overdamped state! y
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A “Re-Overdamping” Phenomenon

» This pulse also has other implications: / T \

overdamped overdamped

* The field which has already
commenced oscillations returns
to an overdamped state!

 Field ceases oscillation -- acts
as different state of energy (not
guite vacuum energy, not quite

tter).
BN y
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A “Re-Overdamping” Phenomenon

 This pulse also has other implications:

overdamped

overdamped

/ “Re-overdamping”: \

* The field which has already
commenced oscillations returns
to an overdamped state!

 Field ceases oscillation -- acts
as different state of energy (not
guite vacuum energy, not quite
matter).

e The timescale over which this
lasts can potentially be much
longer than the phase transition
itself...a new kind of “matter”
between traditional pressureless

matter and vacuum energy?
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A “Re-Overdamping” Phenomenon

Field behavior if phase transition : : 9
had been instantaneous. True field behavior for A~ = 10~ .

76 = 10°

| [ lighter field dominates
107 | in this regime

1 |
1 |
|
1 |
1 |
1077 |
P
1 |
1 |
1 |
}
1 |
1 |
_3k . S | ' 10-10 b - =
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Conclusions

» For a simple two-component toy model we have found a rich set of
phenomena that emerge from the non-trivial interplay between the width
of mass generating phase transitions, non-trivial mixing, and
overdamped/underdamped behaviors.

« Unexpected suppressions and/or enhancements in late-time energy
densities.

 Shifts in energy density from lighter to heavier modes, simply by
Increasing timescale of phase transition.

 Effective parametric resonances that cause energy densities to
fluctuate by several orders of magnitude.

e Surprising “re-overdamped” phases and unexpected field behaviors.

* These effects can potentially be even more dramatic in a full model, with
more than two modes included (KK systems, axiverse, multiple string
moduli, ...).

The cosmology of such systems may be far richer than

we have previously imagined. Many new possibilities for
phenomenology and model-building exist. A
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