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About myself

| am an experimental particle physicist
PhD in ALICE experiment
Heavy Quarkonium (Upsilon) measurement via muons
Development of Data Quality Assurance for Muon Trigger system
| am a system administrator
RHCSA/RHCE

KR-KISTI-GSDC (Tier-1) Site Administrator



Outline of the lecture

- Introduction

- Various aspects of Physics Computing:
- Event Filtering

- Calibration and alignment

- Event Reconstruction

- Event Simulation

- Physics Analysis

- Data Flow and Computing Resources



Technical Challenges at LHC
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Technical Challenges at LHC

- Very high (design) event rate: 40 MHz

- Large event size: O(1) MB

- Large background of uninteresting events

- Large background in each event
- many interactions in each beam crossing
- pile-up from adjacent beam crossing

- many low-momentum particles



Technical Challenges at LHC

- Large number of physicists doing analysis

- ATLAS and CMS experiments at the LHC: both consist of 170-180
institutes in about 40 countires

- Distribution of data and programs
- Bookkeeping is crucial
- High pressure, competitive spirit
- Important discoveries to be (and have been) made

- Computing has to be as fast as possible



What is Physics Computing?

- Yearly input: a few petabytes of data

- Yearly output: a few hundred physics papers
- Data reduction factor of 107 to 108 Il

- How is it done?

- Will try to answer this question in lecture



It’s simple -
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Actually, at LHC we need:---

- Millions of lines of code (C++, Python, Perl, ---)
- Hundreds of neural networks
- Large infrastructure

- Customized hardware

- PC farms

- Database and storage systems

- Distributed analysis facilities

- The grid



What happens to the data?

- Event filtering, tagging and storage
- Calibration, alignment

- Event reconstruction

- Storage

- Event simulation

- Physics analyses



Step by step

- Each step involves some data reduction
- data are discarded (online)
- data are compressed (offline)

- In each step the data get closer to be interpretable in
physical terms

- Some steps are repeated many times until the output is
satisfactory (offline processing)



Online vs Offline computing

- Online
. In real time, fast!
- Decisions are irreversible
- Data cannot be recovered
- Offline
- From almost real time to long delays
- Decisions can be reconsidered

- Data can be reprocessed



Online processing

- Trigger: event selection
- Needs only a (small) subset of the detector data

- Fast, as little dead-time (time period when triggering system is
insensitive to new data) as possible

- Gives “green” or ‘red” light to the data acquisition




Online processing

- Data acquisition
- Interfaces to detector hardware
- Builds complete events from fragments
- Sends them to the higher level event filter(s)
- Writes accepted events to mass storage

- Very complex system



Complexity of Data acquisition
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Online Processing

- Monitoring

- Detector status B e

- Data acquisition performance i | JaA
- Trigger performance

- Data quality check

. Control

- Configure systems
- Start/stop data taking

- Initiate special runs (calibration, alignment)

- Upload trigger tables, calibration constants, -



Event selection

- Primary (design) collision rate: 40 MHz

- Recording rate: a few hundred Hz

- How is this achieved?

- Multi-level trigger - chain of yes/no decisions
- Very fast first level: (Programmable) hardware

- Slower higher level(s): Software on specialized or
commodity processors



Event selection

- Has to be reliable

- Rejected data are lost forever
- Continuous monitoring
- Do not lose new physics

- Must therefore be open to many different signatures of
potentially new physics in the detector system



Example: ATLAS
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Muon chambers

Toroid magnets
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Pixel detector --

Solenoid magnet | Transition radiation tracker

Semiconductor fracker

Tile calorimeters

LAr hadronic end-cap and
forward calorimeters

LAr electromagnetic calorimeters



What ATLAS sub-detectors measure

- Inner detector
- Momentum and position of charged particles
- Electromagnetic calorimeter
- Energy of photons, electrons and positrons
- Hadron calorimeter
- Energy of charged and neutral hadrons
- Muon system

- Momentum and position of muons



ATLAS detector




Event selection

- Overall guideline in designing trigger system: what are the
essential features of interesting physics in the detectors?

- Typically high-energy particles moving transversely to
the beam direction

- Results in large energy deposits in the calorimetric
systems, high-energy muons in the muon system, etc.

- Multi-level trigger explores such features in various
degrees of detail



Multi level selection

- Many events can be discarded very quickly - fast level-T
trigger

- Only the surviving ones are scrutinized more carefully -
high-level filter(s)

. Triggers are tailored to specific physics channels (Higgs,
top, WW, ZZ, ---)

- Many such hypotheses are investigated in parallel



ATLAS triggering system

- ATLAS has three-level trigger system
- Level 1 purely hardware-based (ASICs and FPGAS)
- High-level trigger (level 2 and Event Filter (EF)) software-based
- Level 1 uses information mainly from calorimeters and muon system

. Level 2 also includes information from Inner Detector, uses data
from Regions of Interest (Rol) identified by level 1

- EF has access to complete set of data and uses same algorithms as
offline event reconstruction



ATLAS Trigger & DAQ
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ATLAS L1 Trigger

- Input (design) rate: 40 MHz

- Qutput rate: up to 100 kHz

- Latency (time to reach trigger decision): O(1us)

- Data pipelined until trigger decision can be made
- Mainly 2 detector systems:

- muons/calorimeters



ATLAS L1 Trigger
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ATLAS L1 calorimeter trigger

- High-energy objects in an event:

- Electrons/photons

- Hadronic decays of tau lepton
- Jet candidates
plln
- Global event properties: L%J I}J
o Hadroni
I f cal?: rirr?'nll'c'i:a-r
- Total transverse energy (ET) / R
calorimeter

Trigger towers ’;’.dr; xAp=01x01)

+ Missing ET
| ] | Electromagnetic
E. Vertical sums — [ isolation ring
- JetsumET , '
2= Horizontal sums Hadronic inner core

and isolation ring

F1 Local maximum/
1t | Region-of-interest

- Sends to Central trigger:

- Multiplicity of electrons/photons and jets passing thresholds

- Thresholds passed by total and missing ET



ATLAS L1 muon trigger

Dedicated muon trigger chambers with good time
resolution:

EML

- RPCs (barrel region) _

RPC3

EEL

- TGCs (endcap regions) ...,

RPC1

L Lowp,

- Search for patterns of 5
measurements consistent
with high momentum
muons coming from
collision point ’




ATLAS L1 CTP

- Central Trigger Processor
- L1 inputs are combined to form L1 items

- e.g. an input EM10 (electromagnetic cluster above 10 GeV) can be used
in the generation of several L1 items:

- L1 EM10: at least one EM cluster above 10 GeV
- L1 2EM10: at least two EM cluster, each above 10 GeV

- L1 EM10_MU®6: an EM cluster above 10 and a muon above 6 GeV

- A L1 Accept is generated and sent to the detector readout electronics only
if at least one L1 item survives



- Further data selection:

High-Level Filter

- Up to 100 kHz input rate

- "‘,
Y

- A few hundred Hz output rate

- Event tagging:

Run 347, Event 2566
“ Higgs candidate

- Mark events having interesting features facilitates quick
access later

- Reconstruct physics objects



High-Level Filter

- More detailed analysis of event and underlying physics
- Runs on standard processors (commodity PCs)

- CMS: 1 stage (in contrast to ATLAS two-stage solution)



CMS high-level trigger

- Has to keep pace with the L1 output (up to 100 kHz)

- Solution: massive parallelism

- Filter farm

- O(10000) cores

- Decision time: O(100) ms



CMS high-level trigger

- Same software framework as in offline reconstruction
- Transparent exchange of algorithms with offline code
- Regional reconstruction

- Concentrates on region(s) found by Level 1

- Partial reconstruction

- Stop as soon specific questions are answered



Output of CMS high-level trigger

- Raw data are sent to Tier-0 farm (at CERN)
- Detector data (zero compressed)
- Trigger information + some physics objects

-+ O(50) physics datasets, depending on trigger history, O(10)
online streams (calibration/monitoring/alignment)

- Physics: O(1) MB @ a few hundred Hz = a few hundred MB/sec

- Alignment/Calibration: O(50) MB/sec



Output of CMS high-level trigger

+ LHC runs for ~ 107 sec/year

- A few PB per year at design luminosity



Tier-0O processing

- Archive raw data on mass storage

- First event reconstruction without or with a small delay
- Archive reconstructed data on mass storage

- A few hundred kByte/event, depending on physics

- Reconstructed objects (hits/clusters, tracks, vertices,
jets, electrons, muons)

- Send raw and processed data to Tier-1



Tier-0O processing
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Summary, event selection

- Selecting a small subset of all collision events for offline analyses

.+ Reducing from 40 MHz collision rate to recording rate of a few
hundred Hz

- Multi-level triggering system

- Looking for signatures of potentially interesting physics in
detectors

- First level purely hardware-based with pipelined data

- Higher level(s) software-based, massively parallelized on filter
farms



Offline processing

- Calibration

- Convert raw data to physical quantities
- Alignment

- Find out precise detector positions

- Event reconstruction

- Reconstruct particle tracks and vertices (interaction points)
- |dentify particle types and decays

- Impose physics constraints (energy and momentum conservation)



Offline Processing

- Simulation

- Generate artificial events resembling real data as closely as
possible

- Needed for background studies, corrections, error estimation,

Monte Carlo Method




Offline Processing

- Physics analysis
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- Compute masses,
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discovery limits, -

N
17

- Requires sophisticated multivariate techniques



Calibration: from bits to GeV and cm

- Raw data are mostly ADC or TDC counts

- They have to be converted to physical quantities such
as energy or position

- Very detector dependent
- Every detector needs calibration

- Calibration constants need to be updated and stored in
a database



Silicon Tracker calibration

- Incoming particle creates electric charge in strips or pixels

Incoming particle



Silicon Tracker calibration

- Charge distribution depends on location of crossing
point and crossing angle

- Solve inverse problem: reconstruct crossing point from
charge distribution and crossing angle

- Test beam, real data



Drift tube calibration

Tube wall (cathode)
Drifting electrons
wire

Charged track



Drift tube calibration

- Incoming particle ionizes gas in tube

- Electrons/ions drift to anode/cathode | prift Tubes

- Drift time is measured b =3

- Must be converted to drift distance

- Time/distance relation must be determined (not always
linear)

- Test beam, real data



Alignment: Where are the detectors?

- Tracking detectors are very precise instruments

- Silicon strip detector: ~ 50 pym

- Pixel detector: ~ 10 ym

- Drift tube: ~ 100 pm

- Positions of detector elements need to be known to a
similar or better precision



Example: CMS tracker

~ Wow, I will have i

L




Alignment

- Mechanical alignment

- Measurement taken before assembly
- Switching on the magnetic field

- Laser alignment

- Alignment with charged tracks from collisions, beam
halo and cosmic rays



Alignment

- Difficult because of huge number of parameters to be
estimated (~ 100000)

- Continuous process

- Alignment constants need to be updated and stored in
a database



Event reconstruction

- Find out which particles have been created where and
with which momentum

- Many can be observed directly

- Some are short-lived and have to be reconstructed
from their decay products

- Some (neutrinos) escape without leaving any trace



Event reconstruction

- Reconstruct charged particles
- Reconstruct neutral particles
- |dentify type of particles

- Reconstruct vertices (interaction points)

- Reconstruct kinematics of the interaction

- Not trivial, very time-consuming -



Event reconstruction

CMS: Higgs decay into two jets




What CMS sub-detectors measure
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T furnay, CERN, Felwacmey 2004



Charged particles

- Charged particles are detected by tracker and
calorimeters

- Muons also reach the muon system
- Very high number of low-momentum charged particles

- Select by threshold on transverse momentum



Charged particles

Silicon
Tracker



Neutral particles

- Neutral particles are detected mainly by calorimeters (e.g.
photons, neutrons)

- They should deposit their entire energy

- Some of them decay into charged particles which are
detected by the tracker (e.g. K°)

- Neutrinos escape without leaving a trace (missing energy)



Neutral particles

- Muon

Electron

Charged Hadron (e.g. Pion)

- = = = Neutral Hadron (e.g. Neutron)
----- Photon

Silicon

Tracker \ o ;

Electromagnetic
)! l' Calorimeter

Hadron Supe



Reconstruction of charged particles

- Trajectory is curved because of the magnetic field
- Position is measured in a number of places - “hits”
- Determine track parameters (location, direction,

momentum) plus their estimated uncertainties from the
position measurements



The difficulties

- Assignment of hits to particle is unknown
- Huge background from low-momentum tracks
- Additional background from other interactions in the

same beam crossing, from adjacent beam crossings and
from noise in the electronics



More difficulties

- Charged particles interact with all the material, not only the sensitive
parts

- Multiple Coulomb scattering

- Changes direction, but not momentum
- Energy loss by ionization

- All charged particles, changes momentum
- Energy loss by bremsstrahlung

- Electrons and positrons, changes momentum
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Decomposition of the problem

- Pattern recognition or track finding

- Assign detector hits to track candidates (collection of hits all
believed to be created by the same particle)

- Parameter estimation or track fit

- Determine track parameters + their estimated uncertainties
(covariance matrix)

- Test of the track hypothesis

- |s the track candidate the trace of a real particle?



Track finding

- Depends a lot on the properties of the detector:
- Geometry, configuration
- Magnetic field
- Precision
- Occupancy
- Many solutions available

- No general recipe



A few track finding algorithms

- Track following
- Kalman filter

- Combinatorial

- Hough transform :

- Artificial neural network 3 B & & B



Track fit

- Determine (estimate) track parameters

- Determine uncertainties of estimated track parameters
(covariance matrix)

- Test track hypothesis
- Reject outliers

- Distorted hits

- Extraneous hits

- Electronic noise hits



Ingredients

- Magnetic field

- Constant or variable

- Track model

- Solution of the equation of motion

- Analytic (explicit) or numerical

- Error mode|

- Observation errors

- Process noise



Estimation of track parameters

- Most estimators minimize a least-squares objective function

- Linear regression

- Kalman filter

- Robust estimation

- Adaptive filter

- Automatic suppression IR A |
of outlying hits . el

~~~~~~~~~~




Reconstruction of neutral particles

- Neutral particles are only seen by the calorimeters
- Photons are absorbed in the electromagnetic calorimeter
- Neutral hadrons are absorbed in the hadronic calorimeter

- Neutrinos are not detected directly



Shower finding

- An incident particle produces a shower in the calorimeter

- A shower is a cluster of cells with energy deposit above
threshold




Shower finding

- Overlapping clusters must be separated
- Various clustering techniques are used to find showers

- The algorithms depend on various characteristics of the
calorimeter

- Type (electromagnetic or hadronic)
- Technology (homogeneous or sampling)

- Cell geometry, granularity



Particle identification

- Determining the type of a particle :

- Dedicated detectors

- Calorimeter (electromagnetic or hadronic)

. Ring imaging Cherenkov (RICH) [

Ch_erenkov

- Transition radiation detector Lot

electron

- lonization measurements /




Particle identification

- Combining information from several detectors

- Shower in electromagnetic calorimeter + no matching
track in tracker -> photon

- Shower in electromagnetic calorimeter + matching track in
tracker -> electron/positron

- Shower in hadronic calorimeter + matching track in tracker
-> charged hadron

- Track in muon system + matching track in tracker -> muon



Vertex reconstruction

- Primary vertex: interaction of the two beam particles -
easy

- Secondary vertices: decay vertices of unstable particles
- difficult

- Emphasis on short-lived unstable particles which decay
before reaching the tracker



Primary and secondary tracks

Primary tracks
| Secondary tracks




The difficulties

- Association of tracks to vertices is unknown

- Secondary tracks may pass very close to the primary
vertex (and vice versa)

- Especially if decay length is small
- Track reconstruction may be less than perfect

- Qutliers, distortions, incorrect errors



Decomposition of the problem

- Pattern recognition or vertex finding
- Assign tracks to vertex candidates
- Parameter estimation or vertex fit

- Determine vertex location + covariance matrix, update
track parameters

- Test of the vertex hypothesis

- |s the vertex candidate a real vertex?



Vertex finding

- Almost independent of the detector geometry

- Secondary vertex finding may depend on the physics
channel under investigation

- Essentially a clustering problem

- Many solutions available



A few vertex finding algorithms

- Hierarchical clustering >

- Single linkage, complete linkage, - /)\
- Machine learning /\ , /\

- k-means, competitive learning,
deterministic annealing, -

- Estimation based Averagelinkage ~

+ robust location estimation, iterated vertex fit C°mp'e‘e“”*‘age© - @




Vertex fitting

- Most estimators minimize a least-squares objective function
- Linear regression

- Kalman filter

- Robust estimation

- Adaptive filter

- Automatic suppression of outlying hits



Kinematical fitting

- Impose physical constraints

- Momentum conservation

- Energy conservation

- Test mass hypotheses

- See whether kinematics are compatible with the decay of a certain particle

- Reconstruct invisible particles



Storage

- Event reconstruction produces physics objects
- Tracks

- Vertices

- |dentified particles

- Jets

- Tags

- Need to be stored



Storage

- Preferred tool for event data: ROOT
- Physics objects depend on
- Alignment
- Calibration
- Version of the reconstruction program
- Algorithm parameters

- Must be stored as well (database)



Summary, event reconstruction

- Track reconstruction
- Charged: determine track parameters from hits
- Neutral: find showers in calorimeters

- Particle identification

- Vertex reconstruction

- Determine number of production points and their positions from the set of
reconstructed tracks

- Kinematic fitting

- Refine estimates by e.g. imposing physical constrain



Simulation

- Why do we need simulation?
- Optimization of detector in design phase

- Testing, validation and optimization of trigger and reconstruction
algorithms

- Computation of trigger and reconstruction efficiency
- Computation of geometrical acceptance corrections
- Background studies

- Systematic error studies



Simulation steps

- Physics generation
- Generate particles according to physics of the collision

- General-purpose and specialized generators

- Event simulation

- Track particles through the detector, using detector geometry and magnetic field
- Simulate interaction of particles with matter

- Generate signals in sensitive volumes

- Simulate digitization process (ADC or TDC)

- Simulate trigger response



Simulation steps

- Reconstruction
- Treat simulated events exactly as real events

- Keep (some) truth information: association of hits to
tracks, association of tracks to vertices, true track
parameters, true vertex parameters, -

- Store everything



Event simulation

- Was frequently (and still sometimes is) experiment-
specific

- Now there is a widely used standard:
- GEANT4
- Object oriented, C++

- Extremely general and versatile



Detector description

- Geometry
- Partition the detector into a hierarchy of volumes

- Describe their shape and their position relative to a mother
volume

- Use possible symmetries

- Material

- Chemical composition, density

- Physical properties: radiation length, interaction length



An example detector model




Physics analysis

- Event selection

- Multidimensional criteria

- Statistics, neural networks, generic algorithms, -+
- Signal extraction

- Study background

- Determine significance of signal

- Corrections

- Detector acceptance, reconstruction efficiency, -

- From simulated and from real data



Physics analysis

- Computation of physical quantities ---
- Cross section, branching ratios, masses, lifetimes, -
- and of their errors

- Statistical errors: uncertainty because of limited number of
observations

- Systematic errors: uncertainty because of limited knowledge
of key assumptions (beam energy, calibration, alignment,
magnetic field, theoretical values, background channels, ---)



Analysis tools

- Need versatile tools for

- Multidimensional selection, event display and interactive
reprocessing

- Histogramming, plotting, fitting of curves and models
- Point estimation, confidence intervals, limits
- Main tool currently used: ROOT

- Data analysis and storage, but also detector description,
simulation, data acquisition, -



And finally --

Transverse-momentum and pseudorapidity
distributions of charged hadrons in pp collisions at

v's = 0.9 and 2.36 TeV

CMS Collaboration

ABSTRACT: Measurements of inclusive charged-hadron transverse-momentum and pseudo-
rapidity distributions are presented for proton-proton colligions at /s = 0.9 and 2.36 TeV.
The data were collected with the CMS detector during the LHC commissioning in Decem-
ber 2009. For non-single-diffractive mteractions, the average charged-hadron transverse
momentum is measured to be 0.46 4+ 0.01 (stat.) + 0.01 (syst.) GeV/e at 0.9 TeV and
0.50 + 0.01 (stat.) + 0.01 (syst.) GeV/e at 2.36 TeV, for pseudorapidities between —2.4
and +2.4. At these energies, the measured pseudorapidity densities in the central region,
dNeh/dnli<0.5, are 3.48 +0.02 (stat.) + 0.13 (syst.) and 4.47 +0.04 (stat.) & 0.16 (syst.),
respectively. The results at 0.9 TeV are in agreement with previous measurements and con-
firm the expectation of near equal hadron production in pp and pp collisions. The results
at 2.36 TeV represent the highest-energy measurements at a particle collider to date.

KEYWORDS: Hadron-Hadron Scattering



Distributed analysis

- Physics analysis tasks place in many labs all over the
world

- Physicists need fast access to event data and
corresponding calibration, alignment and bookkeeping
data --- and to simulated data

- We need the grid!



The LHC Computing Grid

- Global collaboration of more than 1770 computing
centers in 36 countries

- Four-tiered model
- Data storage and analysis infrastructure
- O(10°) CPUs

- 0O(100) PByte disk storage (tiers O and 1)



Data management

- Dataset bookkeeping

- Which data exist?

- Dataset locations service

- Where are the data?

- Data placement and transfer system
- Tier-0 -> Tier-1-> Tier-2

- Data access and storage

- Long-term storage, direct access



Data flow in ATLAS
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Additional resources

- CAF (CERN Analysis Facility)
- O(100) worker nodes, O(1000) cores (CMS)
- Ready access to calibration and express streams
- Fast turnaround
- Operation critical tasks
- trigger and detector diagnostics
- alignment and calibration
- monitoring and performance analysis

- Physics data quality monitoring



Data flow in CMS-CAF
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Summary

- Physics computing involves:
- Event filtering with multi-level trigger
- Storage of raw data
- Calibration and alignment
- Storage of calibration and alignment data
- Event reconstruction

- Storage of reconstruction objects and metadata



Summary

- Physics computing involves:
- Simulation of many million events
- Storage of simulated raw data and truth information
- Reconstruction of simulated events
- Storage of reconstruction objects and truth information
- Distributed physics analysis and event viewing

- Storage of high-level physics objects
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