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Classical solutions may describe sufficiently the effective dynamics of
nonlinear quantum theories.

Solitons give rise to particle like structures in nonlinear field
theories, so they are relevant for the phenomenological description of
a wide class of physical systems ranging from elementary particles to
superconductors and Bose-Einstein condensates.

Final goal: The study of a SU(2) — Higgs — fermions model.

In order to achieve our goal we fist study a simpler model which is
the (1 + 1)-dimensional Abelian-Higgs-fermions.
The Abelian-Higgs model in (1 4 1) dimensions shares distinguished
ground as it may reveal important features of superconductivity such
as the Meissner effect.
e The appearance of the condensate spontaneously breaks the U(1)
symmetry, giving rise to a finite mass to the gauge field .
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Formulation and Equations of Motion
e The Lagrangian:

L= —%FWF“” +(Duo)* (D) — V(O ) + (il — me)d,

where F,,, is the U(1) field strength tensor and D, = 8, + ieA,, ,
V(®*P) = 120*d + A\(P*P)2.
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Formulation and Equations of Motion

The Lagrangian:
1 s . ~
£ =~ FuF" + (Do) (D 6) — V(&7 ®) + 0(iBD — me)i,

where F,,, is the U(1) field strength tensor and D, = 8, + ieA,, ,
V(®* ) = 2o d + /\(¢*d>)2.
In the case that A > 0 while 2 < 0, and in the standard gauge

selection (Unitary gauge), we expand ® around its vev ¥/v/2

— 2
¢ = \[(’U—I—H), where ©2 WA

We obtain the following equations of motion for ;4# , H and 1Z

(O + mi)A, —8,(8,A") +2620HA, + FPA, — efryih = 0
(O + m})H+3N0H? + \H? — @A, A (D + H) =0
(i — me))— eyt AW =0

2 252 m2 — N2
where my = e“0°, my, = 2\0°.

Model Discussion and conclusions
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Equations of Motion

° We chpose the field representation to be /2\0 = Al = /2\3 =0, and
Ay =A#0.
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e The non vanishing A, field is a function solely of (%,7) and as a
result the Lorentz condition 9, A” = 0 is fulfilled automatically.
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Equations of Motion
We choose the field representation to be Ao 741 = /2\3 =0, and
=A#0.
The non vanishing A, field is a function solely of (%,7) and as a
result the Lorentz condition 9, A” = 0 is fulfilled automatically.

Equations in a dimensionless form by rescaling the
fields:A = (ma/e)A, H = (ma/e)H, v = ( 3/2/e)w,v = (ma/e)v
and space-time coordinates as: X = x/ma, t = t/ma.

The equations of motion are reduced to
(O + 1DA+2AH+H*A+ 9% =0
(@ + PH+ %q2H3 + ng2 +HA2+ A =0
(id — ar) =AY =0

where we have introduced the parameters g = my/ma and
qrF = mF/mA.
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Multiscale expansion

e We employ the Multiple Scale Perturbation Theory (MSPT),
which uses a formal small parameter 0 < ¢ < 1.

e We expand the space-time coordinates to a set of independent
variables and their derivatives:
Xp = X, X] = €X, X2 :e2x,..., to = t, t1 = €t, t2:€2t,...,
Ox =0+ €0 +..., Or=0y+ely +....

e The fields are expanded accordingly as:

A = AW 4 2A@ 4
H = eHM 4+ H® 4 |
v = ep® 4@ 4

e The gauge and the scalar field amplitudes are of the same order.

e This scenario corresponds to a strong breaking of the underlying
gauge symmetry, far beyond the related critical point.

e The minimum of the potential occurs at the bottom of a deep well,
while the potential shape is almost symmetric.



Introduction

The Abelian-Higgs-fermions model
o]

SU(2)-Higgs Model Discuss

ion and conclusions
(e]e} 00000 [e]
O®@0000 (o]
000

(e}
[e]

Ordering...

e The equations of motion for the fields reduce to the following
system of equations up to O(e®)
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e The equations of motion for the fields reduce to the following
system of equations up to O(e®)

e In the first order O(e):
(DO + 1)A(1) = 0’ A(l) — feifo 4 f*ef,'to
(O + )HD =0, HO = jeiat 4 j*e—ian
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1d conclusions
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Ordering...

The equations of motion for the fields reduce to the following
system of equations up to O(e®)

In the first order O(e):

(DO + 1)A(1) = 0’ A(l) — feifo 4 f*ef,'to
(Do + @HD =0, HW = fgiats | +gidt
(Iao h qF)¢(1) =0, w(l) = aW1e_intU + bW2e_inf0

where f = f(X,', t,') A= /(X,', t,~),a = a(x,~, t,') and b= b(X,', t,') are
functions of the slow variables that have to be determined (the index
i=1,2,... refers to the slow scales), while w; = (1,0,0,0)" and
while w, = (0,1,0,0)7.
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e In the second order O(€?):
(Do + 1) AD) — —29, 9 AD) _ 24D AD) _ J1250)
2
(To + ¢?)H® = 29,0 HV) — (§g—H“V-%AUV>

(10 = qF)0® = =i, 1) + 72 AD )

« Solvability Conditions: 9,,0"* AV =0, 9,,0"1HY =0,
yoaw“) = 0 as these terms are Secular terms, i.e.in resonance with
the operators on the left side implying a linear growing of A®)
H(2),1/J(2) with time which makes the perturbation scheme invalid.
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e In the second order O(e?):

(Do + 1) AD) = —20,,8" AW — 2HD AR _ J1A21)
2

(To + ¢?)H® = 29,0 HV) — (%Hm2 +A(1)2>

(10 = qF)0® = =i, 1) + 72 AD )

« Solvability Conditions: 9,,0"* AV =0, 9,,0"1HY =0,
yoaw“) = 0 as these terms are Secular terms, i.e.in resonance with
the operators on the left side implying a linear growing of A®
H(2),1/J(2) with time which makes the perturbation scheme invalid.
e The condition is satisfied by choosing f = f(xi, t2) and | = I(xi, t2)
and a = a(x1, &), b = (x1, t2)
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e In the second order O(e?):

(Do + 1) AD) = —20,,8" AW — 2HD AR _ J1A21)
2

(To + ¢?)H® = 29,0 HV) — (%Hm2 +A(1)2>

(10 = qF)0® = =i, 1) + 72 AD )

o Solvability Conditions: 9,,,0"' A" =0, 9,,,0" H® =0,

VOaw(l) = 0 as these terms are Secular terms, i.e.in resonance with

the operators on the left side implying a linear growing of A®

H(2),1/J(2) with time which makes the perturbation scheme invalid.
e The condition is satisfied by choosing f = f(xi, t2) and | = I(xi, t2)

and a = a(x, t2) (><17 t2)

o Notice that 1/1 'y zp = 0 i.e. there is no fermionic current in this

order.
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Second order solutions...

o For the gauge field: A?) = L1e/®+ £ ei0- 4 c ¢,
where d =q+¢?/2,s=—q+q¢*/2and ©L =14¢q

e For the Higgs field:
2 - 2 .. 2 2 2
H(2) _ %e—2lqto + 4iq2 e—21t0 _ 3q |/|qj‘2‘f‘ + c.c.
e For the fermions:
¢(2) = i(Fl Wae iarto 4 F2W4e*"(1+C7F)f0 + F3W4e+i(17q‘:)t°+

+ Fawse~farto 4 F5W3e_i(1+qF)t° + F6W3e+i(1—CIF)fo)
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Second order solutions...

o For the gauge field: A?) = L1e/®+ £ ei0- 4 c ¢,
where d =q+¢?/2,s=—q+q¢*/2and ©L =14¢q
e For the Higgs field:

2 o 2 s 3¢2 |12 +2|F|?
H(z):%e 2lqto+4iq2€ 2ity _ Q||q+H + c.c.

e For the fermions:
w(2) = I(Fl W4eiint° =+ ’:2W467'.(1+(7F)t0 + F3W4e+"(1*‘7“)t°+
+ F4W3e—iCIFto + F5W3e—i(1+CIF)fo + F6W3e+f(1—CIF)fo)
where F1 = —0ya/2qr, Fo = f-a/1+2qr, F3=1*-a/2qr — 1
F4* 8X1b/2qf:7F5*_fb/]'—’_2qf:7F6:f*b/]'_2q:‘—_y
while w3 = (0,0,1,0)" and w3 = (0,0,0,1)7.

conclusions
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e In the third order O(e3):
For the gauge field:

(To + 1) A® = 29, 9" A® — (O, + 29,,0") AL

2 (H(2>A(1> + A(2>H<1)> HL240) _ (1; Va2 4 (2424 1)) .
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e In the third order O(e3):
For the gauge field:

(To + 1) A® = 29, 9" A® — (O, + 29,,0") AL

_Q(HQLMU_FAQU¢U) HL240) _ (¢1)2¢@<+¢@,y¢10.
For the Higgs field:

(B0 + ¢%) HB®) = —29,,,0" H®) — (O; + 28,,0") HY

2
—3¢?HWOHE) — %H(1)3 —2AM) A(2) _ A2 (1),
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e In the third order O(e3):
For the gauge field:

(To + 1) A® = 29, 9" A® — (O, + 29,,0") AL
9 (H(z> AW 4 A(2>H(1)) HL240) _ (1; D22 4 1;(2)7%(1)).
For the Higgs field:

(B0 + ¢%) HB®) = —29,,,0" H®) — (O; + 28,,0") HY

2
—3¢?HWOHE) — 9 W3 _ 9 aM) A@) _ A2 (1)
2
For the fermions:

(10 — qF )0 = =i, 00 — i, 0 + AP 1 A2,
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The system of CNLS equations
e Collecting all secular terms the solvability condition reduces to
system of CNLS equations for the functions f(x, t2), /(x1, t2),
a(xl, tz), b(Xl, t2)1

. 1 2
i0nf = —50%F + gulfPf + gual Pf + —o—(lal® + [b2)f,
2 4qr — 1
. 1
iq0,! = —5631/+g21|f|2/+g22|/|2/,
0 = —_——9? 12
10t,a 2(7F X1a+4q’2:_1| | a,
. 1 2 4qF 2
latzb = —Eaxlb‘F 4q% — 1|f| b.
where
B 2, 1 _ (8
g = 2 P—4) 812 = ?—4

821 = 812, g22:—3q2.



Introduction

The Abelian-Higgs-fermions model
o]

SU(2)-Higgs Model Discussion and conclusions
(ele} 00000 [e]

000000 (o]

@00

(e}

[e]

The modulation instability

e We explore the impact of modulation instability (MI) mechanism

to the solution space of our model by examining the stability of
plane wave solutions of the CNLS.
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e We explore the impact of modulation instability (MI) mechanism
to the solution space of our model by examining the stability of
plane wave solutions of the CNLS.

o MI reveals the localized structures that the system supports i.e.

instability of plane waves leads to unstable background for
tanh —shaped solutions.



The modulation instability

We explore the impact of modulation instability (MI) mechanism
to the solution space of our model by examining the stability of
plane wave solutions of the CNLS.

MI reveals the localized structures that the system supports i.e.
instability of plane waves leads to unstable background for
tanh —shaped solutions.

We consider the following ansatz:

+ 5)() —fQ{tQ,
b+ 61) e "%,
0 +5a) iQaf27
by + 6b) e M®,

f X1, tz)

(
I(
(
(

X1,

o

a
b

X:

._.
St

)

X7t2

fi

(fo
) (
) (
) (

where fy, Iy, ag, by are now the amplitudes of the plane waves.
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e The frequencies € 5 p satisfy the dispersion relations:

2
Qf = gll|f0|2+gl2|/0|2+72q,: (Jaol* + | bo|?)
4z — 1

| 2

qsY g1 + g2lh

4
Qa = Qb = 2qF |f-0|2
4qr — 1
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e The small amplitude perturbations are complex functions of the form
Of = ug + ive, 6l = uj + vy, 6a = u, + iv, and da = u, + iv,.
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e The frequencies € 5 p satisfy the dispersion relations:

2
Qf = g11|fo|2+g12|/0|2+#(|30|2+|bo|2)
4z — 1
9 = galh* + g2lbl
4
Q, = Qb:$|fo|2
4qr — 1

e The small amplitude perturbations are complex functions of the form
Of = ug + ive, 6l = uj + vy, 6a = u, + iv, and da = u, + iv,.
e The real functions u;, v; are considered to be of the general form:

up = ugjexpli(Kxi — Q)] + c.c.,
vi = wjexpli (Kx1 — Qb))+ c.c.,

where the amplitudes ug;, vg; are constants while K is the
wavenumber and € the frequency of the perturbation.
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Substituting to the CNLS leads to an homegenous algebraic system
of eight equations, the determinant of which has to be zero.

This compatibility condition leads to the following equation:
BO® 4+ CQP + DQ* + EQ* + GQ* + L =0,

where the coefficients B, C, D, G, L are products of gj;,qr, K and
the amplitudes of the plane waves.

Requiring real roots for the above equation we are led to the
following stability condition go» > 0, which cannot be satisfied for
any real value of the parameter g

So plane wave solutions are unstable which implies that
tanh —shaped solutions prove to be unstable.

Thus we argue that localized solutions in the form of kinks, are not
supported in the setting where A and H are of the same order,in
contrast to Oscillons.
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e The CNLS system admits analytical soliton solutions.

e Due to the fact that tanh —shaped solutions prove to be unstable,
we look for bright soliton solutions for all the fields using the
following ansatz:

f = fosech (x;) e~ Vr®

| = lysech (x;) et

a = apsech(x;) e~ "

b = bgsech(x1) e "%,
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e The CNLS system admits analytical soliton solutions.

e Due to the fact that tanh —shaped solutions prove to be unstable,
we look for bright soliton solutions for all the fields using the
following ansatz:

f = fosech (x;) e~ Vr®
| = lysech (x;) et
—iv,aty

a = agsech(xi) e
b = bysech (x1) e+,

e Inserting the above to CNLS system and we obtain:
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Oscillons

e The CNLS system admits analytical soliton solutions.

e Due to the fact that tanh —shaped solutions prove to be unstable,
we look for bright soliton solutions for all the fields using the
following ansatz:

f = fosech (x;) e~ Vr®
| = lysech (x;) et
a = apsech(x;) e~ "
b = bysech (x1) e+,

e Inserting the above to CNLS system and we obtain:

e For the frequencies:
ve=—-1/2,vy=—-1/2q,v, = —1/2qF, vy = —1/2qF.
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e The requirement for the squared amplitudes to be positive defines
regions for the parameters g and gr:

fy = (1—4q7)/4qF > 0 => gr > 1/2
@ + by = (14 f7g11 + g12/0°)(—1 + 2qF)(1 + 2gF) /2qF > 0

= (-1-1f7ga)/g2>0

e These inequalities along with the fact that the mass of condesate
coresponds to the mass of the Higgs field and it is given as
my = 2mg which leads to the relation g = 2qF¢ set the restriction:

0.76 <g<1
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Phenomelogy of superconductors

e In the case of Oscillons, a magnetic and an electric field originate
from the gauge field A which was chosen to be in the ¥ direction:

—

B(x,t) = 0A(x, 1)2, &(x,t) = —0:A(x, 1)y
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Phenomelogy of superconductors

e In the case of Oscillons, a magnetic and an electric field originate
from the gauge field A which was chosen to be in the ¥ direction:

—

B(x,t) = 0,A(x,1)2, E(x,t) = —0:A(x, t)§

e The above equations, describe the electric field in the y direction
which produces a magnetic field in the z direction, while both fields
are localized around the origin of the x axis resembling the
Meissner effect.



The Abelian-Higgs-fermions model

Phenomelogy of superconductors

e In the case of Oscillons, a magnetic and an electric field originate
from the gauge field A which was chosen to be in the ¥ direction:

—

B(x,t) = 0,A(x,1)2, E(x,t) = —0:A(x, t)§

e The above equations, describe the electric field in the y direction
which produces a magnetic field in the z direction, while both fields
are localized around the origin of the x axis resembling the
Meissner effect.

e Finally it is important to notice the fermionic sector is also localized
around the origin of the x axis implying that in the superconductor
the are no free fermions as they are condensed.
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SU(2)-Higgs Model

e The Lagrangian SU(2)-Higgs field dynamics is described by the
Lagrangian:
1

L=—2FLF" + (Due)!(D') - V(o'0),

where F2, is the SU(2) field strength tensor and

D, = 8, + igA? V(oTd) = 12T + \(oTd)?

"2

an-Higgs-fermions model SU(2)-Higgs Model Discussion and conclu



Introductior
2 0000

SU(2)-Higgs Model

e The Lagrangian SU(2)-Higgs field dynamics is described by the
Lagrangian:

1
L= =R F 4+ (Du0)/(D"6) — V(o1®),

where F2, is the SU(2) field strength tensor and

a
Du=0u+igh T, V(010) = 12070+ \(@To)2

e In the the case A > 0 while z? < 0, so in the standard gauge
selection (Unitary gauge), we expand &

1 T e

b= 0,—V—|—H ,V2:——

(0.7t +m) 3

where 92 = — 2 /)

iggs-fermions model SU(2)-Higgs Model Discussion and conclusion



SU(2)-Higgs Model
00000

e Emploing the MSPT the gauge fields are introduced as:

A=A =A=A=0() ; A} ALA =0(?)
AL AL AT A A3 AS = O(Y), v >3,

o Following the same procedure the equations of motions are reduced
to:

o + 1)A+2AH+H2A+§A3:O
1
(\:\ 4 q2)H+§q2H3+gq2H2+HA2+A2:O

where g = my/ma.
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e 15t case: Strong Higgs scenario.
H = O(e) , H(1)#0
e We end up to a system of two CNLS equations:
0,f = 308+ gulfPf + guliPF,
90l = —30R1+ gl + gl

where gjj = gij(q) are the following functions of q:

2 1 2 2

gu = 44— S5 ———, go=-2+ +
? q?—4 q9(g—2) q(g+2)

&1 = 82, g» = —3q°.
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e Due to modulation instability only bright-bright soliton solutions for
the gauge and the Higgs field may be stable.

e For 053 <g<163and 1.88<qg<?2

—ivitr

fbb = alsech (5bbxl) e s

Ipp = a>sech (5bbxl) eiiwb7
e These solutions will be set as initial conditions to the initial system
of equations of motion in order to investigate their stability and
longevity.
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e 2" case: Weak Higgs scenario.

H=0(?) . H(1)=0

Discussion and conclusions
[e]

e We derive the following NLS equation for gauge field:

1
iOn,f + Eailf + s|f|*f =0

_ 2 1
where s = —4 + 7 + e
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The soliton solutions

e 15t case: s >0ie 0<g<0.680r2<qg<2.07.
Oscillons: '
f = fysech ( |S|UOX1) e”“”Z, (31)

where f is a free parameter characterizing the amplitude of the
soliton, while the soliton frequency is w = —1/2f?s.
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The soliton solutions

e 15t case: s >0ie 0<g<0.680r2<qg<2.07.

Oscillons: .
f = fosech( |S|UOX1) eilwh, (31)

where f is a free parameter characterizing the amplitude of the
soliton, while the soliton frequency is w = —1/2f?s.

e The approximate solutions for A and H can be expressed in terms of
the original variables x and t as follows:

A

Q

2efysech (ef |5|x)cos[(1—%(efo)25) t], (3.2)

(efy)?sech? (efo |s|x)

{;_22 - ﬁ2cos {2 <1 - %(Gfo)zs> t} } )

We note that oscillons acquire vanishing values at |x| — oo.

H

Q

X
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e 2" case: s < 0ie 0.68<qg<2andq>2.
Oscillating kinks:

f = fotanh (v/[slfoxa) e,

while the soliton frequency now is w = f3|s|.
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oe

e 2" case: s < 0ie 0.68<qg<2andq>2.
Oscillating kinks:

f = fotanh (v/[slfoxa) e,

while the soliton frequency now is w = f3|s|.
e The approximate solutions for A and H in this case are :

A ~ 2¢fytanh (meﬁ)x) cos [(1+ (eh)s]) t],  (3.3)
H ~ (eh)?Btanh? (\/Hefox)
2 1 -
X {?—mcosp(l—i—e f0|s|)t}}. (3.4)

We note that kink solutions acquire non vanishing values at
|x| = o0.
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o

Discussion and conclusions

e Gauge theories,both Abelian and Non-Abelian with
spontaneous broken symmetry have a common type of
solutions, which are the solitonic NLS solutions.
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