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Introduction

• Classical solutions may describe sufficiently the effective dynamics of
nonlinear quantum theories.

• Solitons give rise to particle like structures in nonlinear field
theories, so they are relevant for the phenomenological description of
a wide class of physical systems ranging from elementary particles to
superconductors and Bose-Einstein condensates.

• Final goal: The study of a SU(2)− Higgs − fermions model.

• In order to achieve our goal we fist study a simpler model which is
the (1 + 1)-dimensional Abelian-Higgs-fermions.

• The Abelian-Higgs model in (1 + 1) dimensions shares distinguished
ground as it may reveal important features of superconductivity such
as the Meissner effect.

• The appearance of the condensate spontaneously breaks the U(1)
symmetry, giving rise to a finite mass to the gauge field .
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Formulation and Equations of Motion

• The Lagrangian:

L = −1

4
FµνF

µν + (Dµφ)
∗(Dµφ)− V (Φ∗Φ) + ¯̃ψ(i /D −mF )ψ̃,

where Fµν is the U(1) field strength tensor and Dµ = ∂̃µ + ieÃµ ,
V (Φ∗Φ) = µ2Φ∗Φ+ λ(Φ∗Φ)2.

• In the case that λ > 0 while µ2 < 0, and in the standard gauge
selection (Unitary gauge), we expand Φ around its vev υ̃/

√
2

Φ = 1√
2
(υ̃ + H̃), where υ̃2 = −µ2/λ

• We obtain the following equations of motion for Ãµ , H̃ and ψ̃

(2̃ + m2
A)Ãµ − ∂̃µ(∂̃ν Ã

ν) + 2e2υ̃H̃Ãµ + e2H̃2Ãµ − e
¯̃ψγνψ̃ = 0

(2̃ + m2
H)H̃ + 3λυ̃H̃2 + λH̃3 − e2ÃµÃ

µ(υ̃ + H̃) = 0

(i /̃∂ − mF )ψ̃ − eγµÃµΨ̃ = 0

where m2
A = e2υ̃2, m2

H = 2λυ̃2.
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Equations of Motion

• We choose the field representation to be Ã0 = Ã1 = Ã3 = 0, and
Ã2 = Ã 6= 0.

• The non vanishing Ã2 field is a function solely of (x̃ , t̃) and as a
result the Lorentz condition ∂ν Ã

ν = 0 is fulfilled automatically.

• Equations in a dimensionless form by rescaling the

fields:Ã = (mA/e)A, H̃ = (mA/e)H , ψ̃ = (m
3/2
A /e)ψ, υ̃ = (mA/e)υ

and space-time coordinates as: x̃ = x/mA, t̃ = t/mA.

• The equations of motion are reduced to

(2 + 1)A+ 2AH + H2A+ ψ̄γ2ψ = 0

(2 + q2)H +
1

2
q2H3 +

3

2
q2H2 + HA2 + A2 = 0

(i /∂ − qF )ψ − γ2Aψ = 0

where we have introduced the parameters q = mH/mA and
qF = mF/mA.
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• The non vanishing Ã2 field is a function solely of (x̃ , t̃) and as a
result the Lorentz condition ∂ν Ã
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fields:Ã = (mA/e)A, H̃ = (mA/e)H , ψ̃ = (m
3/2
A /e)ψ, υ̃ = (mA/e)υ

and space-time coordinates as: x̃ = x/mA, t̃ = t/mA.

• The equations of motion are reduced to

(2 + 1)A+ 2AH + H2A+ ψ̄γ2ψ = 0

(2 + q2)H +
1

2
q2H3 +

3

2
q2H2 + HA2 + A2 = 0

(i /∂ − qF )ψ − γ2Aψ = 0

where we have introduced the parameters q = mH/mA and
qF = mF/mA.



Introduction The Abelian-Higgs-fermions model SU(2)-Higgs Model Discussion and conclusions

Equations of Motion

• We choose the field representation to be Ã0 = Ã1 = Ã3 = 0, and
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Multiscale expansion

• We employ the Multiple Scale Perturbation Theory (MSPT),
which uses a formal small parameter 0 < ε� 1.

• We expand the space-time coordinates to a set of independent
variables and their derivatives:
x0 = x , x1 = εx , x2 = ε2x , . . ., t0 = t, t1 = εt, t2 = ε2t, . . .,
∂x = ∂x0 + ε∂x1 + . . ., ∂t = ∂t0 + ε∂t1 + . . ..

• The fields are expanded accordingly as:

A = εA(1) + ε2A(2) + . . . ,

H = εH (1) + ε2H (2) + . . . ,

ψ = εψ(1) + ε2ψ(2) + . . . ,

• The gauge and the scalar field amplitudes are of the same order.
• This scenario corresponds to a strong breaking of the underlying

gauge symmetry, far beyond the related critical point.
• The minimum of the potential occurs at the bottom of a deep well,

while the potential shape is almost symmetric.
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Ordering...

• The equations of motion for the fields reduce to the following
system of equations up to O(ε3)

• In the first order O(ε):

(20 + 1)A(1) = 0, A(1) = fe it0 + f ∗e−it0

(20 + q2)H (1) = 0, H (1) = le iqt0 + l∗e−iqt0

(i /∂0 − qF )ψ
(1) = 0, ψ(1) = aw1e

−iqF t0 + bw2e
−iqF t0

where f = f (xi , ti ) ,l = l(xi , ti ),a = a(xi , ti ) and b = b(xi , ti) are
functions of the slow variables that have to be determined (the index
i = 1, 2, . . . refers to the slow scales), while w1 = (1, 0, 0, 0)T and
while w2 = (0, 1, 0, 0)T .
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• In the second order O(ε2):

(20 + 1)A(2) = −2∂µ0∂
µ1A(1) − 2H (1)A(1) − ψ̄(1)γ2ψ(1)

(20 + q2)H (2) = −2∂µ0∂
µ1H (1) −

(
3q2

2
H (1)2 + A(1)2

)

(i /∂µ0
− qF )ψ

(2) = −i /∂µ1
ψ(1) + γ2A(1)ψ(1)

• Solvability Conditions: ∂µ0∂
µ1A

(1) = 0, ∂µ0∂
µ1H

(1) = 0,
γ0∂t1ψ

(1) = 0 as these terms are Secular terms, i.e.in resonance with
the operators on the left side implying a linear growing of A(2),
H

(2),ψ(2) with time which makes the perturbation scheme invalid.
• The condition is satisfied by choosing f = f (x1, t2) and l = l(x1, t2)

and a = a(x1, t2), b = (x1, t2)
• Notice that ψ̄(1)γ2ψ(1) = 0 i.e. there is no fermionic current in this

order.
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Second order solutions...

• For the gauge field: A(2) = f ·l
d
e iΘ+ + f ·l∗

s
e iΘ− + c .c .

where d = q + q2/2, s = −q + q2/2 and Θ± ≡ 1± q

• For the Higgs field:

H (2) = l2

2 e
−2iqt0 + f 2

4−q2 e
−2it0 − 3q2|l|2+2|f |2

q2 + c .c .

• For the fermions:
ψ(2) = i

(
F1w4e

−iqF t0 + F2w4e
−i(1+qF )t0 + F3w4e

+i(1−qF )t0+

+ F4w3e
−iqF t0 + F5w3e

−i(1+qF )t0 + F6w3e
+i(1−qF )t0

)

where F1 = −∂x1a/2qF ,F2 = f · a/1 + 2qF ,F3 = f ∗ · a/2qF − 1
F4 = −∂x1b/2qF ,F5 = −f · b/1 + 2qF ,F6 = f ∗ · b/1− 2qF ,
while w3 = (0, 0, 1, 0)T and w3 = (0, 0, 0, 1)T .
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while w3 = (0, 0, 1, 0)T and w3 = (0, 0, 0, 1)T .
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d
e iΘ+ + f ·l∗

s
e iΘ− + c .c .

where d = q + q2/2, s = −q + q2/2 and Θ± ≡ 1± q

• For the Higgs field:

H (2) = l2

2 e
−2iqt0 + f 2

4−q2 e
−2it0 − 3q2|l|2+2|f |2

q2 + c .c .

• For the fermions:
ψ(2) = i

(
F1w4e

−iqF t0 + F2w4e
−i(1+qF )t0 + F3w4e

+i(1−qF )t0+

+ F4w3e
−iqF t0 + F5w3e

−i(1+qF )t0 + F6w3e
+i(1−qF )t0

)

where F1 = −∂x1a/2qF ,F2 = f · a/1 + 2qF ,F3 = f ∗ · a/2qF − 1
F4 = −∂x1b/2qF ,F5 = −f · b/1 + 2qF ,F6 = f ∗ · b/1− 2qF ,
while w3 = (0, 0, 1, 0)T and w3 = (0, 0, 0, 1)T .



Introduction The Abelian-Higgs-fermions model SU(2)-Higgs Model Discussion and conclusions

Second order solutions...

• For the gauge field: A(2) = f ·l
d
e iΘ+ + f ·l∗

s
e iΘ− + c .c .

where d = q + q2/2, s = −q + q2/2 and Θ± ≡ 1± q

• For the Higgs field:

H (2) = l2

2 e
−2iqt0 + f 2

4−q2 e
−2it0 − 3q2|l|2+2|f |2

q2 + c .c .

• For the fermions:
ψ(2) = i

(
F1w4e

−iqF t0 + F2w4e
−i(1+qF )t0 + F3w4e

+i(1−qF )t0+

+ F4w3e
−iqF t0 + F5w3e

−i(1+qF )t0 + F6w3e
+i(1−qF )t0

)

where F1 = −∂x1a/2qF ,F2 = f · a/1 + 2qF ,F3 = f ∗ · a/2qF − 1
F4 = −∂x1b/2qF ,F5 = −f · b/1 + 2qF ,F6 = f ∗ · b/1− 2qF ,
while w3 = (0, 0, 1, 0)T and w3 = (0, 0, 0, 1)T .



Introduction The Abelian-Higgs-fermions model SU(2)-Higgs Model Discussion and conclusions

• In the third order O(ε3):
For the gauge field:

(20 + 1)A(3) = −2∂µ0∂
µ1A(2) − (21 + 2∂µ0∂

µ2)A(1)

−2
(
H (2)A(1) + A(2)H (1)

)
− H (1)2A(1) −

(
ψ̄(1)γ2ψ(2) + ψ̄(2)γ2ψ(1)

)
.

For the Higgs field:

(
20 + q2

)
H (3) = −2∂µ0∂

µ1H (2) − (21 + 2∂µ0∂
µ2)H (1)

−3q2H (1)H (2) − q2

2
H (1)3 − 2A(1)A(2) − A(1)2H (1).

For the fermions:

(i /∂µ0
− qF )ψ

(3) = −i /∂µ2
ψ(1) − i /∂µ1

ψ(2) + A(1)γ2ψ(2) + A(2)γ2ψ(1).
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The system of CNLS equations

• Collecting all secular terms the solvability condition reduces to
system of CNLS equations for the functions f (x1, t2), l(x1, t2),
a(x1, t2), b(x1, t2):

i∂t2 f = −1

2
∂2x1 f + g11|f |2f + g12|l |2f +

2qF
4q2F − 1

(|a|2 + |b|2)f ,

iq∂t2 l = −1

2
∂2x1 l + g21|f |2l + g22|l |2l ,

i∂t2a = − 1

2qF
∂2x1a+

4qF
4q2F − 1

|f |2a,

i∂t2b = − 1

2qF
∂2x1b +

4qF
4q2F − 1

|f |2b.

where

g11 = −
(

2

q2
+

1

q2 − 4

)
, g12 = −

(
2− 4

q2 − 4

)

g21 = g12, g22 = −3q2.
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The modulation instability

• We explore the impact of modulation instability (MI) mechanism
to the solution space of our model by examining the stability of
plane wave solutions of the CNLS.

• MI reveals the localized structures that the system supports i.e.
instability of plane waves leads to unstable background for
tanh−shaped solutions.

• We consider the following ansatz:

f (x1, t2) = (f0 + δf ) e−iΩf t2 ,

l(x1, t2) = (l0 + δl) e−iΩlt2 ,

a(x1, t2) = (a0 + δa) e−iΩat2 ,

b(x1, t2) = (b0 + δb) e−iΩbt2 ,

where f0, l0, a0, b0 are now the amplitudes of the plane waves.
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• The frequencies Ωf ,l,a,b satisfy the dispersion relations:

Ωf = g11|f0|2 + g12|l0|2 +
2qF

4q2F − 1
(|a0|2 + |b0|2)

qΩl = g21|f0|2 + g22|l0|2

Ωa = Ωb =
4qF

4q2F − 1
|f0|2

• The small amplitude perturbations are complex functions of the form
δf = uf + ivf , δl = ul + ivl , δa = ua + iva and δa = ua + iva.

• The real functions uj , vj are considered to be of the general form:

uj = u0j exp[i (Kx1 − Ωt2)] + c .c .,

vj = v0j exp[i (Kx1 − Ωt2)] + c .c .,

where the amplitudes u0j , v0j are constants while K is the
wavenumber and Ω the frequency of the perturbation.
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• Substituting to the CNLS leads to an homegenous algebraic system
of eight equations, the determinant of which has to be zero.

• This compatibility condition leads to the following equation:

BΩ8 + CΩ6 + DΩ4 + EΩ4 + GΩ4 + L = 0,

where the coefficients B,C ,D,G , L are products of gij ,qF , K and
the amplitudes of the plane waves.

• Requiring real roots for the above equation we are led to the
following stability condition g22 > 0, which cannot be satisfied for
any real value of the parameter q

• So plane wave solutions are unstable which implies that
tanh−shaped solutions prove to be unstable.

• Thus we argue that localized solutions in the form of kinks, are not
supported in the setting where A and H are of the same order,in
contrast to Oscillons.
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Oscillons

• The CNLS system admits analytical soliton solutions.

• Due to the fact that tanh−shaped solutions prove to be unstable,
we look for bright soliton solutions for all the fields using the
following ansatz:

f = f0sech (x1) e
−iνf t2

l = l0sech (x1) e
−iνl t2

a = a0sech (x1) e
−iνat2

b = b0sech (x1) e
−iνbt2 .

• Inserting the above to CNLS system and we obtain:

• For the frequencies:
νf = −1/2, νl = −1/2q, νa = −1/2qF , νb = −1/2qF .



Introduction The Abelian-Higgs-fermions model SU(2)-Higgs Model Discussion and conclusions

Oscillons

• The CNLS system admits analytical soliton solutions.

• Due to the fact that tanh−shaped solutions prove to be unstable,
we look for bright soliton solutions for all the fields using the
following ansatz:

f = f0sech (x1) e
−iνf t2

l = l0sech (x1) e
−iνl t2

a = a0sech (x1) e
−iνat2

b = b0sech (x1) e
−iνbt2 .

• Inserting the above to CNLS system and we obtain:

• For the frequencies:
νf = −1/2, νl = −1/2q, νa = −1/2qF , νb = −1/2qF .



Introduction The Abelian-Higgs-fermions model SU(2)-Higgs Model Discussion and conclusions

Oscillons

• The CNLS system admits analytical soliton solutions.

• Due to the fact that tanh−shaped solutions prove to be unstable,
we look for bright soliton solutions for all the fields using the
following ansatz:

f = f0sech (x1) e
−iνf t2

l = l0sech (x1) e
−iνl t2

a = a0sech (x1) e
−iνat2

b = b0sech (x1) e
−iνbt2 .

• Inserting the above to CNLS system and we obtain:

• For the frequencies:
νf = −1/2, νl = −1/2q, νa = −1/2qF , νb = −1/2qF .



Introduction The Abelian-Higgs-fermions model SU(2)-Higgs Model Discussion and conclusions

Oscillons

• The CNLS system admits analytical soliton solutions.

• Due to the fact that tanh−shaped solutions prove to be unstable,
we look for bright soliton solutions for all the fields using the
following ansatz:

f = f0sech (x1) e
−iνf t2

l = l0sech (x1) e
−iνl t2

a = a0sech (x1) e
−iνat2

b = b0sech (x1) e
−iνbt2 .

• Inserting the above to CNLS system and we obtain:

• For the frequencies:
νf = −1/2, νl = −1/2q, νa = −1/2qF , νb = −1/2qF .



Introduction The Abelian-Higgs-fermions model SU(2)-Higgs Model Discussion and conclusions

• The requirement for the squared amplitudes to be positive defines
regions for the parameters q and qF :

f 20 = (1− 4q2F )/4q
2
F > 0 => qF > 1/2

a20 + b20 = (1 + f 20 g11 + g12lo
2)(−1 + 2qF )(1 + 2qF )/2qF > 0

l20 = (−1− f 20 g21)/g22 > 0

• These inequalities along with the fact that the mass of condesate
coresponds to the mass of the Higgs field and it is given as
mH = 2mF which leads to the relation q = 2qF set the restriction:

0.76 < q < 1
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Phenomelogy of superconductors

• In the case of Oscillons, a magnetic and an electric field originate
from the gauge field A which was chosen to be in the ŷ direction:

~B(x , t) = ∂xA(x , t)ẑ , ~E(x , t) = −∂tA(x , t)ŷ

.

• The above equations, describe the electric field in the y direction
which produces a magnetic field in the z direction, while both fields
are localized around the origin of the x axis resembling the
Meissner effect.

• Finally it is important to notice the fermionic sector is also localized
around the origin of the x axis implying that in the superconductor
the are no free fermions as they are condensed.
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SU(2)-Higgs Model

• The Lagrangian SU(2)-Higgs field dynamics is described by the
Lagrangian:

L = −1

4
F a
µνF

a,µν + (Dµφ)
†(Dµφ)− V (Φ†Φ),

where F a
µν is the SU(2) field strength tensor and

Dµ = ∂µ + igAa
µ

σa

2
, V (Φ†Φ) = µ2Φ†Φ+ λ(Φ†Φ)2

• In the the case λ > 0 while µ2 < 0, so in the standard gauge
selection (Unitary gauge), we expand Φ

Φ =

(
0,

1√
2
(v + H)

)T

, v2 = −µ
2

λ

where υ̃2 = −µ2/λ
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• Emploing the MSPT the gauge fields are introduced as:

A1
1 = A2

2 = A3
3 = A = O(ε) ; A1

0,A
2
0,A

3
0 = O(ε2)

A1
2,A

1
3,A

2
1,A

2
3,A

3
1,A

3
2 = O(εν), ν ≥ 3,

• Following the same procedure the equations of motions are reduced
to:

(2 + 1)A+ 2AH + H2A+
8

3
A3 = 0

(2 + q2)H +
1

2
q2H3 +

3

2
q2H2 + HA2 + A2 = 0

where q = mH/mA.
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• 1st case: Strong Higgs scenario.

H = O(ε) , H(1) 6= 0

• We end up to a system of two CNLS equations:

i∂t2 f = −1

2
∂2x1 f + g11|f |2f + g12|l |2f ,

iq∂t2 l = −1

2
∂2x1 l + g21|f |2l + g22|l |2l ,

where gij ≡ gij(q) are the following functions of q:

g11 = 4− 2

q2
− 1

q2 − 4
, g12 = −2 +

2

q(q − 2)
+

2

q(q + 2)

g21 = g12, g22 = −3q2.
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• Due to modulation instability only bright-bright soliton solutions for
the gauge and the Higgs field may be stable.

• For 0.53 < q < 1.63 and 1.88 < q < 2

fbb = a1sech (βbbx1) e
−iν1t2 ,

lbb = a2sech (βbbx1) e
−iν2t2 ,

• These solutions will be set as initial conditions to the initial system
of equations of motion in order to investigate their stability and
longevity.
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• 2nd case: Weak Higgs scenario.

H = O(ε2) , H(1) = 0

• We derive the following NLS equation for gauge field:

i∂t2 f +
1

2
∂2x1 f + s|f |2f = 0

where s = −4 + 2
q2 +

1
q2−4
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The soliton solutions

• 1st case: s > 0 i.e. 0 < q < 0.68 or 2 < q < 2.07.
Oscillons:

f = f0sech
(√

|s|u0x1
)
e−iωt2 , (3.1)

where f0 is a free parameter characterizing the amplitude of the
soliton, while the soliton frequency is ω = −1/2f 20 s.

• The approximate solutions for A and H can be expressed in terms of
the original variables x and t as follows:

A ≈ 2εf0sech
(
εf0

√
|s|x

)
cos

[(
1− 1

2
(εf0)

2s

)
t

]
, (3.2)

H ≈ (εf0)
2sech2

(
εf0

√
|s|x

)

×
{−2

q2
− 1

q2 − 4
2 cos

[
2

(
1− 1

2
(εf0)

2s

)
t

]}
,

We note that oscillons acquire vanishing values at |x | → ∞.
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• 2nd case: s < 0 i.e. 0.68 < q < 2 and q > 2.
Oscillating kinks:

f = f0 tanh
(√

|s|f0x1
)
e−iωt2 ,

while the soliton frequency now is ω = f 20 |s|.
• The approximate solutions for A and H in this case are :

A ≈ 2εf0 tanh
(√

|s|εf0x
)
cos

[(
1 + (εf0)

2|s|
)
t
]
, (3.3)

H ≈ (εf0)
2B tanh2

(√
|s|εf0x

)

×
{−2

q2
− 1

q2 − 4
cos

[
2
(
1 + ε2f 20 |s|

)
t
]}

. (3.4)

We note that kink solutions acquire non vanishing values at
|x | → ∞.
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Discussion and conclusions

• Gauge theories,both Abelian and Non-Abelian with
spontaneous broken symmetry have a common type of
solutions, which are the solitonic NLS solutions.
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