

Extensions of Nonlinear Massive Gravity

Emmanuel N. Saridakis

Physics Department, National and Technical University of Athens, Greece Physics Department, Baylor University, Texas, USA

- We investigate various versions of nonlinear massive gravity and their cosmological implications
- Note:
- A consistent or interesting cosmology is not a proof for the consistency of the underlying gravitational theory
- A consistent gravity does not guarantee a consistent or interesting cosmology.

Talk Plan

- 1) Introduction: motivation
- 2) Simplest linear version has the vDVZ discontinuity
- 3) Non-linearities cure it but bring the Boulware-Deser ghost
- 4) New nonlinear massive gravity: free of BD ghosts and vDVZ discontinuity
- 5) FRW cosmology is impossible (instabilities). Need anisotropic geometry.
- 6) Extensions: Varying mass MG, quasi-dilaton MG etc.
- 7) F(R) nonlinear massive gravity. Free of BD ghost, vDVZ discontinuity. Good and rich cosmology free of instabilities.
- 8) Conclusions-Prospects

Why Modified Gravity?

Introduction

- Massive Gravity, i.e adding mass to a spin-2 particle, goes back to 1939
- Motivation: i) Theoretical (we know the answer for scalars and vectors)
 ii) Cosmological (explain acceleration)
- Indeed it is the most reasonable modified gravity (not the simplest one, since you add 3 dof's)
- It is promising, but...

[Hinterbichler, Rev.Mod.Phys.84]

Introduction

- 1939: Fierz and Pauli add a linear mass-term to GR $\propto m^2(h_{\mu\nu}-h^2)$
- 1970: van Dam, Veltman, Zakharov: When the linear theory couples to a source, the limit $m \rightarrow 0$ does not give GR (vDVZ discontinuity)
- 1972: Vainstein: The non-linearities become stronger and stronger as m decreases. They must be taken into account and they do cure vDVZ discontinuity
- 1972: Boulware, Deser: Nonlinearities bring a ghost!

Introduction

- 1939: Fierz and Pauli add a linear mass-term to GR $\propto m^2(h_{\mu\nu}-h^2)$
- 1970: van Dam, Veltman, Zakharov: When the linear theory couples to a source, the limit $m \rightarrow 0$ does not give GR (vDVZ discontinuity)
- 1972: Vainstein: The non-linearities become stronger and stronger as m decreases. They must be taken into account and they do cure vDVZ discontinuity
- 1972: Boulware, Deser: Nonlinearities bring a ghost!
- 2010: de Rham, Gabadadze, Tolley: Adding higher-order graviton self-interaction systematically removes the BD ghost
- 2011 and on: The cosmology has severe problems.

■ Linear massive gravity around flat background $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, |h| << 1

$$S = \int d^4x \left[-\frac{1}{2} \partial_{\lambda} h_{\mu\nu} \partial^{\lambda} h^{\mu\nu} + \partial_{\mu} h_{\nu\lambda} \partial^{\nu} h^{\mu\lambda} - \partial_{\mu} h^{\mu\nu} \partial_{\nu} h + \frac{1}{2} \partial_{\lambda} h \partial^{\lambda} h \right]$$

Linearized Einstein-Hilbert action

(all possible2-powers of h and up to 2-derivatives):

massless spin-2 graviton

■ Linear massive gravity around flat background $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, |h| << 1

$$S = \underbrace{\int d^4x \left[-\frac{1}{2} \partial_{\lambda} h_{\mu\nu} \partial^{\lambda} h^{\mu\nu} + \partial_{\mu} h_{\nu\lambda} \partial^{\nu} h^{\mu\lambda} - \partial_{\mu} h^{\mu\nu} \partial_{\nu} h + \frac{1}{2} \partial_{\lambda} h \partial^{\lambda} h \right]}_{-\frac{1}{2} m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2 \right) \left[-\frac{1}{2} m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2 \right) \right]}_{-\frac{1}{2} m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2 \right) \left[-\frac{1}{2} m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2 \right) \right]$$

Linearized Einstein-Hilbert action

(all possible2-powers of h and up to 2-derivatives):

massless spin-2 graviton

a=-b (Fierz-Pauli tuning)
NOT enforced by symmetry

$$m_{ghost} = \frac{m^2}{a+b}$$

[Fierz, Pauli, PRLS 1939]

■ Linear massive gravity around flat background $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, |h| << 1

$$S = \underbrace{\int d^4x \left[-\frac{1}{2} \partial_{\lambda} h_{\mu\nu} \partial^{\lambda} h^{\mu\nu} + \partial_{\mu} h_{\nu\lambda} \partial^{\nu} h^{\mu\lambda} - \partial_{\mu} h^{\mu\nu} \partial_{\nu} h + \frac{1}{2} \partial_{\lambda} h \partial^{\lambda} h \right]}_{-\frac{1}{2} m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2 \right) \left[-\frac{1}{2} m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2 \right) \right]}_{-\frac{1}{2} m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2 \right) \left[-\frac{1}{2} m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2 \right) \right]$$

Linearized Einstein-Hilbert action (all possible2-powers of h and up to 2-derivatives):

massless spin-2 graviton

a=-b (Fierz-Pauli tuning)
NOT enforced by symmetry

$$m_{ghost} = \frac{m^2}{a+b}$$

[Fierz, Pauli, PRLS 1939]

- The m=0 part has gauge symmetry $\delta h_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$ This symmetry fixes the coefficients.
- The mass term violates it!

• Put source $T^{\mu\nu}$ with coupling $\kappa h_{\mu\nu} T^{\mu\nu}$. Eoms':

$$\Diamond h_{\mu\nu} - \partial_{\lambda}\partial_{\mu}h_{\nu}^{\lambda} - \partial_{\lambda}\partial_{\nu}h_{\mu}^{\lambda} + \eta_{\mu\nu}\partial_{\lambda}\partial_{\sigma}h^{\lambda\sigma} + \partial_{\mu}\partial_{\nu}h - \eta_{\mu\nu}\Diamond h \left[-m^{2}\left(h_{\mu\nu} - \eta_{\mu\nu}h^{2}\right) \right] = -\kappa T_{\mu\nu}$$

Note: For $m = 0 \Rightarrow \partial^{\mu} T_{\mu\nu} = 0$ (conservation)

For $m \neq 0$ no such condition (but we assume it, otherwise obvious discontinuity)

• Put source $T^{\mu\nu}$ with coupling $\kappa \, h_{\mu\nu} T^{\mu\nu}$. Eoms':

$$\Diamond h_{\mu\nu} - \partial_{\lambda}\partial_{\mu}h_{\nu}^{\lambda} - \partial_{\lambda}\partial_{\nu}h_{\mu}^{\lambda} + \eta_{\mu\nu}\partial_{\lambda}\partial_{\sigma}h^{\lambda\sigma} + \partial_{\mu}\partial_{\nu}h - \eta_{\mu\nu}\Diamond h \left[-m^{2}\left(h_{\mu\nu} - \eta_{\mu\nu}h^{2}\right) \right] = -\kappa T_{\mu\nu}$$

- Note: For $m = 0 \Rightarrow \partial^{\mu} T_{\mu\nu} = 0$ (conservation)
 - For $m \neq 0$ no such condition (but we assume it, otherwise obvious discontinuity)
- Point source $T^{\mu\nu}(\vec{x}) = M\delta_0^{\mu}\delta_0^{\nu}\delta^3(\vec{x})$. Solution:

$$h_{00}(\vec{x}) = \frac{2M}{3M_{p}} \frac{1}{4\pi} \frac{e^{-mr}}{r}$$

$$h_{0i}(\vec{x}) = 0$$

$$h_{ij}(\vec{x}) = \frac{M}{3M_{p}} \frac{1}{4\pi} \frac{e^{-mr}}{r} \left[\frac{1 + mr + m^{2}r^{2}}{m^{2}r^{2}} \delta_{ij} - \frac{1}{m^{2}r^{4}} (3 + 3mr + m^{2}r^{2}) x_{i} x_{j} \right]$$

GR result:

$$h_{00}(\vec{x}) = \frac{M}{2M_p} \frac{1}{4\pi r}$$

$$h_{0i}(\vec{x}) = 0$$

$$h_{ij}(\vec{x}) = \frac{M}{2M_p} \frac{1}{4\pi r} \delta_{ij}$$

Thus, for massless
$$\varphi = -\frac{GM}{r}$$
, $\gamma = 1$ (PPN)

For massive:

$$\varphi = -\frac{4}{3} \frac{GM}{r}, \quad \gamma = \frac{1}{2}$$

- If rescale $G \rightarrow \frac{3}{4}G$ then bending of light 25% larger than GR
- GR is NOT recovered in the massless limit (vDVZ discontinuity)

Thus, for massless
$$\varphi = -\frac{GM}{r}$$
, $\gamma = 1$ (PPN)

For massive:

$$\varphi = -\frac{4}{3} \frac{GM}{r}, \quad \gamma = \frac{1}{2}$$

- If rescale $G \rightarrow \frac{3}{4}G$ then bending of light 25% larger than GR
- GR is NOT recovered in the massless limit (vDVZ discontinuity)

Massless gravity: 2 spin states

2 helicity states of a massless graviton

Massive gravity: 5 spin states

2 helicity states of a massless graviton

2 helicity states of a massless vector

1 single massive scalar

no 6th dof since the time components h_{00} appear as Lagr. multiplier

- The scalar (longitudinal graviton) maintains a coupling to T even in the massless limit
- I.e, the massless limit does not describe a massless graviton, but a massless graviton plus a coupled scalar
- The gauge symmetry of GR, that kills the extra dof appears ONLY for m=0and NOT for $m \rightarrow 0$ [van Dam, Veltman 1970], [Zakharov 1970] E.N.Saridakis – HEP2015, Athens April 2015

Nonlinear theory and the BD ghost

Nonlinearities become stronger as $m \rightarrow 0$, need to be taken into account.

$$S = \frac{1}{2\kappa^2} \underbrace{\int d^4 x \left[\sqrt{-g} R \right]}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\alpha\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\alpha\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\alpha\beta} h_{\alpha\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m$$

Full nonlinear EH action

Fierz-Pauli mass term

 $g_{\mu\nu}^{(0)}$ the fixed metric on which the massive graviton propagates

Nonlinear theory and the BD ghost

Nonlinearities become stronger as $m \to 0$, need to be taken into account.

$$S = \frac{1}{2\kappa^2} \underbrace{\int d^4 x \left[\sqrt{-g} R \right]}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\alpha\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\nu\beta} \left(h_{\mu\nu} h_{\alpha\beta} - h_{\alpha\beta} h_{\alpha\beta} \right)}_{-\sqrt{-g^{(0)}}} \underbrace{\frac{1}{4} m^2 g^{(0)\nu\beta} \left$$

Full nonlinear EH action

Fierz-Pauli mass term

 $g_{\mu\nu}^{(0)}$ the fixed metric on which the massive graviton propagates

- The nonlinearities re-bring the 6th dof (no Lagrange multiplier anymore)
- The Hamiltonian constraint analysis shows that it is a ghost!

[Boulware, Deser 1972]

- But this ghost cures the vDVZ discontinuity! (it provides a repulsive force that counteracts the attractive force of the longitudinal scalar mode) [Vainstein 1972]
- But it could still make sense, if quantum effects push the ghost above a cutoff Λ, and see the whole story as an effective theory [Arkani-Hamed, Georgi, Schwartz 2002]

Stückelberg fields trick

- The $m \rightarrow 0$ is not smooth (you kill immediately the new dof's). Not good form for studying: fundamental discontinuity.
- Idea: Introduce new fields (new dof's) and restore gauge symmetries, without altering the theory. Then study the limit you want.

• E.g: Massive EM:
$$S = \int d^4x \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + A_{\mu} J^{\mu} - \frac{1}{2} m^2 A_{\mu} A^{\mu} \right]$$

not necessarily $\;\partial_{\mu}J^{\,\mu}=0\;$

Massless EM: 2 dof's

Massive EM: 3 dof's

2 helicity states of a massless spin-1 particle

3 dof's of a massive spin-1 particle

The mass term breaks the would-be gauge invariance $\delta A_{\mu} = \partial_{\mu} \Lambda$

Stückelberg fields trick

- The $m \rightarrow 0$ is not smooth (you kill immediately the new dof's). Not good form for studying: fundamental discontinuity.
- Idea: Introduce new fields (new dof's) and restore gauge symmetries, without altering the theory. Then study the limit you want.
- E.g: Massive EM: $S = \int d^4x \left| -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + A_{\mu} J^{\mu} \frac{1}{2} m^2 A_{\mu} A^{\mu} \right|$ not necessarily $\partial_{\mu} J^{\mu} = 0$

Massless EM: 2 dof's

Massive EM: 3 dof's

2 helicity states of a massless spin-1 particle

3 dof's of a massive spin-1 particle

- The mass term breaks the would-be gauge invariance $\delta A_{\mu} = \partial_{\mu} \Lambda$
- Introduce ϕ through $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \phi$

NOT change of field variables, NOT gauge transf. (massive action is not g.inv.), NOT decomposition to transverse and longitudinal (not $\partial_{\mu}A^{\mu}=0$)

$$S = \int d^4x \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + A_{\mu} J^{\mu} - \frac{1}{2} m^2 A_{\mu} A^{\mu} - m A_{\mu} \partial^{\mu} \varphi - \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - \frac{1}{m} \varphi \partial_{\mu} J^{\mu} \right] \qquad \varphi = m \Theta$$

- I restored the gauge symmetry $\delta A_{\mu} = \partial_{\mu} \Lambda$, $\delta \varphi = -m\Lambda$
- Now massless limit is smooth: Number of dof's is preserved. φ decouples.

$$L = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + A_{\mu} J^{\mu} - \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi$$

dRGT nonlinear massive gravity

- The 6th dof (ghost) survives since the lapse function N is not a Lagrange multiplier in the nonlinear case, as it was in the linear one.
- Idea: Specially design nonlinear terms, so that N becomes again a Lagrange multiplier

dRGT nonlinear massive gravity

- The 6th dof (ghost) survives since the lapse function N is not a Lagrange multiplier in the nonlinear case, as it was in the linear one.
- Idea: Specially design nonlinear terms, so that N becomes again a Lagrange multiplier
- Toy example: 0 0physical: $ds^2 = -N^2 dt^2 + \gamma_{ij} (dx^i + N^i dt) (dx^j + N^j dt)$ reference: $ds_f^2 = -dt^2 + dx_i dx^i$
- Define $K^{\mu}_{\nu} \equiv \delta^{\mu}_{\nu} \left(\sqrt{g^{-1}f}\right)^{\mu}_{\nu} = \begin{bmatrix} 1 1/N & 0 \\ 0 & \delta^{i}_{j} \sqrt{\gamma^{ij}}\delta_{kj} \end{bmatrix}$
- Lagrangian: $L = L_{EH} m_g^2 M_p^2 \sqrt{-g} \det(\delta_v^\mu + \beta K_v^\mu)$ $\Rightarrow L = L_{EH} - m_g^2 M_p^2 \sqrt{\gamma} [N(1+\beta) - \beta] \det[(1+\beta)\delta_j^i - \beta \sqrt{\gamma^{ik}\delta_{kj}}]$
- Mass term linear in N: Lagrange multiplier
- Recover the Hamiltonian constraint, remove the 6th (ghost) dof:

$$\Rightarrow \frac{\partial L}{\partial N} = H - m_g^2 M_p^2 \sqrt{\gamma} (1 + \beta) \det \left[(1 + \beta) \delta_j^i - \beta \sqrt{\gamma^{ik} \delta_{kj}} \right] = 0$$

• Similar for the general case $N_i \neq 0$

[de Rham, Gabadadze, PRD 82], [de Rham, Gabadadze, Tolley PRL 106]

dRGT nonlinear massive gravity

Finally:

$$S_{MG} = M_p^2 \int d^4x \sqrt{-g} \left[\frac{R}{2} + m_g^2 (L_2 + \alpha_3 L_3 + \alpha_4 L_4) \right]$$

where

$$L_{2} = \frac{1}{2} ([K]^{2} - [K^{2}])$$

$$L_{3} = \frac{1}{6} ([K]^{3} - 3[K][K^{2}] + 2[K^{3}])$$

$$L_{4} = \frac{1}{24} ([K]^{4} - 6[K]^{2}[K^{2}] + 3[K^{2}]^{2} + 8[K][K^{3}] - 6[K^{4}])$$

$$[K] = tr(K_{\mu}^{\nu})$$

$$K_{\nu}^{\mu} \equiv \delta_{\nu}^{\mu} - \sqrt{g^{\mu\sigma} f_{ab}(\phi) \partial_{\nu} \phi^{a} \partial_{\sigma} \phi^{b}}$$

[de Rham, Gabadadze, PRD 82], [de Rham, Gabadadze, Tolley PRL 106]

fiducial metric

Stückelberg fields

- Free of BD ghost! Free of vDVZ discontinuity!
- Vainstein mechanism: extra dof's are suppressed at small scales due to non-linearities

Cosmological applications

Simplest Example: Physical metric: flat FRW: $ds^2 = dt^2 - a^2(t)\delta_{ij}dx^idx^j$

Fiducial metric: Minkowski: $f_{ab} = \eta_{ab}$

Stückelberg scalars: $\phi^0 = b(t), \ \phi^i = x^i$

Variation wrt ϕ : $m^2 \partial_0 (a^3 - a^2) = 0 \Rightarrow \dot{a} = 0$ NO nontrivial solution (same for closed)

[dRGT et al, PRD 84]

Cosmological applications

Simplest Example: Physical metric: flat FRW: $ds^2 = dt^2 - a^2(t)\delta_{ii}dx^idx^j$

 $f_{ab} = \eta_{ab}$ Fiducial metric: Minkowski:

 $\phi^{0} = b(t), \ \phi^{i} = x^{i}$ Stückelberg scalars:

Variation wrt ϕ : $m^2 \partial_0 (a^3 - a^2) = 0 \Rightarrow \dot{a} = 0$ NO nontrivial solution (same for closed)

[dRGT et al, PRD 84]

 $ds^{2} = -N^{2}dt^{2} + a^{2}(t) \left[dx^{2} + dy^{2} + dz^{2} - \frac{|K|(xdx + ydy + zdz)^{2}}{1 + |K|(x^{2} + y^{2} + z^{2})} \right]$ Physical metric open FRW: Next:

Fiducial metric: Minkowski: $f_{ab} = \eta_{ab}$

 $\phi^0 = b(t)\sqrt{1+|K|(x^2+y^2+z^2)}, \ \phi^i = \sqrt{|K|}b(t)x^i$ Stückelberg scalars:

Variation wrt ϕ gives a constraint for b(t): $\frac{b(t)}{a(t)} = \frac{X_{\pm}}{\sqrt{|K|}} = const.$, $X_{\pm} = \frac{1 + 2\alpha_3 + \alpha_4 \pm \sqrt{1 + \alpha_3 + \alpha_3^2 - \alpha_4}}{\alpha_2 + \alpha_3}$

[Gumrukcuoglu, Lin, Mukohyama, JCAP1111]

E.N.Saridakis - HEP2015, Athens April 2015

Cosmological applications

Next Example: Physical metric: open FRW

Fiducial metric: open FRW

$$\Rightarrow \Lambda_{\pm} = m_g^2 c_{\pm}(\alpha_3, \alpha_4)$$

Next: Physical metric: open FRW:

Fiducial metric: de Sitter:

$$\Rightarrow \Lambda_{\pm} = m_g^2 c_{\pm}(\alpha_3, \alpha_4)$$
 as before

plus a new branch: $3H^2 - 3\frac{|K|}{a^2} = \rho_m + \rho_{MG}$

$$\rho_{MG}(t) = -m_g^2 \left(1 - \frac{H}{H_C} \right) \left[6 + 4\alpha_3 + \alpha_4 - (3 + 5\alpha_3 + 2\alpha_4) \frac{H}{H_C} + (\alpha_3 + \alpha_4) \frac{H^2}{H_C^2} \right]$$

[Langlois, Naruko CQG 29]

Perturbations

- Let's see the perturbations of all the above solutions.
- Unfortunately, there is ALWAYS a ghost instability (it's frequency tends to vanish at low scales so it always remain in the low-energy effective theory)
- The linear kinetic term vanishes, so the leading kinetic term is cubic
- This instability is related to the FRW structure of the physical metric, and in particular from the high symmetries (isotropy).
 - [Gumrukcuoglu, Lin, Mukohyama, JCAP1203], [De Felice, Gumrukcuoglu, Mukohyama, PRL 109]

Perturbations

- Let's see the perturbations of all the above solutions.
- Unfortunately, there is ALWAYS a ghost instability (it's frequency tends to vanish at low scales so it always remain in the low-energy effective theory)
- The linear kinetic term vanishes, so the leading kinetic term is cubic
- This instability is related to the FRW structure of the physical metric, and in particular from the high symmetries (isotropy).

[Gumrukcuoglu, Lin, Mukohyama, JCAP1203], [De Felice, Gumrukcuoglu, Mukohyama, PRL 109]

In order to construct a healthy model we must insert anisotropies:

Physical metric: axisymmetric Bianchi I: $ds^2 = -N^2 dt^2 + a(t)^2 \left(e^{4\sigma(t)} dx^2 + e^{-2\sigma(t)} dy^2 + e^{-2\sigma(t)} dz^2\right)$

Fiducial metric: FRW: as before Stückelberg scalars: as before

$$\Rightarrow \rho_{MG}(t) = \cdots$$

[Gumrukcuoglu, Lin, Mukohyama, PLB717]

The only healthy model. Disadvantage: There is NO isotropic limit!

Extension 1: Varying mass massive gravity

Need to find extensions of nonlinear massive gravity where FRW solutions are stable.

$$S_{MG} = M_p^2 \int d^4x \sqrt{-g} \left[\frac{R}{2} + V(\psi) \left(L_2 + \alpha_3 L_3 + \alpha_4 L_4 \right) - \frac{1}{2} \partial_\mu \psi \partial^\mu \psi - W(\psi) \right]$$
 [Huang, Piao, Zhou PRD86]

Extension 1: Varying mass massive gravity

Need to find extensions of nonlinear massive gravity where FRW solutions are stable.

$$S_{MG} = M_p^2 \int d^4x \sqrt{-g} \left[\frac{R}{2} + V(\psi) \left(L_2 + \alpha_3 L_3 + \alpha_4 L_4 \right) - \frac{1}{2} \partial_\mu \psi \partial^\mu \psi - W(\psi) \right]$$
 [Huang, Piao

Physical metric: flat FRW: $ds^2 = dt^2 - a^2(t)\delta_{ij}dx^idx^j$ Fiducial metric: Minkowski: $f_{ab} = \eta_{ab}$ Stückelberg scalars: $\phi^0 = b(t), \ \phi^i = a_{ref}x^i$

$$\Rightarrow 3M_p^2 H^2 = \rho_m + \rho_{MG}$$
$$-2M_p^2 \dot{H} = \rho_m + p_m + \rho_{MG} + p_{MG}$$

$$\rho_{MG} = \frac{1}{2}\dot{\psi}^2 + W(\psi) + V(\psi) \left(\frac{a_{ref}}{a} - 1\right) \left[f_3(a) + f_1(a)\right]$$

$$p_{MG} = \frac{1}{2}\dot{\psi}^2 - W(\psi) - V(\psi) \Big[f_4(a) + \dot{b}f_1(a) \Big]$$

$$w_{DE} = \frac{p_{MG}}{\rho_{MG}}$$

$$\rho_{MG} + p_{MG} = \dot{\psi}^2 - V(\psi) \left(\dot{b} - \frac{a_{ref}}{a} \right) f_1(a)$$

[Saridakis CQG 30]

Extension 1: Varying mass massive gravity

Physical metric: open FRW: $ds^2 = -N^2 dt^2 + a^2(t) \left[dx^2 + dy^2 + dz^2 - \frac{|K|(xdx + ydy + zdz)^2}{1 + |K|(x^2 + y^2 + z^2)} \right]$

Fiducial metric: Minkowski: $f_{ab} = \eta_{ab}$

Stückelberg scalars: $\phi^0 = b(t)\sqrt{1 + |K|(x^2 + y^2 + z^2)}, \ \phi^i = \sqrt{|K|}b(t)x^i$

Variation wrt b provides the constraint equation: $V(\psi) \left(H - \frac{\sqrt{|K|}}{a} - 1 \right) f_1 \left(\frac{b}{a} \right) + \dot{V}(\psi) f_2 \left(\frac{b}{a} \right) = 0$ Variation wrt ψ : $\dot{\psi} + 3H\dot{\psi} + \frac{dW}{d\psi} + \frac{dV}{d\psi} \left\{ \left(\frac{\sqrt{|K|}b}{a} - 1 \right) \left[f_3 \left(\frac{b}{a} \right) + f_1 \left(\frac{b}{a} \right) \right] + 3\dot{b}f_2 \left(\frac{b}{a} \right) \right\} = 0$

$$3M_{p}^{2} \left(H^{2} - \frac{|K|}{a^{2}}\right) = \rho_{m} + \rho_{MG}$$
$$-2M_{p}^{2} \left(\dot{H} + \frac{|K|}{a^{2}}\right) = \rho_{m} + \rho_{m} + \rho_{MG} + \rho_{MG}$$

$$\rho_{MG} = \frac{1}{2}\dot{\psi}^2 + W(\psi) + V(\psi) \left(\frac{\sqrt{|K|}b}{a} - 1\right) \left[f_3\left(\frac{b}{a}\right) + f_1\left(\frac{b}{a}\right)\right]$$

$$p_{MG} = \frac{1}{2}\dot{\psi}^2 - W(\psi) - V(\psi) \left[f_4 \left(\frac{b}{a} \right) + \dot{b}f_1 \left(\frac{b}{a} \right) \right]$$

$$w_{DE} = \frac{p_{MG}}{\rho_{MG}}$$

[Saridakis CQG 30]

29 E.N.Saridakis – HEP2015, Athens April 2015

- Contracting (H < 0), bounce (H = 0), expanding (H > 0) near and at the bounce $\dot{H} > 0$
- Expanding (H > 0), turnaround (H = 0), contracting H < 0 near and at the turnaround $\dot{H} < 0$

- Contracting (H < 0), bounce (H = 0), expanding (H > 0) near and at the bounce $\dot{H} > 0$
- Expanding (H > 0), turnaround (H = 0), contracting H < 0 near and at the turnaround $\dot{H} < 0$

$$3M_p^2 \left(H^2 - \frac{|K|}{a^2}\right) = \rho_m + \rho_{MG}$$

$$-2M_{p}^{2}\left(\dot{H}+\frac{|K|}{a^{2}}\right)=\rho_{m}+p_{m}+\rho_{MG}+p_{MG}$$

$$\rho_{MG} = \frac{1}{2}\dot{\psi}^2 + W(\psi) + V(\psi) \left(\frac{\sqrt{|K|}b}{a} - 1\right) \left[f_3\left(\frac{b}{a}\right) + f_1\left(\frac{b}{a}\right)\right]$$

$$p_{MG} = \frac{1}{2}\dot{\psi}^2 - W(\psi) - V(\psi) \left[f_4 \left(\frac{b}{a} \right) + \dot{b} f_1 \left(\frac{b}{a} \right) \right]$$

Bounce and cyclicity can be easily obtained

[Cai, Gao, Saridakis JCAP1210]

■Input: a(t) oscillatory, b(t) at will

$$\text{Output:} \quad \psi(t) = \int_{0}^{t} dt' \left\{ -2M_{p}^{2} \dot{H} - \rho_{m}(a(t')) - p_{m}(a(t')) + V(t') \left(\dot{b}(t') - \frac{a_{ref}}{a(t')} \right) f_{1}(a(t')) \right\}^{\frac{1}{2}}$$

$$W(t) = M_{p}^{2} \left(3H^{2} + \dot{H} \right) + \frac{p_{m}(a(t'))}{2} - \frac{\rho_{m}(a(t'))}{2} - V(t') \left\{ f_{4}(a(t')) + \left(\dot{b}(t') + \frac{a_{ref}}{a(t')} \right) \frac{f_{1}(a(t'))}{2} \right\}$$

• Reconstruct W(t)

[Cai, Gao, Saridakis JCAP1210]

Input:

$$a(t) = A\sin(\omega t) + a_c$$
, $b(t) = t$

Output

■ Important: Processing of perturbations [Brandenberger, PRD 80]

■ Black Hole analysis also very interesting [Cai, Easson, Gao, Saridakis PRD 87]

Extension 2: Quasi-dilaton massive gravity

$$S_{MG} = M_p^2 \int d^4x \sqrt{-g} \left[\frac{R}{2} + m_g^2 (L_2 + \alpha_3 L_3 + \alpha_4 L_4) - \frac{\omega}{2M_p^2} g^{\mu\nu} \partial_{\mu} \sigma \partial_{\nu} \sigma \right]$$

where

$$L_{2} = \frac{1}{2} \left([K]^{2} - [K^{2}] \right)$$

$$L_{3} = \frac{1}{6} \left([K]^{3} - 3[K][K^{2}] + 2[K^{3}] \right)$$

$$L_{4} = \frac{1}{24} \left([K]^{4} - 6[K]^{2}[K^{2}] + 3[K^{2}]^{2} + 8[K][K^{3}] - 6[K^{4}] \right)$$

$$[K] = tr(K_{\mu}^{\nu})$$

$$K_{\nu}^{\mu} \equiv \delta_{\nu}^{\mu} - e^{\sigma/M_{p}} \sqrt{g^{\mu\sigma} \eta_{ab}}(\phi) \partial_{\nu} \phi^{a} \partial_{\sigma} \phi^{b}$$
quasi-dilaton fiducial metric Stückelberg fields

[D'Amico, Gabadadze, Hui, Pirtskhalava PRD 87]

Extension 2: Quasi-dilaton massive gravity

• Physical metric: flat FRW: $ds^2 = dt^2 - a^2(t)\delta_{ii}dx^idx^j$

Fiducial metric: Minkowski: $f_{ab} = \eta_{ab}$

Stückelberg scalars: $\phi^0 = b(t), \ \phi^i = x^i$

$$\Rightarrow 3M_p^2 H^2 = \rho_m + \rho_r + \rho_{DE}$$

$$\rho_{DE} = \frac{\omega}{2}\dot{\psi}^{2} - 3M_{p}^{2}m_{g}^{2}\left[(2 + \alpha_{3} + \alpha_{4}) - \left(3 + \frac{9}{4}\alpha_{3} + 3\alpha_{4}\right)\frac{e^{\frac{\sigma}{M_{p}}}}{a} + \left(1 + \frac{3}{2}\alpha_{3} + 3\alpha_{4}\right)\frac{e^{\frac{2\sigma}{M_{p}}}}{a^{2}} - \frac{1}{4}(\alpha_{3} + 4\alpha_{4})\frac{e^{\frac{3\sigma}{M_{p}}}}{a^{3}}\right]$$

Observational constraints on quasi-dilaton massive gravity

Use observational data (SNIa, BAO, CMB) to constrain the parameters of the theory. We fit Ω_{M0} , Ω_{DE0} , m_g , ω , α_3 , α_4

36

E.N.Saridakis - HEP2015, Athens April 2015

4

Extension 3: F(R) nonlinear massive gravity

$$S = M_p^2 \int d^4x \sqrt{-g} \left[\frac{F(R)}{2} + m_g^2 (L_2 + \alpha_3 L_3 + \alpha_4 L_4) \right]$$

$$\uparrow \qquad \qquad \uparrow$$
UV modification

IR modification

where

$$L_{2} = \frac{1}{2} ([K]^{2} - [K^{2}])$$

$$L_{3} = \frac{1}{6} ([K]^{3} - 3[K][K^{2}] + 2[K^{3}])$$

$$L_{4} = \frac{1}{24} ([K]^{4} - 6[K]^{2} [K^{2}] + 3[K^{2}]^{2} + 8[K][K^{3}] - 6[K^{4}])$$

$$[K] = tr(K_{\mu}^{\nu})$$

$$K_{\nu}^{\mu} \equiv \delta_{\nu}^{\mu} - \sqrt{g^{\mu\sigma} f_{ab}(\phi) \partial_{\nu} \phi^{a} \partial_{\sigma} \phi^{b}}$$

[Cai, Duplessis, Saridakis PRD 90a]

[Cai, Saridakis PRD 90b]

Extension 3: F(R) nonlinear massive gravity

■ Einstein frame: $g_{\mu\nu} \rightarrow \widetilde{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}$ with $\Omega^2 = F_{,R} = \exp\left(\sqrt{\frac{2}{3}} \frac{\varphi}{M_p}\right)$

$$S = \int d^4x \sqrt{-g} \left[M_p^2 \frac{\tilde{R}}{2} + M_p^2 m_g^2 (\tilde{L}_2 + \alpha_3 \tilde{L}_3 + \alpha_4 \tilde{L}_4) - \frac{1}{2} \tilde{g}^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi - U(\varphi) \right]$$

with
$$U(\varphi) = M_p^2 \frac{RF_{,R} - F}{2F_{,R}^2}$$

- Hamiltonian constraint analysis: the BD ghost is removed similar to usual nonlinear massive gravity
- Much more general than other massive gravity extensions.

Physical metric: open FRW: $ds^2 = -N^2 dt^2 + a^2(t) \left| dx^2 + dy^2 + dz^2 - \frac{|K|(xdx + ydy + zdz)^2}{1 + |K|(x^2 + y^2 + z^2)} \right|$

Fiducial metric: Minkowski: $f_{ab} = \eta_{ab}$

 $\phi^0 = b(t)\sqrt{1 + |K|(x^2 + y^2 + z^2)}, \ \phi^i = \sqrt{|K|}b(t)x^i$ Stückelberg scalars:

Variation wrt b provides the constraint equation with solution: $\frac{b(t)}{a(t)} = const.$

$$3M_{p}^{2}\left(H^{2}-\frac{|K|}{a^{2}}\right) = \rho_{m} + \rho_{MG} + \rho_{F_{R}}$$

$$\rho_{MG} = m_{g}^{2}c_{\pm}$$

$$\rho_{F_{R}} = M_{p}^{2}\left[\frac{RF_{R}-F}{2} - 3H\dot{R}F_{RR}\right]$$

$$ho_{\scriptscriptstyle DE} \equiv
ho_{\scriptscriptstyle MG} +
ho_{\scriptscriptstyle F_{\scriptscriptstyle R}}$$

- Both IR and UV gravity modifications play a role in universe evolution.
- Huge capabilities.

[Cai, Duplessis, Saridakis PRD 90a]

[Cai, Saridakis PRD 90b]

1)
$$F(R) = R + \frac{\xi}{M_p^2} R^2$$

- Early times: F(R) sector drives inflation
- Late times: MG sector drives late-time acceleration

[Cai, Duplessis, Saridakis PRD 90a]

2)
$$F(R) = R - \beta R_S \left(1 - e^{-\frac{R}{R_S}}\right)$$
 $0.0 \atop -0.4 \atop -0.8 \atop -1.2}$
 $0.0 \atop -0.8 \atop -0.8 \atop -1.2}$

- Both F(R) sector and MG sector constitute Dark Energy $\rho_{DE} \equiv \rho_{MG} + \rho_{F_R}$
- W_{DE} can lie in the phantom regime.

[Cai, Saridakis PRD 90b]

3)
$$F(R) = R - \lambda R_C \left| 1 - \left(1 + \frac{R^2}{R_C^2} \right)^{-n} \right|$$

- Both F(R) sector and MG sector constitute Dark Energy $\rho_{DE} \equiv \rho_{MG} + \rho_{F_R}$
- \mathcal{W}_{DE} can lie in the phantom regime.

[Cai, Saridakis PRD 90b]

Cosmological Perturbations

$$S = \int d^4x \sqrt{-\tilde{g}} \left[M_p^2 \frac{\tilde{R}}{2} + M_p^2 m_g^2 (\tilde{L}_2 + \alpha_3 \tilde{L}_3 + \alpha_4 \tilde{L}_4) - \frac{1}{2} \tilde{g}^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi - U(\varphi) \right]$$

$$\delta \widetilde{g}_{00} = -2N^2 \phi, \ \delta \widetilde{g}_{0i} = Na\partial_i B, \ \delta \widetilde{g}_{ij} = a^2 \left[2\widetilde{\gamma}_{ij}^K \psi + \left(\nabla_i \nabla_j - \frac{1}{3} \widetilde{\gamma}_{ij}^K \nabla_k \nabla^k \right) \right] E, \ \delta \varphi$$

$$\Longrightarrow \cdots \cdots$$

- Integrate out non-dynamical dof's ϕ , B, E
- Since ϕ is non-dynamical at the linear level on the self-accelerating solution, we introduce the Bardeen potential $\psi_{\rm B}$ and Mukkanov-Sasaki variable $Q \equiv \delta \varphi + \frac{\varphi \psi_{\rm B}}{H}$

$$Q \equiv \delta \varphi + \frac{\dot{\varphi} \psi_{\scriptscriptstyle B}}{H}$$

$$\Rightarrow \ddot{Q}_{k} + 3H\dot{Q}_{k} + \left[\frac{k^{2}}{a^{2}} + U_{,\varphi\varphi} - \frac{1}{M_{p}^{2}a^{3}} \left(\frac{a^{3}}{H}\dot{\varphi}^{2}\right)^{\bullet}\right]Q_{k} = \underbrace{\frac{2m_{g}^{2}\tilde{Y}_{Q}}{3\Omega^{4}}Q_{k}}_{\mathbf{Q}_{k}} - 2\frac{k^{2}}{a^{2}H^{2}} \left(\ddot{\varphi} - \frac{\dot{H}\dot{\varphi}}{H}\right)\psi_{B}$$

$$\mathbf{GR} + \mathbf{scalar}$$

$$\mathbf{MG} \text{ contribution}$$

• $Y_o(\alpha_3, \alpha_4) < 0 \Rightarrow Stability!$

[Cai, Duplessis, Saridakis PRD 90a]

Conclusions

- i) Massive gravity is a reasonable modification to describe acceleration.
- ii) The simplest linear model has the vDVZ discontinuity.
- iii) Non-linearities cure it but bring the BD ghost.
- iv) New nonlinear MG uses suitable graviton self-interactions in order to be free of BD ghosts and vDVZ discontinuity.
- v) But simple FRW cosmology is impossible (cosmological instabilities).
- vi) One should go to anisotropic geometry.
- vii) Or other extensions: Varying mass massive gravity, quasi-dilaton massive gravity.
- viii) F(R) nonlinear massive gravity is the most promising. It is free of BD ghost and vDVZ discontinuity. It exhibits good and rich cosmology, free of instabilities!

Outlook

- Many subjects are open. Amongst them:
- i) The first simple idea does not work. Are we doing epicycles?
- ii) Massive gravity, partially massless gravity or bi-gravity (or multi-metric gravity)?
- iii) Is the initial BD ghost just hidden under the carpet and reincarnate as instability, superluminality, acausality etc!
- iv) Re-parametrization of our ignorance? (instead to explain why Λ is small, we have to explain why $m_{_{g}}$ is small).

THANK YOU!