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L Goal

L
=1 DA

= We investigate various versions of nonlinear
massive gravity and their cosmological
implications

s Note:

= A consistent or interesting cosmology is not a
proof for the consistency of the underlying
gravitational theory

= A consistent gravity does not guarantee a
consistent or interesting cosmology.
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“L‘ ITaIk Plan

1) Introduction: motivation

2) Simplest linear version has the vDVZ discontinuity
3) Non-linearities cure it but bring the Boulware-Deser ghost

4) New nonlinear massive gravity: free of BD ghosts and vDVZ
discontinuity

5) FRW cosmology is impossible (instabilities). Need anisotropic
geometry.

6) Extensions: Varying mass MG, quasi-dilaton MG etc.

7) F(R) nonlinear massive gravity. Free of BD ghost, vDVZ
discontinuity. Good and rich cosmology free of instabilities.

8) Conclusions-Prospects
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3 ..L. IWhy Modified Gravity?

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.

Inflation

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years
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L‘.

L |Introduction

= Massive Gravity, i.e adding mass to a spin-2 particle,
goes back to 1939

= Motivation: I) Theoretical (we know the answer for scalars and vectors)
ii) Cosmological (explain acceleration)
= Indeed it is the most reasonable modified gravity

(not the simplest one, since you add 3 dof’s)

= [Itis promising, but...
[Hinterbichler, Rev.Mod.Phys.84]
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b L |Introduction

-n
= 1939: Fierz and Pauli add a linear mass-term to GR «c m?(h,,, —h?)

1970: van Dam, Veltman, Zakharov: When the linear theory
couples to a source, the limit |/m — 0| does not give GR
(vDVZ discontinuity)

1972: Vainstein: The non-linearities become stronger and
stronger as m decreases. They must be taken into account and

they do cure vDVZ discontinuity
= 1972: Boulware, Deser: Nonlinearities bring a ghost!
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b

gintroduction
|
1939: Fierz and Pauli add a linear mass-term to GR oc m*(h,, —h?)

1970: van Dam, Veltman, Zakharov: When the linear theory
couples to a source, the limit |/m — 0| does not give GR

(vDVZ discontinuity)

1972: Vainstein: The non-linearities become stronger and
stronger as m decreases. They must be taken into account and
they do cure vDVZ discontinuity

1972: Boulware, Deser: Nonlinearities bring a ghost!

2010: de Rham, Gabadadze, Tolley: Adding higher-order
graviton self-interaction systematically removes the BD ghost

2011 and on: The cosmology has severe problems.
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L , Fierz-Pauli linear theory

- e
= Linear massive gravity around flat background 9,.=7..+h,,. |<<1
1 14 14 14 1
S = j d*x [—Ealhwaﬁh” +8,h,,0"h**~ 3 h* avh+§8lhaﬁh
Linearized Einstein-Hilbert action
(all possible2-powers of h and up to 2-derivatives):
massless spin-2 graviton
8
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L , Fierz-Pauli linear theory

- =
= Linear massive gravity around flat background 9..=m.+h,. <<l
1 , y y 1 1
S =[d"x [—Eaﬁhwaﬁh” +0,h,,0"h**~3 h* 8Vh+§81h81h —Emz(ahﬂvh‘”+bh2)]

Linearized Einstein-Hilbert action a=-b (Fierz-Pauli tuning)
(all possible2-powers of h and up to 2-derivatives): NOT enforced by symmetry

. . 2
massless spin-2 graviton ~m
mghost_ a-l-b

[Fierz, Pauli, PRLS 1939]
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L , Fierz-Pauli linear theory

- =
= Linear massive gravity around flat background 9..=m.+h,. <<l
1 , y y 1 1
S =[d"x [—Eaﬁhwaﬁh” +0,h,,0"h**~3 h* 8Vh+§8lhalh —Emz(ahwhW+bh2)]

Linearized Einstein-Hilbert action a=-b (Fierz-Pauli tuning)
(all possible2-powers of h and up to 2-derivatives): NOT enforced by symmetry

. . 2
massless spin-2 graviton m m

ghost: a-l-b

[Fierz, Pauli, PRLS 1939]

= The m=0 part has gauge symmetry ¢h, =0, +0,&,
This symmetry fixes the coefficients.
= The mass term violates it!
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L , Fierz-Pauli linear theory
e

= Put source T#" with coupling KhﬂVT“V . Eoms”:

B

Ohﬂv _ aﬂﬁuhj B azavhﬁ 1, va/taahw + auavh . V<>h -m’ (h,UV — 1, th) =K1

= Note: For m=0= 06T, =0 (conservation)
For m = 0 no such condition (but we assume it, otherwise obvious discontinuity)

11
E.N.Saridakis — HEP2015, Athens April 2015



, Fierz-Pauli linear theory
e

= Put source T#" with coupling KhﬂVT“V . Eoms”:

B

Ohﬂv _ aﬂﬁuhj B azavhﬁ 1, va/taahw + auavh N 77ﬂv<>h B mz(hﬂv B nﬂvhz) =K1

LV

= Note: For m=0= 06T, =0 (conservation)
For m = 0 no such condition (but we assume it, otherwise obvious discontinuity)
= Point source T#(%)=Ms“s55%(%) . Solution:

2M 1 e ™
(%) \ .
oo( ) 3Mp ar r / Yukawa suppression
hOi(X):O

_ M 1 e™|1+mr+m?r?
hij(x):
3M, 4z r

s GR result:
M 1
hyo(X) = —
o(X) 2M , 4nr
hOi (X)=0
hij (i) = M i5.]
2M  4nr 12
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» L s Fierz-Pauli linear theory

i GM
= Thus, for massless p=——— r=1 (PPN)
. __4AGM 1
s FOor massive: @ 3 4 >

= If rescale G — %G then bending of light 25% larger than GR

= GRis NOT recovered in the massless limit (vDVZ discontinuity)
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» L s Fierz-Pauli linear theory

i GM
= Thus, for massless p=——— r=1 (PPN)
. __4AGM 1
s FOor massive: @ 3 4 >

= If rescale G — %G then bending of light 25% larger than GR

= GRis NOT recovered in the massless limit (vDVZ discontinuity)
Massive gravity: 5 spin states

Massless gravity: 2 spin states
2 helicity states of a massless graviton

2 helicity states of a massless graviton
2 helicity states of a massless vector

1 single massive scalar
no 6 dof since the time components hy,appear as Lagr. multiplier

= The scalar (longitudinal graviton) maintains a coupling to T even in the massless limit

= e, the massless limit does not describe a massless graviton, but a massless graviton
plus a coupled scalar

= The gauge symmetré of GR, that kills the extra dof appears ONLY for m =0

and NOT for M — 14

[van Dam, Veltman 1970], [Zakharov 1970] ¢ \ saridakis - HEP2015. Athens April 2015



L Nonlinear theory and the BD ghost

Nonllnearltles become stronger as M —> 0, need to be taken into account.

(0)
—V-9

o

4

1 o vV,
~m g(O)ﬂ (0) ﬂ(h,uv s h,uahvﬂ)]

g

Full nonlinear

Fierz-Pauli mass term

EH action 9203 the fixed metric on which the massive graviton propagates
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L Nonlinear theory and the BD ghost

Nonllnearltles become stronger as M —> 0, need to be taken into account.

1 o V,
—g®© 4m 2q@ueag(© ﬂ(hﬂv s hyahvﬂ)]

g

Full nonlinear Fierz-Pauli mass term
EH action g, the fixed metric on which the massive graviton propagates

= The nonlinearities re-bring the 6% dof (no Lagrange multiplier anymore)
= The Hamiltonian constraint analysis shows that it is a ghost! [Boulware,Deser 1972]

= But this ghost cures the vDVZ discontinuity! (it provides a repulsive force that
counteracts the attractive force of the longitudinal scalar mode)  [Vainstein 1972]

= But it could still make sense, if quantum effects push the ghost above a cutoff A,
and see the whole story as an effective theory [Arkani-Hamed, Georgi, Schwartz 2002]
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s Stlckelberg fields trick

'H1e m—0 is not smooth (you kill immediately the new dof’s). Not good form
for studying: fundamental discontinuity.

Idea: Introduce new fields (new dof’s) and restore gauge symmetries, without
altering the theory. Then study the limit you want.

E.g: Massive EM: szjd“x[—%lzwlzﬂu AﬂJ”—%mzAﬂA“} not necessarily 0,J" =0

Massless EM: 2 dof’s Massive EM: 3 dof’s
2 helicity states of a massless spin-1 particle 3 dof’s of a massive spin-1 particle

The mass term breaks the would-be gauge invariance 8A, =0 ,A

17
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s Stlckelberg fields trick

'H1e m—0 is not smooth (you kill immediately the new dof’s). Not good form
for studying: fundamental discontinuity.

= Idea: Introduce new fields (new dof’s) and restore gauge symmetries, without
altering the theory. Then study the limit you want.

= E.g: Massive EM: s:jd“x[—%FwFﬂWAﬂJﬂ—%mzAﬂAﬂ} not necessarily 9,J“ =0

Massless EM: 2 dof’s Massive EM: 3 dof’s
2 helicity states of a massless spin-1 particle 3 dof’s of a massive spin-1 particle

= The mass term breaks the would-be gauge invariance oA, =06 ,A
= Introduce #through A, - A +0,¢

NOT change of field variables, NOT gauge transf. (massive action is not g.inv.), NOT decomposition to transverse and longitudinal (notd,A“ =0 )

o] 1 y 1, 1 1 —m
S=d x[—ZFﬂvF” +AIM-om A#A”—mAﬂG”(o—E@ﬂw”(p—Eqp@#J”} P =me¢

= I restored the gauge symmetry oA, =9 ,A, &p = —mA

= Now massless limit is smooth: 1 v o 1 u
Number of dof’s is preserved. L= 2 F.F7+ A _Eau@ ® "

¢ decouples. E.N.Saridakis — HEP2015, Athens April 2015




b L s ARGT nonlinear massive gravity

= The 6% dof (ghost) survives since the lapse function N is not a Lagrange multiplier in
the nonlinear case, as it was in the linear one.

= Idea: Specially design nonlinear terms, so that N becomes again a Lagrange multiplier

19
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s dRGT nonlinear massive gravity

= The 6% dof (ghost) survives since the lapse function N is not a Lagrange multiplier in
the nonlinear case, as it was in the linear one.

= Idea: Specially design nonlinear terms, so that N becomes again a Lagrange multiplier
= Toy example: 0 0

physical:  ds® =—NZdt® + y; (dx' + D('ﬂdt)(dxi + Nfdt)

reference: ds,* =—dt? +dxdx

_ — 1-1/N 0
= Define K¥=¢! —(w/g f)::{ 0 5!_\/7/”*5'(1}
= Lagrangian: L =Ly —mMZM /- g det(5) + FKY)
= L =Ly, —m’M 2y [N+ B) —,B]det[(1+ B8, — Br*S, J

= Mass term linear in N: Lagrange multiplier
= Recover the Hamiltonian constraint, remove the 6% (ghost) dof:

= —H-mM 2y 1+ B)det|1+ B)S — B.Jy*5, [=0
~oN MM Ny (L B) de [( tR)O =BT k’] [de Rham, Gabadadze, PRD 82],
= Similar for the general case N, =0 [de Rham, Gabadadze, Tolley PRL 106]

20
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L IdRGT nonlinear massive gravity
Finally:

Sue =M2[d* xf[ +m(L+a3L+a4L)}

"2
L=< (KT -3k ]+ 2lk?)
= L (i el P[] i + el ol [K]=tr(k)
_ o a b 7
K =06% — \/ g“ f?b(¢)av¢ 80‘¢\ [de[lgr?a?h,a(%b(a;ggggg,d Tgilgﬁ DPSE]i%]
fiducial metric Stlickelberg fields

= Free of BD ghost! Free of vDVZ discontinuity!

= Vainstein mechanism: extra dof’s are suppressed at small scales due to non-linearities
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» L ICosmological applications

-‘ Simplest Example: Physical metric: flat FRW: ds? = dt® —a?(t)5;dx'dx!
Fiducial metric: Minkowski:  Tab = 77
Stiickelberg scalars: #° =b(1), ¢ =X

Variation wrt @ : m*,(a®-a*)=0=a=0 NO nontrivial solution (same for closed)
[dRGT et al, PRD 84]
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{Cosmological applications
|

-‘ Simplest Example: Physical metric: flat FRW: ds? = dt® —a?(t)5;dx'dx!
Fiducial metric: Minkowski:  Tab = 77
Stiickelberg scalars: #° =b(1), ¢ =X

Variation wrt @ : m*,(a®-a*)=0=a=0 NO nontrivial solution (same for closed)
[dRGT et al, PRD 84]

. . 2 _ 2 442 2 2 2 2 |K|(de + ydy + ZdZ)2
= Next: Physical metric open FRW: ds" =-N7dt'+a (t){dx A K+ v+ )
Fiducial metric: Minkowski: Tab = 77ab
Stiickelberg scalars: #° =b(t)\1+|K|(x* + y2 +2°), ¢'=/|K|b(t)X'
- . . b)) o X, _1+2a3+a4i\/1+a3+a§—054
Variation wrt ¢ gives a constraint for b(t): a0~ K] const., X, = .
= Friedmann equations:
K
3H?* -3 = p +m’c 2
a‘ £Fm 97 We get an Effective Cosmological Constant: Ai — mg C, (053, 054)

Self-acceleration for ¢, (aza,)>0

[Gumrukcuoglu, Lin, Mukohyama, JCAP1111] 23
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» L ICosmological applications

= Next Example: Physical metric: open FRW
Fiducial metric: open FRW

= A, = mgzgcir (ay )

= Next: Physical metric: open FRW:
Fiducial metric: de Sitter:

= A, = mgzci (ay )

as before

K
plus a new branch: 3H? —3|a—2| = P+ P

2
Puc () = —mé(l— : j[6+4a3 +o, —(3+5c; + 2054)Hi+ (a3 + aﬂ%}
C C C

[Langlois, Naruko CQG 29]

24
E.N.Saridakis — HEP2015, Athens April 2015



5 L ferturbatlons

= Let’s see the perturbations of all the above solutions.

= Unfortunately, there is ALWAYS a ghost instability (it's frequency tends to
vanish at low scales so it always remain in the low-energy effective theory)

= The linear kinetic term vanishes, so the leading kinetic term is cubic

= This instability is related to the FRW structure of the physical metric, and in
particular from the high symmetries (isotropy).
[Gumrukcuoglu, Lin, Mukohyama, JCAP1203], [De Felice, Gumrukcuoglu, Mukohyama, PRL 109]

25
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L Perturbations
-

Let’s see the perturbations of all the above solutions.

Unfortunately, there is ALWAYS a ghost instability (it's frequency tends to
vanish at low scales so it always remain in the low-energy effective theory)

The linear kinetic term vanishes, so the leading kinetic term is cubic

This instability is related to the FRW structure of the physical metric, and in
particular from the high symmetries (isotropy).
[Gumrukcuoglu, Lin, Mukohyama, JCAP1203], [De Felice, Gumrukcuoglu, Mukohyama, PRL 109]

In order to construct a healthy model we must insert anisotropies:

Physical metric: axisymmetric Bianchi I: ds* = —NZdt? +<’:1('E)2(e4°r“)dx2 +e2Mgy? +e‘20“)d22)
Fiducial metric: FRW: as before

Stuckelberg scalars: as before

- .. [Gumrukcuoglu, Lin, Mukohyama, PLB717]
= Puc (1) =

The only healthy model. Disadvantage: There is NO isotropic limit! 26
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b L gxtension 1: Varying mass massive gravity

n Need to find extensions of nonlinear massive gravity where FRW solutions are stable.

Sue =M} [d*x{/-g { +V @) (Lraltal,)-> yvf@”w—W(w)}

[Huang, Piao, Zhou PRD86]

27
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gxtension 1: Varying mass massive gravity

n Need to find extensions of nonlinear massive gravity where FRW solutions are stable.

=M Id XN~ { +V (W)L, +alatal,) -~ y'//@”l/f —W(l//)} [Huang, Piao, Zhou PRD86]

= Physical metric: flat FRW: ds® = dt® —a?(t)s;dx'dx’ -0.6-
Fiducial metric: Minkowski: Tab = 7Zab a
Stlckelberg scalars: #° =b(t), ¢ =a,x = 08

:SMstzpm+pMG |
_2M§H:pm+pm+pMG+pMG -

4.0 TR ~w
1. A Tl -
Puc =5V +W (W) +V(l//)( . —1j[f3(a)+ f,(a)] !
1 ., . R
Puc =5 ¥7° ~W (1) ~V W) f.(a) +bf, ()] 0.0 0.5 Z 1.0 15 2.0
Wop = Pme
Pwvc
Prc + Pus =7 —V(l//)[b et Jf (a) o 28
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gxtension 1: Varying mass massive gravity

|K|(xdx + ydy + zdz)?
1+|K|(x2 +y?+2?)

= !Hysical metric: open FRW: ds* = -N*dt* +az(t){dx2 +dy? +dz® —
Fiducial metric: Minkowski: f., = 77,6
Stiickelberg scalars: ¢° = b(t)\J1+|K|(x* + y? +22), #'=[[K|p(t)X’

= Variation wrt b provides the constraint equation: VvV (w)| H ——\/L?' — Jfl[gj +V (v) fz(gj =0
Variation wrt @: v +3H4 + SV, dV {[ “lzlb —1][ fa[gj + fl[?j}” 3bf2(§j} —°

dy dy

3M§ HZ_M = Pm t Pmc

22 0.7
—2M2[I—'I+m =P+ P+ Puc + P
P a2 m m MG MG -0.8-
;E _
1. Klb b b -0.9-
Pwmec :E‘//Z +W () +V(v) %_ J|: fs(g)"' fl(gj:| |
o =Lyt W) v f (Ejﬂjf (9) "
MG = 5 4 4 4 ] 4| 3 1 3 1
e 05 10 15 20
W, = Pve y4
Pue [Saridakis CQG 30] 29
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L gounce and Cyclic behavior in varying mass massive gravity
L -
= Contracting (H <0), bounce ( H =0), expanding ( H >0)

near and at the bounce H > ()

= Expanding (#/ >0), turnaround (H =0), contracting # <0
near and at the turnaround H <0

30
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L ghounce and Cyclic behavior in varying mass massive gravity
L -

= Contracting (H <0), bounce ( H =0), expanding (H >0)
near and at the bounce H >0

= Expanding (H >0), turnaround (H =0 ), contracting H <0
near and at the turnaround H <0

1 . J|K|b b b
K - 2
3M§(Hz B Iazlj:pm e Puc = 50" FW W) +V () ¥ =1 f3(gj+ fl[a)
1., [ (bY .. (b
: — S 2 W () -V f,[ 2 |+bf,| 2
—2M§[H+—|aKz|j=pm+pm+pMG+pMG Pue =2V ) (W)_ “(aj+ 1(aﬂ

= Bounce and cyclicity can be easily obtained
[Cai, Gao, Saridakis JCAP1210]

31
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h L g Bounce and Cyclic behavior in varying mass massive gravity
al =
«Input: a(t) oscillatory, b(t) at will

1

«Output: v - jdt{ 2M2H — p, (a(t)) — Py (alt)) +V (t )[b(t) a(ref)jf(a(t ))}

ap2 2 pPn(@))  pn@lt)) |, . : N et | Tr(A(l"))
W (t) = M2(3H2 + H )+ > > V(t){f4(a(t))+(b(t)+ (t)j > }

= Reconstruct W(t)
[Cai, Gao, Saridakis JCAP1210]

32
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h L g Bounce and Cyclic behavior in varying mass massive gravity
al =
= Input: |a(t) = Asin(at) +a.|, b(t)=t

m Output 0.02-

1000-. ; ]
w 500-.

N 0.01-

0.02- 10000 0 " 10000

= : .
0.01 -

' 0.00+
0.00 4

~10000 0 10000 0 ' 500 ' 1000
[Cai, Gao, Saridakis JCAP1210] 4

= Important: Processing of perturbations [Brandenberger, PRD 80]

= Black Hole analysis also very interesting [Cai, Easson, Gao, Saridakis PRD 87]

33
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L f£xtension 2: Quasi-dilaton massive gravity

TSMG =M [Z)J‘d4x"/_ g{§+ m?(L,+asL+a,l,)— 2|\a/l)2 g‘”&ﬂoﬁvo}

p

where
I—2= %([K]Z - [Kz])
I SEE IS SIS

:i(w- ol Pl ]+ gl T + 8 k]l K]=tr(k)
Ky =0 —eg™ Jgﬂ“nab(qﬁ)a #0.In_

quasi- dllaton f|dUC|aI metric Stiickelberg fields

[D’Amico, Gabadadze, Hui, Pirtskhalava PRD 87]

34
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B

f£xtension 2: Quasi-dilaton massive gravity
|

Physical metric: flat FRW:  ds? = dt® —a?(t)s;dx'dx’
Fiducial metric: Minkowski:  f,, =17,
Stiickelberg scalars: #° =b(t), ¢ =X

:>3M§H2 :pm +pr +pDE

@ .2 2,2
PpE :El/l _3Mpmg (2+a3+a4)_
10 [ T e ]
i Q,, ]
0.8 \ Q ]
0.6 ] .
S i
04 ] —04 [ W DE
i Qpg ] -0.6 .
0.2 J ] -08 /
e e — ] Lo :
Log,, [1+z] Log,, [1+2]
[Gannouji, Hossain, Sami, Saridakis PRD 87] 35
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L gPbservational constraints on quasi-dilaton massive gravity

L
= Use observational data (SNIa, BAO, CMB) to constrain the parameters of

0341

032

the theory. We fit Lo :L2peo .My, 0,05,

0.43

0.44

0.45
m / Hy

0.46 0.47

0‘34f

0.32]

0.34f

0321

0.30 1

Qo

0.26

024

0.22¢

| [Gannouji, Hossain, Sami, Saridakis PRD 87]

-100 =50 0 50

50 100
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A L £xtension 3: F(R) nonlinear massive gravity
|

]
S=M §Id4X1/— g[F(R) + mé(L2+a3L3+a4L4)}

2
! !
UV modification IR modification
where
L)
L~ (kP -3k 2l
L,= 2—14([K]“ —6[K P[]+ 3[k>2] +8[K]K?]- 6[K4]) [K]=tr(K})

K“ =8 —g“"t,,(4)0,4°0 ¢

[Cai, Duplessis, Saridakis PRD 90a] [Cai, Saridakis PRD 90b]
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L f£xtension 3: F(R) nonlinear massive gravity
=

m Einstein frame: gw—>§ﬂv=929ﬂv with o =F, exp{\/gl\f]

B

S = [d*xy/- { —+|v| ?m? (L, +a,l s +a,l, )—lgﬂva 20— U(go)}

, RF,—F
2F;

with U(p)=M

= Hamiltonian constraint analysis: the BD ghost is removed similar to usual
nonlinear massive gravity

= Much more general than other massive gravity extensions.

[Cai, Duplessis, Saridakis PRD 90a] [Cai, Saridakis PRD 90b]
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B

JfCosmology of F(R) nonlinear massive gravity
|

. . 2
hysical metric: open FRW: gs? — _N2dt? 4 az(t){dxz ©dy? + dz? Kl + ydy + zd2) }

o e s L+ K[+ y*+ 27)
Fiducial metric: Minkowski: Tan = 7ab

Stiickelberg scalars: #° =b(1){1+|K|(x* + y* + 2°), ¢'=[[K[p(t)x’
Variation wrt b provides the constraint equation with solution: % = const.
K
3M 5["'2 —|a—2|j = P + Prc + Pr,

2
pMG — mgCi

[RFR—F

PoE = Pmc T Pr,

5 .

pe. =M?2 —3HRFR{]
Both IR and UV gravity modifications play a role in universe evolution.
Huge capabilities.

[Cai, Duplessis, Saridakis PRD 90a] [Cai, Saridakis PRD 90b]
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L JfCosmology of F(R) nonlinear massive gravity
=i I e
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= Early times: F(R) sector drives inflation

m Late times: MG sector drives late-time acceleration
[Cai, Duplessis, Saridakis PRD 90a]
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L fCosmology of F(R) nonlinear massive gravity

" =

-2 F(R)=R—pR|1-e "

0.0 | 0.5 | 1.0 =00 | 0.5 | 1.0

= Both F(R) sector and MG sector constitute Dark Energy Poe = Pumc + Px,

=  Wpg can lie in the phantom regime.
[Cai, Saridakis PRD 90b]
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1

« 3) F(R)= R—AR{L[
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L fCosmology of F(R) nonlinear massive gravity
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= Both F(R) sector and MG sector constitute Dark Energy Poe = Puc + Pr,
=  WpE can lie in the phantom regime.

[Cai, Saridakis PRD 90b]
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{LCosmological Perturbations

L —
. s:jd4x1/—§{M§§+M5m (e )——g“v@gp@gp U(go)}

_ 1
oo = —2N>¢, 5, = Nad;B, &G = az[Zyinl//+(ViV =37 ViV HE Sp

= Integrate out non-dynamical dof's ¢, B, E

= Since ¢ is non-dynamical at the linear level on the self-accelerating i
solution, we introduce the Bardeen potential ,, and Mukkanov-Sasaki variable |Q = o@ +-——+

H
. . k2 1 a3 ° 2m2Y k2 H@
= Q +3HQ, +| - +U, ——(—csz Q=—22Q, - ((/'5—— Wy
a’ M §a3 H 30° a?H? H
GR + scalar MG contribution

= Y, (o, @,) <0 =>Stability!

[Cai, Duplessis, Saridakis PRD 90a] [Cai, Saridakis PRD 90b] 43
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L Conclusions
- R

i) Massive gravity is a reasonable modification to describe acceleration.
ii) The simplest linear model has the vDVZ discontinuity.

iii) Non-linearities cure it but bring the BD ghost.

iv) New nonlinear MG uses suitable graviton self-interactions in order to
be free of BD ghosts and vDVZ discontinuity.

v) But simple FRW cosmology is impossible (cosmological instabilities).
vi) One should go to anisotropic geometry.

vii) Or other extensions: Varying mass massive gravity, quasi-dilaton
massive gravity.

viii) F(R) nonlinear massive gravity is the most promising. It is free of
BD ghost and vDVZ discontinuity. It exhibits good and rich cosmology,
free of instabilities!
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L Outlook
- _

Many subjects are open. Amongst them:

1) The first simple idea does not work. Are we doing
epicycles?

ii) Massive gravity, partially massless gravity or bi-gravity
(or multi-metric gravity)?

iii) Is the initial BD ghost just hidden under the carpet and
reincarnate as instability, superluminality, acausality etc!

Iv) Re-parametrization of our ignorance? (instead to explain

why A is small, we have to explain why m,is small).
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THANK YOU!
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