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INTRODUCTION AND MOTIVATION

Integrable models

I Consider a classical integrable seed theory, like a Hamiltonian system or a CFT.

I A classically integrable Hamiltonian 1d system, its eom can be recast to:

dL
dt

= [L,M] , In = Tr Ln , {In, Im} = 0 , n = 1, . . . ,N,

where (L,M) form the Lax pair.

I Deforming the theory and keeping integrability is far from trivial.

I The larger number of deformation parameters, the difficulty rises exponentially.



INTRODUCTION AND MOTIVATION

Exact β-functions

I In a renormalizable field theory, its quantum behaviour is depicted by:

1. The n-point correlation functions.

2. The dependence of the coupling with the energy scale.

I Their dependence is encoded within the RG flow equations (1st order non-linear):

βλ := µ
dλ
dµ
,

which is usually determined perturbatively; finite number counterterms might be needed.

I Can we obtain an all-loop β-function and effective action, resuming all the counterterms?

I If this is feasible then we can discover new fixed points towards the IR.

We study some of these aspects for the non-Abelian bosonized Thirring model.
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FERMIONIC MODEL

Exactly solvable QFT describing self-interacting massless Dirac fields in 1+1 dimensions.

I An 1+1 dimensional action with fermions in the fundamental representation of SU(N)

Dashen–Frishman 73&75 : Lint = −
gB

2
Jµ Jµ −

gV

2
Ja
µ Jaµ , µ = 0, 1 ,

where Ja
µ = Ψ̄taγµΨ, with a = 1, . . . ,N2 − 1, are the SU(N) currents and Jµ the U(1).

I For N = 1 we recover the Abelian case (prototype) Thirring 58.

I It is invariant under SU(N)× U(1) (vector) and U(1)Axial.

I The non-Abelian term breaks SU(N)Axial, i.e. ∂µJ5a
µ = gV fabc JbµJ5c

µ .

I The theory is scale-invariant only for gV = 0 and gV = 4π
n+1 .

I There is a current algebra at level one Ja
±(z)J

b
±(0) =

δab
z2 +

fabc Jc
±(0)
z .



BOSONIZED VERSION

The bosonized non-Abelian Thirring model is described by: S = S0 + k λab
π

∫
Ja
+ Jb

− .

Where S0 is a CFT, with left-right level k ∈ N∗ where:

Ja
±(z)J

b
±(0) =

1
k
δab

z2
+

fabc Jc
±(0)

z
,

Ja
+ = −i Tr(ta ∂+g g−1) , Ja

− = −i Tr(ta g−1 ∂−g) , Dab = Tr(tagtbg−1) .

Examples of S0: WZW or free fermion theory with currents realised in the quark representation.

Consider S0 been the WZW action Witten 83:

SWZW,k(g) = −
k

2π

∫
Tr

(
g−1∂+g g−1∂−g

)
+

ik
6π

∫
B

Tr
(

g1dg
)3
,

invariant under the left-right current algebra symmetry: g 7→ Ω(σ+) gΩ(σ−).



BOSONIZED VERSION

Symmetries of the model

I The left-right current algebra symmetry breaks down completely for a generic matrix λ.

I It is invariant under the generalized parity symmetry:

λ 7→ λT , g 7→ g−1 , σ± 7→ σ∓ .

Quantum aspects of the model

I The model is not conformal; the perturbation is not exactly marginal. The all-loop RG

Kutasov 89 : λab = λδab , µ
dλ
dµ

= −
1
k

cG λ
2

2(1 + λ)2
, facd fbcd = cG δab .

For general symmetric couplings λab, see: Gerganov–LeClair–Moriconi 01

I The corresponding effective action is invariant under the inversion of the coupling:

Kutasov 89 : λ 7→ λ−1 , k 7→ −k , k� 1 .
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THE RESUMMED ACTION

By a gauging procedure we can construct the following action Sfetsos 13

Sk,λ(g) = SWZW,k +
k
π

∫
Ja
+

(
λ−1 − DT

)−1

ab
Jb
− .

These models interpolate between a CFT and a σ-model whose target space is a group manifold.

Symmetries

I For λab � 1 we get the non-Abelian Thirring model S = S0 + k λab
π

∫
Ja
+ Jb

− .

I It is also invariant under the generalized parity symmetry:

λ 7→ λT , g 7→ g−1 , σ± 7→ σ∓ .

I Weak-strong duality:
S−k,λ−1 (g−1) = Sk,λ(g) .



THE RESUMMED ACTION

Constraints on the β-function

Assuming that the β function at one-loop in 1/k takes the form: βλ = µ dλ
dµ = − 1

k f (λ).

I Let’s consider the isotropic case λab = λ δab.

I From CFT perturbations we expect that:

f (λ) '
1
2

cG λ
2 +O(λ3).

I Due to the weak–strong duality we have the constraint:

λ2 f (λ−1) = f (λ) .

Let us now compute f (λ).
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DERIVING THE β-FUNCTIONS

Consider a 1+1-dimensional non-linear σ-model with action

S =
1

2πα ′

∫
(Gµν + Bµν)∂+Xµ∂−Xν .

The one-loop β-functions for Gµν and Bµν read:
Ecker–Honerkamp 71, Friedan 80, Braaten–Curtright–Zachos 85

µ
dGµν

dµ
+ µ

dBµν
dµ

= R−
µν +∇−

ν ξµ ,

where the last term corresponds to field redefinitions (diffeomorphisms).

Generalities:

I The Ricci tensor and the covariant derivative includes torsion, i.e. H = dB.

I The σ-model is renormalizable within the zoo of metrics and 2-forms.

I It is not given that the RG flows will retain the form at hand of Gµν and Bµν.



ISOTROPIC CASE

It turns out that the RG flow retains the form of the σ-model, the coupling λ is flowing.

The β-function reads: Itsios–Sfetsos–KS (2014)

βλ = µ
dλ
dµ

= −
cG λ

2

2k(1 + λ)2
, 0 6 λ 6 1 , and k does not flow .

Properties of the flow

I It behaves accordingly around λ� 1 =⇒ βλ ' − cG λ
2

2k +O(λ3) .

I It is invariant under the weak–strong duality, i.e. λ 7→ λ−1 , k 7→ −k.

I The β-function can be solved explicitly:

λ − λ−1 + 2 ln λ = −
cG

2k
(t − t0) ,

where UV at λ→ 0 and IR at λ→ 1−.

S = SWZW,k + k λ
π

∫
Ja
+ Ja

− ⇔ Sk,λ(g) = SWZW,k +
k
π

∫
Ja
+

(
λ−1 − DT

)−1
ab Jb

−
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THE ANISOTROPIC SU(2) CASE

Beyond the isotropic case

Consider the SU(2) case and λab = diag(λ1, λ2, λ3), then the RG flows read

µ
dλ1

dµ
= −

2
k
(λ2 − λ1λ3)(λ3 − λ1λ2)

(1 − λ2
2)(1 − λ2

3)
, and cyclic in 1,2,3 .

Properties

I In agreement with the literature LeClair–Sierra 04.

I For small coupling λi � 1, we get the Lagrange system:

µ
dλ1

dµ
= −

2
k
λ2λ3 +O(λ3) .

I For couplings around one we get the Darboux–Halphen system:

µ
dx1

dµ
=

x2
1 − (x2 − x3)

2

2 x2 x3
+O (1/k) , λi = 1 −

xi

k
, k� 1 .

I These were studied by Lagrange 1788, Halphen 1881 and they admit a Lax pair
formulation Takhtajan 92. What about the interpolating system?
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CONCLUSION & OUTLOOK

Based on symmetries and RG flows we conjectured our resummed action

Sk,λ(g) = SWZW,k +
k
π

∫
Ja
+

(
λ−1 − DT

)−1

ab
Jb
− .

enraptures the all-loop anisotropic Thirring model S = SWZW,k + k λab
π

∫
Ja
+ Jb

− .

Extra properties

I The model turns to be classically integrable for a number special cases:

1. Semi-simple group with isotropic coupling
Sfetsos 13, Itsios–Sfetsos–KS–Torrieli 14

2. Symmetric cosets with isotropic coupling
Hollowood–Miramontes–Schmidtt 13

3. SU(2) case and diagonalizable λab Sfetsos–KS 14.

I Type-II supergravity embedding with non-trivial RR fluxes Sfetsos–Thompson 14

New fixed points??? CFT with different left-right levels could do the trick.
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