

Simulate the DAQ for the VMM-FE-ASICs

A. Stylianidis [Undergraduate Student of Computer Science UoPeloponnese]

N. Benekos [NTUA]

Outline of Presentation

- Introduction
 - Motivation
 - Semantics
- Program Description and Features
- Future Steps
- Summary

Introduction - Motivation

In the framework of NSW Project update for ATLAS detector there is a need to test the DAQ system for the VMMxx electronic chip.

There is ultimate need to simulate the response of VMMxx cards, since it is the missing component.

Introduction - Motivation

- ▶ The DAQ software system of the previous version of VMMxx is available.
- ▶ A computer simulator written in C++ using the QT framework was implemented, with the following features :
 - ▶ I. Dynamic
 - Very wide flexibility in the simulated UDP packages created
 - 2. Ability to load real datasets and simulate the behavior for the real case.
 - ▶ 3. User friendly GUI for easy use by the physics users not only at CERN
- In the following slides the code characteristics and the program itself are presented in detail.

Preview of the simulator

Words -	+ -		Words	+ -	Word Specs	
	•		frameCounte	er 🔻	minApparence	1
Restrictions	+		Restrictions	+	maxApparence	1
Electronic Cards	0		Electronic Car	rds 16	changeable	true
Max Words per Packet	0		Max Words pe	er Packet 10	setOnlyOnce	false
Words Len (bits)	0		Words Len (bi	its) 32	trigger	true
Trigger Frequency (Hz)	0		Trigger Frequency (H:	z) 200	position	0
How many events	0		How many ev	vents 3		
Electronic Cards First IP	0		Electronic Car First IP	rds 192.168.2.1		
DAQ IP	0		DAQ IP	127.0.0.1		
DAQ Port	0	N.T.U. Athens	DAQ Port	6006		
Dummy Data	O Real Data	BROOKHAVEN NATIONAL LABORATORY	Dummy D	ata Real Data		
Save Load Co	onfig Load Data	Start Run	Save	Load Config Load D	ata	
Config File: no fil Data File: no fil			Config File: Data File:	/home/angelos/Doo	cuments/temp/qtG	UI/myGui/final2/co

Program screen shot before any input

The window with a loaded file, with initialization information

Restrictions Panel

naxValue ncrease 31 0x0 NaN

Start Run

- Special terminology that will be used in the rest of the presentation :
 - "BIT FIELD" → A series of bits that can be treated together.
 - → "WORD" → It's a bit sequence that is recognized by the current architecture as an instruction.
 - "PACKET" → It's equivalent of a post-office envelope. Consists of the headers and the main information(data).

Normally the UDP header is taken from the system, but in our case we build a custom UDP header using raw data. This is implemented to allow for the user to define custom IP address for them VMMxx for the proposes of his simulation.

Code Structure

Main purpose of the program is to create and transmit custom packages, with characteristics ("restrictions") defined by the user.

▶ Each "part" (=bit field) of the "word" is treated according to the restriction referring to that bit field.

Each restriction set by the user affects the corresponding bit field

Restrictions Panel

- Each restriction defines:
 - The bit field which is referring at:
 - From Bit $n_1 \rightarrow$ To Bit n_2
 - The minimum and maximum allowed values of this bit-field
 - The way in which the bit-field handles its value.
 - ▶ Either remain static
 - Change Randomly
 - ▶ Changing by step + I

- Each "word" obeys also to a set of (user defined) restrictions:
 - Number of occurrences
 - "Changeable" and/or "Send only one"
 - This is to gain CPU power.
 - There are two case scenario where we can know the bit field value before we need it.
 - The case where we know from the beginning that when we set the bits they will never change.
 - → STATIC WORD
 - And the case where a word is never going to change after the first time that the user (electronic cheap VMMxx) sets it.
 - → STATIC & CHANGEABLE WORD

Trigger

- Trigger refers to a word that changes only when the trigger hits. When a user(VMMxx) needs it, it just takes it with the current value.
- The only way for the value of that word to be changed is by Object of class Trigger.
- **Position**
 - The position of the word in packet (1st 2nd ...)

Package Panel

- From this panel new words and restrictions can be created, as well as various parameters of the simulation can be regulated.
 - Electronic Cards:
 - number of VMMxx to be used
 - How many events:
 - the user can choose how many events he will run, either with dummy or real data
 - Electronic Cards First IP:
 - The user can change the sender's IP. The IP's are generated one-by-one starting from the first-one.

- In the following example real data are used.
 - Set-up the description of data model
 - Load the root ntuple with the real data
 - ▶ Run the simulation and...
 - Capture the communicated packages with tcpdump sniffer.
 - ▶ tcpdump —i lo 'udp port 6006' —c l0 —e —XX

Data Model							
	byte 3	byte 2	byte I	byte 0			
frame counter	0×0	trig cnt l	trig cnt2	trig cnt3			
srs data header	0×0	0x4C	0×4E	0×42			
srs header info	board id	0×0	0×0	user def			
data	bits 31-19 amp	bits 18-6 time		bits 5-0 ad			

- UDP Header
- frame counter
- srsDataHeader
- srsHeaderInfo
- Data

(no line)

12

Future Steps

Thank you

I would like to thank the following people who gave me the opportunity to be here and also help me during my time here.

- Prof. Theodora Papadopoulou
 - For giving me the opportunity to be here and running all the background procedures
- Rector Prof. Konstantinos Masselos
 - For giving me the opportunity to be here
- Dr. Nectarios Benekos
 - For being my supervisor and for teaching me all the interesting things at test-beam and for being so patient.
- Prof. Theo Alexopoulos and all NTUA-HEP members
 - For giving me the opportunity to join the NTUA group and giving me the chance to work with them

