J/ψ & ψ(2S) measurement with ATLAS 2012 @ 8TeV

J/ψ, ψ(2S) → mu mu April 2015

4/15/15

Kostas Karakostas

Overview

- ✓ Introduction
- ✓ ATLAS Detector
- \checkmark J/ ψ ψ (25) analysis
 - Data & event selection
 - Event weight
 - Measured quantities
 - Fit model
 - Results
 - Comparison with theory
 - Systematics
- ✓ Summary

Introduction

- Ever since the discovery of J/ψ in 1974 study of quarkonium probes hadron configuration and the non pertubative behavior of QCD.
- Existing theoretical calculations have limited ability to model properly the production and decay of these states. The Color Singlet (CS) mechanism alone is insufficient to account for experimental measurements
 - > In CS model only states with same quantum numbers as the resulting quarkonium contribute to the formation of bound state.

- Non-Relativistic QCD (Color Octet) in addition to CS provides the possibility of quarkonium formation in a colored state, which subsequently decays into a physical singlet quarkonium bound state through non-pertubative emission of gluons.
- LHC creates a test bench, highly populated with quarkonia, which will enable stringent tests of existing theoretical models across a large range of momentum.

ATLAS Detector

General purpose detector at the LHC

Tracking

Silicon (Pixel + SemiConductor Tracker) and Transition Radiation Tracker 2 T solenoidal field

Muon identification

Dedicated tracking chambers 0.5-2 T toroidal field

- 10 µm Impact Parameter resolution
- > $\sigma m (J/\psi-Y) \sim 60-120 \text{ MeV (ID dominated)}$

Analysis Overview

- Measurement of:
 - \checkmark J/ ψ and ψ (25) differential cross-sections:
 - \rightarrow Performed in slices of p_T and absolute rapidity
 - For both prompt and non-prompt production
- Measurement perform via unbinned maximum likelihood fit on mass and pseudo-proper time (2D)
- Through the fit prompt and non-prompt yields are extracted

Prompt: from QCD sources with lifetime consistent with lifetime resolution

Non-Prompt: from long-lived sources like b-hadrons decays

Data & Event Selection

- 2012 Data at 8 TeV corresponding 11.4 fb-1
- Quality approved data Muons:
 - Combined muons
 - $p_{T} > 4 \text{ GeV}, |\eta| < 2.3$
 - MCP cuts

Dimuon:

- $p_{T} > 8 \text{ GeV}, |y| < 2.0$
- $m(\mu\mu)$: 2.6 4.0 GeV
- $-\chi 2/ndf < 250$
- Trigger matching used, dimuon trigger around J/ψ mass each muon with $p_{\scriptscriptstyle T}$ > 4 GeV

• Results are determined after correcting for [w -1 = $A(p_T,y) \cdot \epsilon_{\mu 1}(p_T,q^*\eta) \cdot \epsilon_{\mu 2}(p_T,q^*\eta) \cdot \epsilon_{trig}$]:

Detector Acceptance

Muon reconstruction efficiencies

Trigger efficiency

Weights are applied per event

K. Karakostas

Event Weights

Detector Acceptance

- Generate "FLAT" unpolarised acceptance(same technique widely used in onia analysis)
- Two mass points $(J/\psi \text{ and } \psi(25))$
- Weight applied using linear interpolation/extrapolation of the acceptance between the two points
- − Ranges 8 < $p_{T}(μμ)$ < 110 GeV, |y| < 2.0

Variation of S-A hypotheses considered in systematics as a correction factor

- Officially produced maps
- Tag-and-Probe method used for calculations

100 pseudo experiments (with map bins varied according to their uncertainties)

Variation on analysis bins population provides the uncertainty

Trigger efficiency

$$- \quad \boldsymbol{\epsilon}_{\mathsf{trig}} = \boldsymbol{\epsilon}(p_{\mathsf{T}^{\mu 1}}, \, \boldsymbol{\eta}^{\mu 1}, \, \boldsymbol{q}^{\mu 1}) \cdot \boldsymbol{\epsilon}(p_{\mathsf{T}^{\mu 2}}, \, \boldsymbol{\eta}^{\mu 2}, \, \boldsymbol{q}^{\mu 2}) \cdot \boldsymbol{C}_{\mu \mu}(\Delta R, \, \boldsymbol{y})$$

Functional (for the extra quality cuts)

Systematics assessed as in Muon reconstruction

Analysis Measured Quantities

• The double differential cross-sections for each J/ψ and $\psi(2S)$:

$$\frac{\mathrm{d}^{2}\sigma(pp \to \psi)}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} \times \mathcal{B}(\psi \to \mu^{+}\mu^{-}) = \frac{N_{\psi}^{\mathrm{p}}}{\Delta p_{\mathrm{T}}\Delta y \times \int \mathcal{L}dt}$$
$$\frac{\mathrm{d}^{2}\sigma(b\bar{b} \to \psi)}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} \times \mathcal{B}(\psi \to \mu^{+}\mu^{-}) = \frac{N_{\psi}^{\mathrm{np}}}{\Delta p_{\mathrm{T}}\Delta y \times \int \mathcal{L}dt}$$

- Where N is the weighted-corrected signal yield acquired from the fit, $\Delta p_{\scriptscriptstyle T}$ and Δy is the given bin interval
- The ratio analysis is determined for (non-)prompt by:

$$R^{p,np} = \left\{ \frac{N_{\psi(2S)}}{N_{J/\psi}} \right\}^{p,np}$$

• And the non-prompt J/ψ and $\psi(25)$ fractions using:

$$f_B^{\psi} \equiv \frac{pp \to B + X \to \psi X'}{pp \xrightarrow{\text{Inclusive}} \psi X''} = \frac{N_{\psi}^{\text{np}}}{N_{\psi}^{\text{np}} + N_{\psi}^{\text{p}}}$$

- · All quantities are extracted simultaneously from any single fit.
- Independent fits are performed to each of the analysis bins (of p_T and rapidity).

Fit model

 Weighted unbinned maximum log-likelihood fit is performed in 2D, mass and pseudo-proper time

Mass:

- Crystal-ball + Gaussian for signals
- Flat for prompt background
- 1st order polynomial for non-prompt background
- Exponential for double-sided background

$PDF(m, \tau) = \sum_{i=1}^{7} \oplus f_i(m) \cdot h_i(\tau) \otimes g_i(\tau)$
i=1

i	Type	Source	$f_i(m)$	$h_i(au)$
1	J/ψ	P	$\omega_i B_1(m) + (1 - \omega_i) G_1(m)$	$\delta(au)$
2	J/ψ	NP	$\omega_i B_1(m) + (1 - \omega_i) G_1(m)$	$E_1(\tau)$
3	$\psi(2S)$	P	$\omega_i B_2(m) + (1 - \omega_i) G_2(m)$	$\delta(au)$
4	$\psi(2S)$	NP	$\omega_i B_2(m) + (1 - \omega_i) G_2(m)$	$E_2(\tau)$
5	Bkg	P	F(m)	$\delta(au)$
6	Bkg	NP	$C_1(m)$	$E_3(au)$
7	Bkg	NP	$E_4(m)$	$E_5(\tau)$

- Pseudo-proper time:
 - Lifetime resolution using double Gaussian (fixed mean=0)
 - Prompt signal and background using the resolution term
 - Non-prompt lifetimes from RooDecay as single exponentials
 - Also a Double-sided RooDecay for one background
- Possible variations of these models are considered within fit systematics

Fit Results

Randomly select 3 bins out of 172:

Low p_T – Low Rapidity

 $Mid p_{T} - Mid Rapidity$

High p_T – High Rapidity

Cross-Section Results

Prompt and Non-Prompt J/ ψ and $\psi(2s)$ - Errors are statistical + Systematics Each increasing rapidity slice is scaled by x10

J/ ψ , ψ (2S) $\rightarrow \mu^+ \mu^-$ Cross-Section Theory Ratios

Prompt NLO NRQCD arXiv:1212.5293v3

Non-Prompt FONLL arXiv:1205.6344v1

K. Karakostas

 J/ψ $\psi(25)$ Prompt Non-Prompt Non-Prompt Prompt ATLAS Work in progress ATLAS Work in progress ATLAS Work in progress ATLAS Work in progress NRQCD FONLL NRQCD FONLL \s=8 TeV L = 11.44 fb \s=8 TeV L = 11.44 fb⁻¹ \s=8 TeV L = 11.44 fb⁻¹ $V_{s=8} \text{ TeV}$ L = 11.44 fb⁻¹ Prompt J/w Cross-Section Non Prompt J/w Cross-Section Prompt ψ(2S) Cross-Section Non Prompt ψ(2S) Cross-Section Data [J/ψ] ____ Data [J/ψ] — Data [ψ(2S)] — Data [ψ(2S)] Theory / Data Theory / Data Theory / Data Theory / Data $1.75 \le |v| \le 2.00$ 1.75 ≤ |y| ≤ 2.00 1.75 < |v| < 2.00 1.75 < |v| < 2.00 1.50 ≤ |y| < 1.75 1.50 ≤ |y| < 1.75 1.50 ≤ |y| < 1.75 $1.50 \le |v| < 1.75$ 1.25 ≤ |v| < 1.50 $1.25 \le |y| < 1.50$ 1.25 < |v| < 1.50 1.00 ≤ |y| < 1.25 1.00 ≤ |y| < 1.25 $0.50 \le |y| < 0.75$ $0.50 \le |v| < 0.75$ 0.50 ≤ |v| < 0.75 0.50 ≤ |v| < 0.75 $0.25 \le |v| < 0.50$ 0.25 ≤ |v| < 0.50 0.25 ≤ |v| < 0.50 $0.00 \le |y| < 0.25$ $0.00 \le |y| < 0.25$ 0.00 ≤ |y| < 0.25 $0.00 \le |y| < 0.25$ 8 9 10 $\mathbf{p}_{_{\mathrm{T}}}(\mu\mu)$ [GeV] p_(μμ) [GeV] **p_(μμ) [GeV]**

Reasonable agreement over a large scale, data overshoots theory at high p_T and high rapidity 12

Ratio and Fraction Results

Non-prompt fraction of J/ψ and $\psi(25)$ Ratio of $\psi(25)$ to J/ψ production in prompt and non-prompt Each increasing rapidity slice is scaled by x10

Non-Prompt Fraction

 $\psi(2S)/J/\psi$ Ratio

J/w $\psi(2S)$

Prompt

Non-Prompt

Systematics

- Acceptance → S-A factors
 (correction tables for the central value provided for various S-A hypotheses)
- Muon reconstruction efficiency
 - 100 pseudo experiments (with map bins varied according to their uncertainties), variation on analysis bins population provides the uncertainty
- Trigger efficiency
 - Same procedure as in muon reconstruction case
- Inner detector tracking efficiency: 1% (0.5% applied coherently)
- Luminosity: 2.8%, (cancels in prompt non-prompt ratio and in non-prompt fractions)
- Fit model
 - Various alterations of PDF for fit model components, re-fit with new models
 - Treat maximum deviations as fit model uncertainty
- Bin Migration effects

Total Systematic: Sum in quadrature

Systematics

- For each measured quantity the relative statistical error and all (mentioned above) systematic uncertainties are calculated [(measurement types) \times 8 (rap. Bins) \rightarrow 64 plots]
- For simplicity few are shown here...

✓ Accurate measurement performed at 8TeV for: J/ψ and $\psi(2S)$ prompt and non-prompt differential cross-sections, non-prompt fractions and prompt and non-prompt $\psi(2S)$ to J/ψ ratios

 \checkmark Very good agreement with dominant theoretical models over a large scale data overshoots theory at high p_{\top} and high rapidity

$$J/ψ, ψ(2S) → μ+ μ-$$

~ Back Up~

