Neutrino Mixing and the Search for CP Violation

Christos Touramanis
HEP 2015
Developments in High Energy Physics and Cosmology
Athens, 16 April 2015

A century of elusive neutrinos

- 1930: proposed by Pauli
 - 1934: beta decay theory, including neutrino, by Fermi
- 1956: observation of the neutrino (Reines, Cowan)
- 1957: the neutrino is left-handed (Goldhaber)
- 1962: muon-neutrino discovery at the AGS (Brookhaven)
- 1963: neutrino mixing proposed by Pontecorvo, Nakagava (PMNS)
- 1968: solar neutrino problem in Davis experiment first results
- 1973: ν-e elastic scattering at CERN (discovery of neutral currents)
- 1999: Super-Kamiokande establishes atmospheric neutrino oscillations
- 2001: SNO establishes solar neutrino oscillations
- 2003-05: KAMLAND & K2K observe man-made neutrino oscillations
- 2012-13: T2K, Daya Bay, RENO establish large θ_{13}
- 2015-20: T2K, NoVA searching for MH, evidence of CPV
- 2025-35: DUNE, T2HK to discover CPV, measure "unitarity triangle"

Neutrinos: facts and open questions

- ✓ No neutrino mass term (mechanism) in Standard Model
- ✓ 3 mass eigenstates (v_1, v_2, v_3) mixing into 3 WI eigenstates (v_e, v_u, v_τ)
- ? Unitarity of mixing matrix extra states (steriles)
- ? Mass Hierarchy (MH)
- ? CP Violation
- ? θ_{23} exactly 45°; octant
- Baryon Asymmetry: Leptogenesis?
- Inflation and Unification (coincidences?):
 - ➤ Seesaw, heavy neutrinos ~10¹⁴GeV
 - ➤ Inflation field ~10¹³GeV
 - Interaction unification ~10¹⁶GeV

3 neutrino mixing

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
 flavour states PMNS matrix mass states

$$\begin{split} \textit{U_{PMNS}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \textit{C_{23}} & \textit{S_{23}} \\ 0 & -\textit{S_{23}} & \textit{C_{23}} \end{bmatrix} \begin{bmatrix} \textit{C_{13}} & 0 & \textit{$S_{13}e^{-i\delta_{CP}}$} \\ 0 & 1 & 0 \\ -\textit{$S_{13}e^{+i\delta_{CP}}$} & 0 & \textit{C_{13}} \end{bmatrix} \begin{bmatrix} \textit{C_{12}} & \textit{S_{12}} & 0 \\ -\textit{S_{12}} & \textit{C_{12}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ & \text{Atmospheric,} & \textit{ν_{μ} Long BL,} & \text{Solar,} \\ & \textit{ν_{μ} Long BL} & \text{reactor Short BL} & \text{reactor Long BL} \end{split}$$

 $C_{ij}(S_{ij})$ represent $\cos \theta_{ij}(\sin \theta_{ij})$, δ_{CP} the CP violating phase Majorana phases ignored

Neutrino oscillation probability

- 2-neutrino mixing In vacuum (no matter effect) $P(v_{\alpha} \rightarrow v_{\beta}, t) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4\,E}\,L\right)$ Amplitude determined by mixing angle θ Frequency determined by mass splitting Δm and L/E
- 3-neutrino mixing including matter effect

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) = & 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}(1 + \frac{2a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2})) \\ + & 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta_{CP} - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ & - & 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta_{CP}\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ + & 4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta_{CP})\sin^{2}\Phi_{21} \\ & - & 8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E_{\nu}}\cos\Phi_{32}\sin\Phi_{31}, \end{split}$$

$$\Phi_{ji} = \Delta m_{ji}^2 L/4E_{\nu} \qquad a \equiv 2\sqrt{2}G_F n_e E_{\nu}$$

Mass hierarchy

Neutrino oscillation experiments

Reactor SBL: θ_{13} Daya Bay, Reno, D-Chooz T2K Accelerator LBL: θ_{13} , (MH, δ_{CP}) **NOvA** 2015 2020 2025 2030 2035 PINGU, ORCA JUNO Reactor LBL: MH DUNE, T2HK Accelerator LBL: MH, δ_{CP} **FNAL SBL** Steriles, Nu. Int.

Reactor Short BaseLine experiments

- 2-neutrino mixing (v_e disappearance)
- No parameter degeneracy
- Clean measurement of θ₁₃
- Liquid scintillator
 - Gd doping: increases neutron capture efficiency
- High statistics
- Near & Far detectors: control systematics

A Daya Bay detector

- Three zones structure:
 - Target: 20 t 0.1% Gd-loaded scintillator.
 - γ-catcher: 20 t scintillator
 - Buffer shielding: mineral oil
- Top and bottom optical reflectors
 double the photon coverage.
- 192 8" PMTs collect ~160 p.e./MeV

8 identically designed detectors to reduce systematic uncertainties

$$\frac{N_{\rm f}}{N_{\rm n}} = \left(\frac{N_{\rm p,f}}{N_{\rm p,n}}\right) \left(\frac{L_{\rm n}}{L_{\rm f}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \left[\frac{P_{\rm sur}(E,L_{\rm f})}{P_{\rm sur}(E,L_{\rm n})}\right]$$

Reactor experiment systematics control

Reactor measurements of θ_{13}

Reactor results

$$\sin^2 2\theta_{13} = 0.084^{+0.005}_{-0.005}$$

$$|\Delta m_{ee}^2| = 2.44^{+0.10}_{-0.11} \times 10^{-3} (eV^2)$$

$$\chi^2 / NDF = 134.7 / 146$$

5MeV bump

Accelerator Long BaseLine experiments

Two types of oscillation searches:

 $v_{\mu}(\rightarrow v_{\tau})$ disappearance: θ_{23}

 v_e appearance: sensitivity to θ_{13} and δ_{CP} , mass hierarchy, through sub-leading terms in the appearance oscillation probability (α L/E) and matter effect (α L×E)

T2K

- The first off-axis long-baseline neutrino oscillation experiment
- Narrow band beam, peak E = 600 MeV, L = 295km (matter effect correction of order 5%)

Near detector complex: INGRID (on-axis) and MD280 (off-axis) constrain neutrino flux and cross-section.

Far detector: Super-K is a 50kton Water Cherenkov capable of efficient muon/electron discrimination.

Searches for ν_{μ} disappearance and ν_{e} appearance with sensitivity to θ_{13} , δ_{CP} .

T2K: the power of the Near Detector

Constrain rate (flux × cross section) and cross section parameters with ND data

Correlation between energy/samples taken into account ν_e at SK can be constrained by ν_μ at ND(same parent particle)

Combined appearance + disappearance analysis!

[arXiv:1502.01550] 2010-2013 data runs: **10% of total expected data**

Simultaneous ν_{μ} and ν_{e} fit under a **three-flavor oscillation hypothesis**: $\mathbf{Vary}~\delta_{CP}, \Delta m^2_{32}, \theta_{13}, \theta_{23}.$ Frequentist approach.

Combined with reactor experiments: hints toward $\delta_{CP} = -\pi/2$

Bayesian probability

	NH	IH	Sum
$\sin^2\theta_{23} \le 0.5$	0.179	0.078	0.257
$sin^2\theta_{23}$ >0.5	0.505	0.238	0.743
Sum	0.684	0.316	1.0

T2K status & outlook

- Last run: stable beam at 320kW
- Plan for 2015: 350kW
- Recently exceeded integrated 10²¹ POT (approved for 8x10²¹)
- So far 70% neutrinos, 30% antineutrinos
- Aim for summer 2015: antineutrino oscillation with ~5x10²⁰ POT
- Continue to 2021, search for CP Violation with up to 2.5σ sensitivity
- Combine with NOvA and SK to increase reach.

MINOS/MINOS+ recent results

[arXiv:1502.07715]

New results from a three-flavor combined disappearance and appearance analysis

Beam and atmospheric neutrino data

Best fit (IH):

$$|\Delta m^2_{32}| = 2.37^{+0.11}_{-0.07} \times 10^{-3} \text{ eV}^2$$

 $\sin^2 \theta_{23} = 0.43^{+0.19}_{-0.05}$

Most precise $|\Delta m^2_{32}|$ measurement! Consistent with maximal mixing. Marginal preference for inverted hierarchy, lower octant of θ_{23} .

NOvA

 $E \approx 2 \text{ GeV, L} = 810 \text{ km}$

Physics goals:

 $v_{\rm e}$ appearance: θ_{13} , $\delta_{\rm CP}$, mass hierarchy v_{μ} disappearance: $\sin^2\!2\theta_{23}$, $|\Delta m^2_{32}|$

Combined appearance and disappearance:

 \rightarrow octant of θ_{23}

Construction complete and data taking with both detectors ongoing! First oscillation results expected in the next few months!

Sensitivity to v_e appearance is about 3 sigma with current data.

NOvA expected sensitivity

[NuTel2015]

Ruling out no CP violation as function of true value of δ_{CP}

Hierarchy resolution as a function of true value of δ_{CP}

Future experiment: T2HK

Integrated beam power (MW 107 sec) 76% (68%) parameter space

coverage at 3σ (5σ)

Megaton-scale Water Cherenkov detector (20-25x larger than Super-K)

Access Tunnel

Electrical Machinery Room

Goal: δ_{CP} determination

Increased zenith angle resolution

- e/µ discrimination
- Low energy threshold
- Statistical separation of v_e vs. \overline{v}_e
- Large statistics!

Final funding decision by 2017

Total Length 247.5m (5Compartments)

Water Purification System

Integrated beam power (MW 107 sec)

 δ_{CP} error of <19 deg for all values

Future experiment: DUNE

Deep Underground Neutrino Experiment (formerly LBNE/ELBNF/LBNF)

LBNF and DUNE

- Long Baseline Neutrino Facility at Fermilab and SURF (FNAL/DOE)
 - Proton complex, neutrino beam, ND and FD facilities
 - PIP-II upgrade to deliver 1.2MW, tunable, wide-band n beam by 2024
 - Further upgrades to 2.4MW by ~2030
- DUNE: 550 signatories, 147 institutions, 24 countries
 - To construct and operate a (staged) 40 kt LAr detector at SURF, 1300 km from Fermilab, underground at 4300 mwe
 - And a high-granularity, high-precision Near Detector
- To integrate 120 kt*MW*yr by ~2035
 - CP violation
 - Mass Hierarchy
 - Test the 3-neutrino paradigm (unitarity of PMNS)
 - Search for nucleon decay
 - Atmospheric and astrophysical neutrino measurements
- First collaboration meeting Jan 2015, second as we speak

DUNE expected sensitivity

Future experiment: PINGU

Precision IceCube Next Generation Upgrade

A new in-fill array for IceCube PINGU LOI, arXiv:1401.2046

Primary goal: precision measurement of atmospheric oscillations with a focus on the **neutrino mass hierarchy determination**

(exploiting earth MSW effect)

JUNO

◆ Jiangmen Underground Neutrino Observatory, a multiple-purpose neutrino experiment, approved in Feb. 2013. ~ 300 M\$.

- 20 kton LS detector
- ♦ 3% energy resolution
- ♦ 700 m underground
- Rich physics possibilities
 - ⇒ Reactor neutrino
 for Mass hierarchy and
 precision measurement of
 oscillation parameters
 - **⇒** Supernovae neutrino
 - **⇒** Geoneutrino
 - **⇒** Solar neutrino
 - **⇒** Atmospheric neutrino
 - **⇒** Exotic searches

JUNO oscillation measurements

Detector under 700m overburden 53 km from two new power station complexes 26.6 GW by 2020 start, increasing to 35 GW

Other issues: sterile signs / anomalies

- LSND anti- v_e appearance (3.8 σ , 1995)
- MiniBooNE appearance, similar, 2012
- Reactor rate deficit, 2-3σ, compatible
 - Flux shape and integral?
- Gallium source deficit
- MINOS+ preliminary: stringent constraints
- T2K ND: central solutions exclusion
 SBN programme at FNAL (LAr detectors)
- SBND
- MicroBooNE
- ICARUS

3 baselines in Booster beam for final resolution

Outlook

- Exciting recent results
 - Accelerator and reactor experiments start to provide hints of δ_{CP} and MH
 - New results to come from T2K, NOvA, MINOS/MINOS+ in the next 5 years
- Next generation experiments (DUNE, Hyper-K, PINGU, JUNO) hold great promise for the next two decades
- A strong Short Baseline programme at FNAL will explore the sterile / anomalies landscape
- Most probably new questions will come up, a few discoveries, and hopefully some breakthrough to "the other side" of the "TeV scale" of the LHC

Quarks vs neutrinos

Unitarity Not assumed

Unitarity *Is* assumed.

