High Energy Thresholds in SUSY GUTs

A. Katsikatsou

Grand Unification

11111

University of Athens Nuclear and Particle Physics Section Athens - Greece

SU(2) Electroweak Force

In collaboration with A. Lahanas

Int.J.Mod.Phys. A26 (2011) 2027-2046, arXiv:1411.7150 [hep-ph]

HEP 2015

Recent Developments in High Energy Physics and Cosmology Athens 15-18 April, 2015

- Introduction GUT Model

- Introduction GUT Model
- **Proton Decay**

- Introduction GUT Model
- **Proton Decay**
- Methodology-HETs

- Introduction GUT Model
- **Proton Decay**
- Methodology-HETs
- Analysis-Results

- Introduction GUT Model
- **Proton Decay**
- Methodology-HETs
- Analysis-Results
- Conclusions

In supersymmetric Grand Unified Theories, **SUSY GUTs**:

The three fundamental forces of the Standard Model (SM) unify

Introduction - GUT Model

$$a_1 = a_2 = a_3 = a_{GUT}$$

given $M_{SUSY} \simeq 1 \text{TeV}$

- The symmetry $G_{SM} = SU(3) \otimes SU(2) \otimes U(1)$ is incorporated within a simple gauge group $G_{GUT} \Rightarrow$ electric charge quantization / magnetic monopoles.
- All the fermions of one generation belong to one or two representations of the group
- Nucleon instability

Main characteristics

Particle Content

The **fermions** of one generation, **along with the right handed neutrino**, are all contained in the same spinorial rep. 16_L .

The **generators** of SO(10) belong to the adjoint rep. **45**_V

The minimal **Higgs** fields content

$$A = \mathbf{45}_{H}$$

$$C + \overline{C}, C' + \overline{C'} = \mathbf{16}_{H} + \overline{\mathbf{16}}_{H}$$

$$T_{1}, T_{2} = \mathbf{10}_{H}$$
+ singlets

Doublet-Triplet splitting

Fulfilled through **Dimopoulos - Wilczek (D - W) mechanism**, assuming **the essential superpotential term**: $W_{2/3} = T_1^a A^{a\beta} T_2^{\beta}$, and demanding $\langle A \rangle$ along the B-L direction:

$$\langle A \rangle = diag(a, a, a, 0, 0) \otimes i\tau_2$$
, with $a \sim M_{GUT}$ and $\tau_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$.

Breaking SO(10) The spinorial and the adjoint sector break the symmetry of SO(10) with a different manner, yet simultaneously, thus in low energies the symmetry G_{SM} of the SM is left unbroken.

Superpotential
$$W = W_A + W_C + W_{ACC} + W_{2/3}$$

 W_A For desirable $\langle A \rangle$ for D-W mechanism

$$W_C$$
 For $\langle C \rangle = \langle \overline{C} \rangle = c \sim M_{GUT}$

 $W_{ACC'}$ Gives mass to pseudo - Goldstone bosons

 $W_{2/3}$ For the 2/3 splitting

In total 25 superheavy masses which affect the running of RGEs and are defined by 12 independent parameters.

Proton Decay Experimental Bounds

Super - Kamiokande : $\tau(p \to \bar{\nu}K^+) > 4 \times 10^{33} \text{ yrs.}$

Fundamental Physics at the Intensity Frontier [hep-ex] 1205.2671

Through D = 5 operators. Dominant decay mode for SUSY GUTS.

D = 5 decay operators

D=5 operators are induced **via the exchange** of superheavy color triplet Higgsinos in the $\mathbf{10_{H}}$. They arise from an effective superpotential which is inverse proportional to a mass parameter (**effective mass** M_{eff}):

$$M_{eff} = \frac{M_3 M_3'}{M_2}$$

$$\tilde{\mathbf{u}} \qquad \tilde{\mathbf{d}}_{\mathbf{L}} \qquad \tilde{\mathbf{u}} \qquad \tilde{\mathbf{d}}_{\mathbf{L}}$$

$$\stackrel{\tilde{\mathbf{u}}}{\Rightarrow} \qquad \tilde{\mathbf{H}}_{\mathbf{c}} \qquad \tilde{\mathbf{H}}_{\mathbf{c}} \qquad \tilde{\mathbf{d}}_{\mathbf{L}} \qquad \tilde{\mathbf{u}} \qquad \tilde{\mathbf{d}}_{\mathbf{L}}$$

After "dressing"

High Energy Thresholds in SUSY GUTs

Proton decay rate

$$\Gamma(p \to \overline{\nu} \, K^+) \, = \, \sum_i \, \Gamma(p \to \overline{\nu}_i \, K^+) \, = \, \left(\frac{\beta_p}{M_{eff}}\right)^2 |A|^2 \, |B_i|^2 \, C \qquad \text{with } i = e, \, \mu, \, \tau.$$

- β_p The hadronic matrix element between the proton and the vacuum state of the 3 quarks operator. Calculation from latice gauge theory Aoki et al. '08
 - f A Depends on quark masses at 1 GeV in \overline{MS} and CKM matrix elements
- \boldsymbol{B}_t The functions that describe the dressing of the loop diagrams
- C Contains chiral Lagrangian factors, which convert a Lagrangian involving quark fields to the effective Lagrangian involving mesons and baryons. Chadha et al. '83

High energy thresholds (HET)

The effect of the low and high energy thresholds in \overline{DR} , in the running of the **RGEs**

(Methodology-HETs)

$$\begin{array}{rcl} a_{i}^{-1}(\mu) & = & a_{G}^{-1}(M_{GUT}) + \frac{1}{2\,\pi} \left(b_{i}^{SM} + b_{i}^{SUSY}\right) \ln\frac{M_{GUT}}{\mu} \\ \\ & + & \frac{1}{2\,\pi}\,\sum_{SM_{j}}\,b_{i}^{SM_{j}}\,\ln\frac{\mu}{m_{SM_{j}}} & \Leftarrow \text{ SM thres.} \\ \\ & + & \frac{1}{2\,\pi}\,\sum_{S_{k}}\,b_{i}^{S_{k}}\,\ln\frac{\mu}{m_{S_{k}}} & \Leftarrow \text{ SUSY thres.} \\ \\ & + & \frac{1}{2\,\pi}\,\sum_{H_{l}}\,b_{i}^{H_{l}}\,\ln\frac{M_{GUT}}{m_{H_{l}}} & \Leftarrow \text{ HET} \\ \\ & + & (2-\text{loops effects}). \end{array}$$

At the GUT breaking scale we impose:

Gauge coupling unification condition
$$a_1(M_{GUT}) = a_2(M_{GUT}) = a_3(M_{GUT}) \equiv a_G$$

Universal boundary conditions for the soft SUSY breaking parameters (mSUGRA/CMSSM)

$$m_i(M_{GUT}) = m_0 \quad M_i(M_{GUT}) = M_{1/2} \quad A_i(M_{GUT}) = A_0.$$

[the independent parameters of CMSSM are: m_0 , $M_{1/2}$, A_0 , $\tan \beta$, $\text{sign}(\mu)$] $\tan \beta = v_2/v_1$, with $v_{1,2} = \langle H_{1,2} \rangle$ (the Higgs fields of MSSM).

The effective mass parameter M_{eff}

- \rightarrow depends on the values of $a_i(M_Z)$ and
- → parameters stemming from the HET of the model
- ✓ and is restricted from the proton decay

Solving the system of the three 1-loop RGEs, with HET:
$$\frac{M_{eff}}{M_Z} = e^{h(\alpha'_i^{-1})} f(x)$$
.

The **massless parameter** x is defined as:

$$x \equiv \frac{a}{2c}$$
, $a \rightarrow \langle \mathbf{45} \rangle$, $c = \langle \mathbf{16} \rangle$,

At the GUT breaking scale we impose:

Gauge coupling unification condition $a_1(M_{GUT}) = a_2(M_{GUT}) = a_3(M_{GUT}) \equiv a_G$

Universal boundary conditions for the soft SUSY breaking parameters (mSUGRA/CMSSM)

$$m_i(M_{GUT}) = m_0 \quad M_i(M_{GUT}) = M_{1/2} \quad A_i(M_{GUT}) = A_0.$$

[the independent parameters of CMSSM are: m_0 , $M_{1/2}$, A_0 , $\tan \beta$, $\text{sign}(\mu)$] $\tan \beta = v_2/v_1$, with $v_{1,2} = \langle H_{1,2} \rangle$ (the Higgs fields of MSSM).

The effective mass parameter M_{eff}

- \rightarrow depends on the values of $a_i(M_Z)$ and
- → parameters stemming from the HET of the model
- ✓ and is restricted from the proton decay

Solving the system of the three 1-loop RGEs, with HET: $\frac{M_{eff}}{M_Z} = e^{h(\alpha_i^{-1})} f(x)$.

The **massless parameter** x is defined as:

$$x \equiv \frac{a}{2c}$$
, $a \rightarrow \langle \mathbf{45} \rangle$, $c = \langle \mathbf{16} \rangle$,

Parametrization of HET

If $M_L \equiv$ is the smallest mass of the superheavy particles and we set:

$$a_{\rm G}^{-1}(M_{\rm L}) \equiv a_{\rm G}^{-1}(M_{\rm GUT}) + \frac{1}{2\pi} b_{i}^{\rm GUT} \ln \frac{M_{\rm GUT}}{M_{\rm L}},$$

(Methodology-HETs)

and also

$$c_i \equiv \frac{1}{2\pi} \sum_{H_l} b_i^{H_l} \ln \frac{M_L}{m_{H_l}}.$$

Then

New boundary condition

$$a_i^{-1}(M_L) = a_G^{-1}(M_L) + c_i$$

at the scale M_{I} .

which takes into acount the contribution of all the HET through c_i .

- Include the impact of HETs from M_{GUT} to M_L .
- A random sample generator is used, which assigns random numbers to the GUT parameters p_i of the model.

(Methodology-HETs)

 The amount of the parameters of the superheavy spectrum is reduced dramatically.

Independent mass parameters

$$p_i \qquad (j=1,\cdots,12)$$

New parameters

$$\vec{c} = (c_1, c_2, c_3, M_L, M_{GUT})$$

- One avoids time-consuming scans over a multidimensional space.
- We seek for points in this new parameter region which, when we impose the set criteria, shrinks even more.
- The procedure is applicable to almost any GUT model The method becomes more useful, the more complex and numerous the superheavy particle content of the model appears to be.

n Decay Methodology-HETs Analysis-Results

Numerical procedure

The distribution of c_1 , c_2 , c_3 and M_L by twos, for x = 5.

- We produce a large number of random points $\vec{c}_{in} \equiv (c_i^{in}, M_I^{in}, M_{GIT}^{in})$. M_{CLT}^{in} = common and constant.
- We solve numerically the 2-loop RGEs.

$$c_3 = a_3^{-1}(M_L) - a_G^{-1}(M_L)$$
,

High Energy Thresholds in SUSY GUTS

(Methodology-HETs)

Normally M_L and M_{GUT} should not be far apart. For $\frac{M_L}{M_{GUT}} > 10^{-3}$. our approach is viable.

From the random number samples, we get in average $\log \frac{M_{GUT}}{M_{t}} \simeq 2.7$.

Inputs

- a_{em} ,
- Fermi coupling constant G_F ,
- Z boson physical mass M_2 ,
- top and tau physical masses and the running mass $m_b(m_b)$ in MS.
- Soft supersymmetric breaking parameters m_0 , $M_{1/2}$, A_0 , the value of $\tan \beta$ and the sign of the Higgsino mixing parameter ($\mu > 0$).
- The ratio x. The random sample generator define "slices" of the same x in the space of the vectors \vec{c} . Primarily, we choose x = 5. Large x moves M_L away from its normal values
- Mainly $M_{GUT} = 2 \cdot 10^{16} \, GeV$ for the most part of our analysis.

Electroweak precision measurements

- **Effective mixing angle** $(\overline{sin}_f^2\hat{\partial} \equiv s_f^2)$: in general, it occurs with descent values, with error $< 3\sigma$ ultimately it does not add up to the constraints.
- Strong coupling constant at M_Z ($a_{strong} \equiv a_s$)

It turns out that a_{strong} prefers region of the parameter space where the values of the soft breaking parameters, $M_{1/2}$ and mostly m_0 are **low to central**: for m_0 up to 1400 GeV and for $M_{1/2}$ up to 1300 GeV

This is expected since

- ullet for large values of $M_{1/2}$ and m_0 SUSY is absent, due to decoupling.
- large soft SUSY breaking parameters and in particular $M_{1/2}$, shrink the range of the allowed values of M_{eff} , because they affect the wino masses and in turn the B_i in the proton decay rate relation.

For this diagram and those which follow $\tan \beta = 10$ and $A_0 = 100$ GeV.

High Energy Thresholds in SUSY GUTs

High Energy Thresholds in SUSY GUTs

Proton decay constraint

$$M_{eff}(th) > M_{eff}(exp) \equiv \beta_p |A| \sqrt{\tau_p C \sum_i |B_i|^2}$$
 (*)

The points which satisfy (*)

- **-** give proton lifetime in the range $10^{34} 10^{37}$ years
- overlap with the majority of the points that yield gauge coupling unification with values of a_{strong} within the 2σ .
- Raising of m_0 and/or $M_{1/2}$ results to an homogeneous reduction of the gray region around a central point.

Other factors

The ratio x = 0.5 to x = 500.

- \bigcirc Small values of x favour the gauge coupling unification
- and fail completely to satisfy the proton decay constraint, since

$$\Gamma_p \sim \frac{1}{M_{eff}^2} \sim \frac{1}{f^2(x)}$$

3 a_{strong} with error < 2σ encourages central values of x.

 $\tan \beta$ A shift in $\tan \beta$ from 10 to 45

- causes small reduction in the number of points that succeed unification (Landau poles) and
- light raise in the number of those who give a_{strong} within the experimental bounds
- It also induces a significant decrease in \vec{c} s which fulfil the proton decay constraint (from 22% for $m_0 = M_{1/2} = 800 \text{ GeV}$, until 100% for $m_0 = 1500 \text{ GeV}$ and $M_{1/2} = 800$ GeV), as expected since B_i s depend on $\frac{1}{\sin 2\theta}$.

Universal trilinear coupling A_0 Gentle influence. Small, positive values support our analysis.

 M_{GUT} scale Pushing M_{GUT} higher offers easier satisfaction of the constraints.

Higgs mass and SUSY exclusion limits

Important factor, nowadays: the given results and limits by the LHC.

Neutral Higgs

ATLAS and CMS experiments: particle with mass \sim 126 GeV ($\sqrt{s}=8$ TeV). This particle has spin equal to zero and mainly positive parity couplings: Higgs boson.

Gluino and squark exclusion limits Assuming R parity conservation,

strong production of squarks and gluinos, is expected to dominate : $(pp \rightarrow \tilde{g}\tilde{g}, \, \tilde{g}\tilde{q}, \, \tilde{q}\tilde{q})$

ATLAS - CMS.

CMSSM: $m_{\tilde{a}} \gtrsim 1350$ GeV.

Chatrchyan 2014

Simplified models: $m_{\tilde{g}} \gtrsim 1200 - 1300 \text{ GeV}$ $m_{\tilde{a}} \gtrsim 900 \text{ GeV}$.

Upward tendency.

From A. Taffard

In our analysis, with $\tan \beta = 10$, $A_0 = 100$ GeV and $m_0 = M_{1/2} = 800$ GeV, for $M_{GUT} = 2 \cdot 10^{16}$ GeV: $m_h = 125.55 \pm 0.05$ GeV (with $\sigma = 1.8$ GeV) and $m_{\tilde{g}} \sim 1700$ GeV and the masses of the 1st and 2nd generation of

squarks occur at the same level. The **LSP** is always the lightest neutralino and is a pure bino.

CMSSM: with

 $\tan \beta = 30$, $A_0 = -m_0$ and $\mu > 0$ and $m_0 = M_{1/2} = 800$ GeV:

gluino and squark masses at the experimental exclusion limits. The lightest neutral Higgs has an average mass of 125 GeV.

High Energy Thresholds in SUSY GUTs

Conclusions

- We have presented a new approach towards treating, in a collective way, the large number of HET encountered in superheavy GUT quantities by mapping them to a few properly defined free parameters.
- This methodology is simple, less time-consuming and can be applied in any GUT model.
- The agreement with the whole of the limitations we have imposed is favoured from small to central values of m_0 and $M_{1/2}$ (500 GeV to 1.5 TeV) and from small, positive values of A_0 .
- The constraints set by the LHC experiment, regarding the mass of the neutral, lightest Higgs and the masses of the supersymmetric particles, support the choice of the aforesaid parameter region.
- \blacksquare Large values of $tan\beta$ make the satisfaction of proton decay constraint difficult.
- The adopted supersymmetric *SO*(10) model can fulfil all the set criteria, for soft masses with values at the limit of supersymmetry discovery in the next run of LHC.

Backup slides

Hisano, Murayama, Yanagida, '92, '93

- Constraint from proton lifetime experimental bounds.
- Constraint from gauge coupling constants RGEs with $a_3 = 0.118 \pm 0.007$
- Constraint from gauge coupling constants RGEs with $\Delta a_3 = 0.0035$
- $m_{\tilde{w}} > 45 \text{GeV}$ bound from LEP.

Low energy boundary conditions

At the lower scale M_Z : During the running of RGEs of gauge coupling constants, the effect of the low energy thresholds are encoded within a_i from the low energy boundary conditions that are imposed at M_Z

$$\hat{a}_{1}^{-1}(M_{Z}) = \frac{3}{5} a_{em}^{-1} \cos^{2} \partial (1 - \Delta_{\gamma} + \frac{a_{em}}{2\pi} \ln \frac{M_{S}}{M_{Z}})$$

$$\hat{a}_{2}^{-1}(M_{Z}) = a_{em}^{-1} \sin^{2} \partial (1 - \Delta_{\gamma} + \frac{a_{em}}{2\pi} \ln \frac{M_{S}}{M_{Z}})$$

 $\Delta_{\mathbf{v}}$: contributions from leptons and light quarks.

 ∂ : the weak mixing angle in \overline{DR} , which comprises boundary conditions at M_Z .

M_S: mass parameter representing the contribution of all the heavy particles of the SM (W, t, H^{+}) and of the sparticles.

The strong coupling constant a_{strong} (M_Z) in MS: output in our analysis.

$$\begin{split} a_1^{\prime -1}(M_Z) &= & a_{GUT}^{-1} + (2\,N_g - 6)\,\overline{\Lambda} - (\frac{2}{3}\,N_g + \frac{1}{2})\,_{SUSY} \\ &+ \frac{12}{5}\,\overline{M}_{V_3} + \frac{16}{5}\,\overline{M}_{V_1} + \frac{2}{5}\,\overline{M}_{V_2} + 10\,\overline{M}_{V_4} \\ &- \frac{3}{5}\,\overline{M}_{C_1} - \frac{3}{5}\,\overline{M}_{\overline{C}_1} - \frac{2}{5}\,\overline{M}_{C_2} - \frac{2}{5}\,\overline{M}_{\overline{C}_2} \\ &- \frac{2}{5}\,\overline{M}_3 - \frac{3}{5}\,\overline{M}_2 - \frac{2}{5}\,\overline{M}'_3 \\ &- \frac{6}{5}\,(\overline{\beta}_{G_{3,1}} + \overline{\beta}_{G_{3,2}}) - \frac{8}{5}\,(\overline{\beta}_{G_{1,1}} + \overline{\beta}_{G_{1,2}}) \\ &- \frac{1}{5}\,(\overline{\beta}_{G_{2,1}} + \overline{\beta}_{G_{2,2}}) \\ \\ a_2^{\prime -1}(M_Z) &= & a_{GUT}^{-1} + (2\,N_g - 6)\,\overline{\Lambda} - (\frac{2}{3}\,N_g + \frac{13}{6})\,_{SUSY} \\ &+ 6\,\overline{M}_{V_2} + 6\,\overline{M}_{V_4} - 2\,\overline{M}_{A_2} - \overline{M}_{C_1} - \overline{M}_{\overline{C}_1} \\ &- \overline{M}_2 - 2\,(\overline{\beta}_{G_{2,1}} + \overline{\beta}_{G_{2,2}}) \end{split}$$

$$\begin{split} a_3^{\prime -1}(M_Z) = & \qquad a_{GUT}^{-1} + (2\,N_g - 6)\,\overline{\Lambda} - (\frac{2}{3}\,N_g + 2)\,SUSY \\ & \qquad + 2\,\overline{M}_{V_1} + 4\,\overline{M}_{V_2} + 4\,\overline{M}_{V_4} - 3\,\overline{M}_{A_3} \\ & \qquad - \overline{M}_{C_2} - \overline{M}_{\overline{C}_2} - \overline{M}_3 - \overline{M}'_3 \\ & \qquad - (\overline{\bar{I}}_{G_{1,1}} + \overline{\bar{I}}_{G_{1,2}}) - 2\,(\overline{\bar{I}}_{G_{2,1}} + \overline{\bar{I}}_{G_{2,2}}) \end{split}$$

 $\overline{M}_{GUT} = \frac{1}{2\pi} \ln \frac{M_{GUT}}{M}, \qquad \overline{M}_{SUSY} = \frac{1}{2\pi} \ln \frac{M_{SUSY}}{M}, \qquad \overline{M}_i = \frac{1}{2\pi} \ln \frac{M_{GUT}}{M},$

 M_{SUSY} a common mass scale for the supersymmetric particles

 M_i the mass of every superheavy particle i which decouples.

Proton Decay Methodology-HETs Analysis-Results Conclusions

The ratio x

