Holographic fluids and integrability

Marios Petropoulos

CPHT - Ecole Polytechnique - CNRS

EESFYE 2015 - University of Athens

April 2015

Foreword

Riemann, Weyl and Cotton

Fluids and gravity

Holographic fluids

Integrability and resummation

Outlook

Holography

Originally: microscopic correspondence

type II string theory on
$$AdS_5 \times S^5$$

$$\updownarrow$$

$$N=4~YM~on~D=4~conformal~boundary~of~AdS_5$$
 with $g_{string}\leftrightarrow 1/g_{YM}$

<u>Later:</u> macroscopic extension

gravity plus matter on d = D + 1 asymptotically AdS background \updownarrow phenomenological description of states of a D-dim boundary CFT

Examples: AdS/QCD, AdS/CMT (superconductors, superfluids, ...)

Holography is a tool

- ► Ultimate goal: compute correlation functions in strongly coupled (conformal) field theories
- ► Alternatively: compute transport coefficients in fluids¹ fluid: hydrodynamic approximation of finite-T and finite-µ states of the (C)FT

Holographic fluid: hydrodynamic approximation of finite-T and finite- μ states of a boundary CFT holographically dual to some bulk gravitational set-up

 $^{^1}$ Kubo-like formulas: correlation functions \leftrightarrow transport coefficients

Fluid/gravity correspondence

Profound relationship

- ► Originally in a classical framework: relationship between two sets of non-linear equations, Einstein's Eqs. and Navier—Stokes Eqs. [Damour 1979; also Eling, Lysov, Oz, Strominger, ... since 2009]
- ► More recently within the holographic correspondence with a quantum perspective [Bhattacharyya, Hubeny, Loganayagam, Minwalla, Rangamani, ...since 2007]

Connected via renormalization-group flow from the boundary (UV) to the horizon (IR) where the former correspondence takes place

[Kuperstein, Mukhopadhyay, . . . since 2012]

Holographic fluids

Original motivation: determine transport properties

- ► Start with some bulk gravitational background related to some boundary fluid in local thermodynamic equilibrium
- Perturb and analyse the response using the bulk-boundary dictionary
- → perturbative response methods

Intriguing observation: some exact bulk solutions of Einstein Eqs. describe [Leigh, Petkou, Petropoulos '10, '11; Caldarelli, Leigh, Petkou, Petropoulos, Pozzoli, Siampos '12]

- non-trivial fluid stationary states
- on non-trivial boundary backgrounds
- \longrightarrow enable to probe substantially transport properties without response analysis [Mukhopadhyay, Petkou, Petropoulos, Pozzoli, Siampos '13]

Here

The question: can one exhibit more systematically exact bulk Einstein solutions that would produce appropriately designed fluid states – and provide more information on transport?

The spirit: find an integrable phase subspace corresponding to some first integral – effective reduction from 2nd- to 1st-order equations

The answer: yes

Foreword

Riemann, Weyl and Cotton

Fluids and gravity

Holographic fluids

Integrability and resummation

Outlook

Curvature decomposition in 4 dim

Metric $ds^2 = g_{AB} dx^A dx^B$, connection Γ and curvature R

- ▶ The Riemann R_{ABCD} has 20 independent components
 - 1 the scalar R
 - 9 the traceless Ricci $S_{AB} = R_{AB} \frac{R}{4}g_{AB}$
 - 10 the Weyl W_{ABCD} (conformal properties)
- ▶ The Weyl can be split into 5 self-dual W^+ and 5 anti-self-dual W^- components

Atiyah—Hitchin—Singer packaging in 3 × 3 matrices [Cahen, Debever, Defise '67; Atiyah, Hitchin, Singer '78]

$$\lambda, \mu, \nu, \ldots = 0, 1, 2$$

- ▶ traceless Ricci \rightarrow 9 \rightarrow generic matrix $S_{\mu\nu}$
- lacktriangle self-dual Weyl tensor o 5 o symmetric and traceless $W_{\mu
 u}^+$
- ▶ anti-sd Weyl tensor \rightarrow 5 \rightarrow symmetric and traceless $W_{\mu\nu}^-$

Here the signature is Lorentzian : (+-++)

- \blacktriangleright W^+ and W^- are complex-conjugate
- ▶ The 10 independent components are captured in 5 complex functions Ψ_a , a = 0, ..., 4 projections of W onto a null tetrad

The existence of 4 principal null directions, potentially degenerate with higher multiplicity, translates into special algebraic relationships among the Ψs : Petrov type I, II, III, D, N, O

Curvature decomposition in 3 dim

The Riemann has 6 independent components

- ▶ All Riemann components are in the Ricci
- The Weyl tensor vanishes

The conformal properties are captured by the Cotton tensor

$$C^{\mu\nu} = \frac{\epsilon^{\mu\rho\sigma}}{\sqrt{|g|}} \nabla_{\rho} \left(R^{\nu}_{\ \sigma} - \frac{R}{4} \delta^{\nu}_{\ \sigma} \right)$$

- symmetric
- traceless
- identically conserved: $\nabla_{\mu}C^{\mu\nu}=0$

Foreword

Riemann, Weyl and Cotton

Fluids and gravity

Holographic fluids

Integrability and resummation

Outlook

Relativistic fluid dynamics

Fluids in dim D gravitational backgrounds are described in terms of $g_{\mu\nu}$ and D+1 independent quantities u, ε, p all inside $T^{\mu\nu}$

$$T^{\mu\nu} = T^{\mu\nu}_{perf} + T^{\mu\nu}_{visc}$$

- $T_{perf}^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} + p h^{\mu\nu} (h_{\mu\nu}: metric on \Sigma \perp u)$
- $T_{visc}^{\mu\nu}$ as expansion in $\nabla^n u \to transport$ coefficients

Landau frame: all corrections are transverse wrt u – built on *shear* σ , *expansion* Θ , *acceleration a, vorticity* ω and higher derivatives

The Eqs. are $\nabla_{\mu} T^{\mu\nu} = 0$ (D) plus an Eq. of state (1)

Fluids and gravity

Originally: black-hole horizon responds to perturbations as a viscous fluid [Damour 1979]

- damped shear waves
- viscosity $\eta = 1/16\pi G$
- ▶ Bekenstein–Hawking entropy $s = 1/4G \Rightarrow \eta/s = 1/4\pi$

Origin? Deeper and more general relationship between Einstein's Eqs. and fluid dynamics [Eling, Lysov, Oz, Strominger, ... since 2009]

Gravity in 4 dim: 10 *Einstein's Eqs. involving* G_{AB} ($\nabla_A G^{AB} = 0$)

- ▶ 6 evolution: $G_{\mu\nu}$ (2nd order)
- ▶ 4 constraint: G_{rr} , G_{ru} (1st order)

Initial-value formulation (Cauchy problem): Σ_t , $g_{\mu\nu}$ (6), $K_{\mu\nu}$ (6) with

- ► Hamiltonian constraint (1): $R^{(3)} 2\Lambda + K^2 K_{\mu\nu}K^{\mu\nu} = 0$
- ▶ momentum constraint (3): $\nabla_{\mu} (K^{\mu\nu} g^{\mu\nu}K) = 0$

constraints in 4-dim $\mathcal{M} \leftrightarrow$ dynamics for $\textit{K}_{\mu\nu}$ on 3-dim Σ_{t}

Imposing algebraic Petrov in 4 dim: $K_{\mu\nu}$ (6) \rightarrow (4) as for a fluid on Σ_t

- $ightharpoonup K_{uv} \leftrightarrow \epsilon$, p, u
- $ightharpoonup R^{(3)} 2\Lambda + K^2 K_{\mu\nu}K^{\mu\nu} = 0$: Eq. of state
- $\nabla_{\mu} (K^{\mu\nu} g^{\mu\nu}K) = 0$: energy-momentum conservation

incompressible Navier–Stokes appear e.g. on black-hole horizons and conformal fluids appear on the conformal boundary $\Sigma_{\rm t}|_{r\to\infty}$

Foreword

Riemann, Weyl and Cotton

Fluids and gravity

Holographic fluids

Integrability and resummation

Outlook

The boundary geometry

Work in the phenomenological i.e. gravity approximation – here: pure gravitational backgrounds \rightarrow neutral boundary fluids

- ▶ Bulk Einstein space with $\Lambda = -3k^2$: asymptotically AdS d = D + 1-dim geometry
- ▶ Conformal boundary at $r \to \infty$: *D*-dim geometry

$$ds_{
m bulk}^2 pprox rac{dr^2}{k^2r^2} + k^2r^2g_{\mu
u}dx^\mu dx^
u$$

A primer: Schwarzschild AdS₄ black hole

$$\begin{split} \mathrm{d}s^2 &= \tfrac{\mathrm{d}r^2}{1+k^2r^2-\tfrac{2M}{r}} - \left(1+k^2r^2-\tfrac{2M}{r}\right)\mathrm{d}t^2 + r^2\left(\mathrm{d}\vartheta^2 + \sin^2\vartheta\,\mathrm{d}\varphi^2\right) \\ \mathrm{d}s^2_{\mathrm{bry.}} &= -\mathrm{d}t^2 + \tfrac{1}{k^2}\left(\mathrm{d}\vartheta^2 + \sin^2\vartheta\,\mathrm{d}\varphi^2\right) \end{split}$$

The boundary fluid

Holography: Hamiltonian evolution from data on the boundary – captured in Fefferman–Graham expansion for large r [Fefferman, Graham '85]

Two independent boundary Cauchy data:

- metric: "generalized coordinate" leading term
- fundamental form: "conjugate momentum" subleading term

$$ds_{\text{bulk}}^{2} = \frac{dr^{2}}{k^{2}r^{2}} + k^{2}r^{2}ds_{\text{bry.}}^{2} + \dots + \frac{16\pi G}{3k(kr)^{D-2}}T_{\mu\nu}dx^{\mu}dx^{\nu} + \dots$$

 $T_{\mu\nu}$ is traceless and conserved: interpreted as the stress–energy tensor of the boundary fluid in the hydrodynamic regime

The boundary fluid

- ▶ is related to the constant-r fluid via holographic RG flow
- is not perfect and satisfies $\eta/s \ge 1/4\pi$ [Policastro, Son, Starinets '01]

Holographic approach is superior – it allows

- ▶ to determine more transport coefficients
- ▶ to integrate the boundary data into exact bulk solutions

Back to the primer: Schwarzschild AdS_4 black hole (D=3)

$$\mathcal{T}_{\mu
u} \mathrm{d} x^{\mu} \mathrm{d} x^{
u} = rac{arepsilon}{2} \left(2 \mathrm{d} t^2 + rac{1}{k^2} \left(\mathrm{d} \vartheta^2 + \sin^2 \vartheta \, \mathrm{d} \varphi^2
ight)
ight) = rac{arepsilon}{2} \left(3 \mathrm{u}^2 + \mathrm{d} s_{\mathrm{bry.}}^2
ight)$$

perfect-fluid stress tensor with $u = \partial_t$ and $\varepsilon = 2p = Mk^2/4\pi G$

- $ightharpoonup T^{\mu\nu} = T^{\mu\nu}_{\rm nerf}$ because of the kinematic state (fluid at rest)
- no information on any transport coefficient

Goal: find bulk Einstein spaces with

- ▶ involved $ds_{bry.}^2$ and $u \to non$ -vanishing transverse $\nabla^n u$
- ▶ simple $T^{\mu\nu}$ → extract information on transport properties exact bulk → exact transport coefficients: integrability properties

Foreword

Riemann, Weyl and Cotton

Fluids and gravity

Holographic fluids

Integrability and resummation

Outlook

The philosophy

The question: given a boundary geometry ds_{bry}^2 can one determine

- ► the conditions it should satisfy
- ► the stress tensor it should be accompanied with for the FG expansion to be exactly resummable?

Focus on the sd and asd components of the Weyl W^{\pm} – FG expansion:

$$W_{\mu\nu}^{\pm} = \frac{8\pi G}{k^2 r^3} T_{\mu\nu}^{ref\pm} + \cdots$$

Here

$$T_{\mu\nu}^{\rm ref\pm} = T^{\mu\nu} \pm \frac{i}{8\pi G k^2} C^{\mu\nu}$$

symmetric, traceless and conserved

The answer

The metric $ds_{bry.}^2$ must admit 2 symmetric, traceless and exactly conserved rank-2 tensors $T^{ref\pm}$ related by complex conjugation The pattern: scan classes of $ds_{bry.}^2$ admitting exact $T^{ref\pm}$ and

• further impose on $ds_{bry.}^2$ the condition

$$C = 8\pi G k^2 \operatorname{Im} \mathsf{T}^{\mathsf{ref}+}$$
 (C)

▶ build the bulk with the resulting ds_{bry}^2 and the stress tensor

$$\mathsf{T} = \mathsf{ReT}^{\mathsf{ref}+} \tag{\mathsf{T}}$$

The reference tensors $T^{ref\pm}$

Integrability in Einstein spaces is tight to Petrov special types $\implies W^{\pm}$ are remarkably simple and so must be $\mathsf{T}^{\mathsf{ref}\pm}$ simpler to scan for $\mathsf{T}^{\mathsf{ref}\pm}$ than for C and T

Boundary geometries expected to lead to resummable series should have canonical $T^{ref\pm}$ i.e.

- either possess complex-conjugate time-like geodesic congruences associated with perfect-fluid-form T^{ref±}
- ightharpoonup or admit null congruences associated with pure-radiation $T^{ref\pm}$
- ▶ or a combination of both

 $\Longrightarrow \mathsf{T}^{\mathsf{ref}\pm}$ follow the Segre classification of the 3-dim Cotton the right integrability recipe

Results

Using the boundary data $ds_{bry.}^2$ and T constructed in this way, the derivative expansion

- ightharpoonup is exactly resummable ightharpoonup all Petrov-algebraic Einstein spaces: Kundt, Robinson–Trautman, Plebański–Demiański, . . .
- gives access to transport properties \rightarrow the fluid is in non-trivial kinematical configurations and the stress–energy tensor is not perfect: $T = T^{perf} + \Pi$

Foreword

Riemann, Weyl and Cotton

Fluids and gravity

Holographic fluids

Integrability and resummation

Outlook

Fluid/gravity correspondence

- ▶ constant-r slices Σ_t inside Petrov-algebraic bulk: Cauchy data plus constraints \leftrightarrow fluid plus dynamics
- on the conformal boundary of asymptotically AdS spaces macroscopic holography
 - ► Cauchy data: 2 + 1-dim ds_{hrv}^2 and T with fluid dynamics
 - physical content: transport properties

In the latter: bottom-up approach based on integrability

- ► Idea: shape ds_{bru}^2 and T for exact ascendent
- ► Pattern: design conserved T^{ref±} of perfect fluid or radiation
- ► Integrability: guaranteed by the "1st order equation" $C = 8\pi Gk^2 \operatorname{Im} T^{ref+} \operatorname{again} \operatorname{Petrov-algebraic} \operatorname{bulk}$

More general questions

- ► Corners of integrability of Einstein's Eqs.
- ► Solution-generating patterns à la Ehlers and Geroch in AdS spaces
- ► Higher-dimensional Einstein spaces: Spin(7) bulks and G₂ boundaries

The ancestor of holography

Gravitational duality

Gravity, holography and the Fefferman-Graham expansion

Fluids and resummation

The Robinson–Trautman

The Plebański-Demiański type D class

LeBrun's filling-in

The "filling-in" problem – 1982

▶ A round S^3 can be "filled-in" by H_4

$$\mathrm{d}s^2_{H_4} = rac{\mathrm{d}r^2}{1+r^2} + r^2\mathrm{d}\Omega^2_{S^3}
ightarrow r^2\mathrm{d}\Omega^2_{S^3}$$

► How to fill-in *analytically* a Berger sphere?

$$\mathrm{d}\Omega_{\mathrm{Berger}}^2 = \left(\sigma^1\right)^2 + \left(\sigma^2\right)^2 + \gamma \left(\sigma^3\right)^2$$

 $(\sigma^i$: Maurer–Cartan forms of SU(2))

Answer: Einstein space with self-dual Weyl tensor — quaternionic Space [LeBrun '82; Pedersen '86; Pedersen, Poon '90; Tod '94; Hitchin '95]

A classic example

Bianchi IX AdS Schwarzschild-Taub-NUT

▶ Einstein space with $\Lambda = -3k^2$, mass M, nut charge n

$$ds^{2} = \frac{dr^{2}}{V(r)} + (r^{2} - n^{2}) (d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2})$$
$$+V(r) \left(d\tau + 4n\sin^{2}\frac{\vartheta}{2}d\varphi\right)^{2}$$

$$V(r) = \frac{1}{r^2 - n^2} \left[r^2 + n^2 - 2Mr + k^2 \left(r^4 - 6n^2r^2 - 3n^4 \right) \right]$$

► Weyl (anti-)self-dual (i.e. quaternionic) iff

$$M = \pm n(1 - 4k^2n^2)$$

 \iff no conical singularity at r = n

The boundary geometry: $ds^2 \rightarrow \frac{dr^2}{k^2r^2} + k^2r^2ds_{bry}^2$.

$$\begin{split} \mathrm{d}s_{\mathrm{bry.}}^2 &= \left(\mathrm{d}\tau + 4n\sin^2\frac{\vartheta}{2}\mathrm{d}\varphi\right)^2 + \frac{1}{k^2}\left(\mathrm{d}\vartheta^2 + \sin^2\vartheta\mathrm{d}\varphi^2\right) \\ &= \frac{1}{k^2}\left(\left(\sigma^1\right)^2 + \left(\sigma^2\right)^2\right) + 4n^2\left(\sigma^3\right)^2 \\ \mathrm{with} \ \tau &= -2n(\psi + \varphi) \ \mathrm{and} \ 0 \leq \vartheta \leq \pi, 0 \leq \varphi \leq 2\pi, 0 \leq \psi \leq 4\pi \\ & \begin{cases} \sigma^1 = \sin\vartheta\sin\psi\,\mathrm{d}\varphi + \cos\psi\,\mathrm{d}\vartheta \\ \sigma^2 = \sin\vartheta\cos\psi\,\mathrm{d}\varphi - \sin\psi\,\mathrm{d}\vartheta \\ \sigma^3 = \cos\vartheta\,\mathrm{d}\varphi + \mathrm{d}\psi. \end{cases} \end{split}$$

Conclusion: ds_{brv}^2 is a Berger sphere

The ancestor of holography

Gravitational duality

Gravity, holography and the Fefferman-Graham expansion

Fluids and resummation

The Robinson–Trautman

The Plebański-Demiański type D class

Gravitational duality

Similar to electric–magnetic duality in general relativity – Euclidean regime

- ➤ Solve Einstein's Eqs. self-dual gravitational instantons [Newman, Tamburino, Unti '63; Eguchi, Hanson '78]
- Provide another handle for understanding the theory
 - ▶ linear regime [works by Bunster, Julia, Henneaux...]
 - mass and nut as electric and magnetic charges [Dowker '74]

Self-duality deeply related with integrability – in the '70 all integrable systems were thought to be SDYM reductions [Ward, '85]

Curvature decomposition

Metric $ds^2 = \delta_{ab}\theta^a\theta^b$, connection one-form ω_{ab} and curvature two-form $\mathcal{R}_{ab} \in \mathbf{6}$ of $SO(4) \cong SO(3)_{sd} \otimes SO(3)_{asd}$

- ▶ Reducible under $SO(3)_{sd}$ and $SO(3)_{asd}$: $\mathbf{6} = (\mathbf{3}, \mathbf{1}) \oplus (\mathbf{1}, \mathbf{3})$
- Curvature two-form $(\lambda, \mu ... = 1, 2, 3)$

$$(\mathbf{3},\mathbf{1}) \ \mathcal{S}_{\lambda} = \frac{1}{2} \left(\mathcal{R}_{0\lambda} + \frac{1}{2} \epsilon_{\lambda\mu\nu} \mathcal{R}^{\mu\nu} \right)$$

$$(\mathbf{1},\mathbf{3}) \ \mathcal{A}_{\lambda} = \frac{1}{2} \left(\mathcal{R}_{0\lambda} - \frac{1}{2} \epsilon_{\lambda\mu\nu} \mathcal{R}^{\mu\nu} \right)$$

and similarly for the connection one-form

▶ Basis for the space of two-forms \wedge^2

(3,1)
$$\phi^{\lambda} = \theta^{0} \wedge \theta^{\lambda} + \frac{1}{2} \epsilon^{\lambda}_{\mu\nu} \theta^{\mu} \wedge \theta^{\nu}$$

(1,3)
$$\chi^{\lambda} = \theta^{0} \wedge \theta^{\lambda} - \frac{1}{2} \epsilon^{\lambda'}_{\mu\nu} \theta^{\mu} \wedge \theta^{\nu}$$

Atiyah–Hitchin–Singer decomposition of \mathcal{S}_{μ} , \mathcal{A}_{μ} [Cahen, Debever, Defise '67; Atiyah,

Hitchin, Singer '78]

$$S_{\mu} = \frac{1}{2} W_{\mu\nu}^{+} \phi^{\nu} + \frac{1}{12} s \phi_{\mu} + \frac{1}{2} C_{\mu\nu}^{+} \chi^{\nu}$$

$$A_{\mu} = \frac{1}{2} W_{\mu\nu}^{-} \chi^{\nu} + \frac{1}{12} s \chi_{\mu} + \frac{1}{2} C_{\nu\mu}^{-} \phi^{\nu}$$

with W^{\pm} and C^{\pm} 3 \times 3 matrices, and s a function encoding the 20 components of the Riemann

- s = R/2 scalar curvature $\rightarrow 1$
- $C_{\mu\nu}^{\pm}$ traceless Ricci \rightarrow 9
- $ightharpoonup W_{\mu\nu}^+$ self-dual Weyl tensor symmetric and traceless ightarrow 5
- $lacktriangledown W^-_{\mu
 u}$ anti-self-dual Weyl tensor symmetric and traceless ightarrow 5

Quaternionic spaces: $C^{\pm}=0$ $s=2\Lambda$ $W^{-}=0$ or $W^{+}=0$ \Leftrightarrow Einstein & Weyl (anti-)self-dual

The ancestor of holography

Gravitational duality

Gravity, holography and the Fefferman-Graham expansion

Fluids and resummation

The Robinson-Trautman

Gravity in d = 4

Palatini formulation and 3+1 split [Leigh, Petkou '07; Mansi, Petkou, Tagliabue '08]

$$I_{\mathsf{EH}} = -rac{1}{32\pi G}\int_{\mathcal{M}} \epsilon_{abcd} \left(\mathcal{R}^{ab} + rac{k^2}{2} heta^a \wedge heta^b
ight) \wedge heta^c \wedge heta^d$$

 $heta^a$ an orthonormal frame $\mathrm{d}s^2=\eta_{ab}\theta^a\theta^b$ $(\eta:+\varepsilon++)$ gauge: no lapse, no shift

► Coframe: $\theta^r = \frac{dr}{kr}$ and θ^μ

$$\mathrm{d}s^2 = rac{\mathrm{d}r^2}{k^2r^2} + \eta_{\mu
u} heta^\mu heta^
u$$

► Connection: $\omega^{r\mu} = \mathcal{K}^{\mu}$ and $\omega^{\mu\nu} = -\epsilon^{\mu\nu\rho}\mathcal{B}_{\rho}$ or (a)sd combination $1/2(\mathcal{K}^{\mu} \pm \mathcal{B}^{\mu})$ for $\varepsilon = +$

Hamiltonian evolution of θ^{μ} , K^{μ} , \mathcal{B}_{ρ} from boundary data – what are the independent boundary data? Answer in asymptotically AdS: Fefferman–Graham expansion for large r [Fefferman, Graham '85; subtleties: de Haro,

Skenderis, Solodukhin, '001

$$\begin{array}{lcl} \theta^{\mu}(r,x) & = & kr\,E^{\mu}(x) + \frac{1}{kr}F^{\mu}_{[2]}(x) + \frac{1}{k^2r^2}F^{\mu}_{[3]}(x) + \cdots \\ \mathcal{K}^{\mu}(r,x) & = & -k^2r\,E^{\mu}(x) + \frac{1}{r}F^{\mu}_{[2]}(x) + \frac{2}{kr^2}F^{\mu}_{[3]}(x) + \cdots \\ \mathcal{B}^{\mu}(r,x) & = & B^{\mu}(x) + \frac{1}{k^2r^2}B^{\mu}_{[2]}(x) + \cdots \end{array}$$

Independent 2+1 boundary data: E^{μ} and $F^{\mu}_{[3]}$

The holographic fluid

Interpretation of the boundary data

 \triangleright E^{μ} : boundary orthonormal coframe – allows to determine

$$\mathrm{d} s_{ ext{bry.}}^2 = \eta_{\mu
u} E^\mu E^
u = g_{\mu
u} \mathrm{d} x^\mu \mathrm{d} x^
u$$

- $F_{[2]}^{\mu} = -1/2k^2S^{\mu\nu}e_{\nu}$: Schouten
- $B^{\mu}_{[2]} = 1/2k^2C^{\mu\nu}e_{\nu}$: Cotton
- ...
- $F_{[3]}^{\mu}$: stress current one-form allows to construct the vev of the boundary stress tensor

$$\mathsf{T} = rac{3k}{8\pi G} F^{\mu}_{[3]} e_{\mu} = T^{\mu}_{\nu} E^{\nu} \otimes e_{\mu}$$

Macroscopic object carrying microscopic data from the bulk

Bulk Weyl self-duality and its boundary manifestation

Expanding
$$W^{\pm} = 0$$
 leads to $B_{[2]} = \pm (i) \frac{3k}{2} F_{[3]}$ i.e.

$$8\pi Gk^2T_{\mu\nu}\pm(i)C_{\mu\nu}=0$$

[Leigh, Petkou '07; de Haro '08; Mansi, Petkou, Tagliabue '08; Miskovic, Olea '09]

Key property: C and T are

- ▶ traceless
- conserved

Away from the self-dual point, so is

$$T_{\mu\nu}^{\text{ref}\pm} = T^{\mu\nu} \pm \frac{(i)}{8\pi G k^2} C^{\mu\nu}$$

reflecting
$$W^{\pm}_{\mu\nu}=rac{8\pi G}{k^2r^3}T^{\mathrm{ref}\pm}_{\mu\nu}+\cdots
eq 0$$

The ancestor of holography

Gravitational duality

Gravity, holography and the Fefferman-Graham expansion

Fluids and resummation

The Robinson-Trautman

Vector field u with $u_{\mu}u^{\mu}=-1$ and space–time variation $\nabla_{\mu}u_{\nu}$

$$abla_{\mu}u_{
u}=-u_{\mu}a_{
u}+\sigma_{\mu
u}+rac{1}{D-1}\Theta h_{\mu
u}+\omega_{\mu
u}$$

- $h_{\mu\nu} = u_{\mu}u_{\nu} + g_{\mu\nu}$: projector/metric on the orthogonal space
- $ightharpoonup a_{\mu} = u^{\nu} \nabla_{\nu} u_{\mu}$: acceleration
- $ightharpoonup \sigma_{\mu\nu}$: symmetric traceless part shear
- $ightharpoonup \Theta = \nabla_{\mu} u^{\mu}$: trace expansion
- \blacktriangleright $\omega_{\mu\nu}$: antisymmetric part vorticity

In 2 + 1 dimensions

$$T_{visc}^{\mu\nu} = -\left(2\eta\sigma^{\mu\nu} + \zeta h^{\mu\nu}\Theta + \zeta_H \epsilon^{\rho\lambda(\mu} u_\rho \sigma_\lambda^{\nu)}\right) + O\left(\nabla^2 u\right)$$

Conformal fluids (tracelessness): $\varepsilon = 2p$, $\zeta = 0$, . . .

On conformal perfect fluids with some time-like velocity field u

$$T^{perf} = p \left(3u^2 + ds_{bry.}^2 \right)$$

► Euler equations
$$\begin{cases} \nabla_{\mathbf{u}} \log p + 3/2\Theta = 0 \\ \nabla_{\perp} \log p + 3a = 0 \end{cases}$$

- ► Integrability criterion: $\frac{dA}{dA} = 0$ with $A = a \frac{\Theta}{2}u$
- \implies geodesic and expansionless u solve them with constant p

On the actual stress tensor $T = Re T^{ref+}$

- ▶ Not expected to be perfect: $T = T^{perf} + \Pi$
- ► The fluid congruence u is read off from the perfect piece
- lacktriangle T^{perf} and Π are not separately conserved

The series expansion

Using the boundary data ds_{bry}^2 and T as well as C and u the <u>partly</u> <u>resummed</u> derivative expansion reads [Bhattacharyya et al '08; Caldarelli et al '12]

$$ds_{bulk}^2 = -2u(dr + rA) + r^2k^2ds_{bry}^2 + \frac{1}{k^2}\Sigma + \frac{u^2}{\rho^2} \left(\frac{8\pi G T_{\lambda\mu}u^{\lambda}u^{\mu}}{k^2} r + \frac{C_{\lambda\mu}u^{\lambda}\eta^{\mu\nu\sigma}\omega_{\nu\sigma}}{2k^6} \right) + h.d.$$
 (R)

$$A = a - \frac{\Theta}{2}u \quad \omega = \frac{1}{2}(du + u \wedge a)$$

$$\Sigma = -2u\nabla_{\nu}\omega^{\nu}{}_{\mu}dx^{\mu} - \omega_{\mu}{}^{\lambda}\omega_{\lambda\nu}dx^{\mu}dx^{\nu} - \frac{1}{2}u^{2}\left(R + 4\nabla_{\mu}A^{\mu} - 2A_{\mu}A^{\mu}\right)$$

Using Eqs. (C) and (T) the first terms of (R) are exact Einstein

Output:

- ► Integration achieved: limited derivative expansion is exact Einstein (Plebański–Demiański, Robinson–Trautman, Kundt...)
- ► Remarkable form of $T^{ref\pm}$ \Rightarrow special form of W^{\pm} : algebraic Petrov type (Kerr, Taub–NUT, C-metric, pp-waves...)

Consequence for holographic fluids: transport properties

- ► Status: exact solutions provide rich information on transport coefficients (in particular when T is non-perfect) [Mukhopadhyay et al '13; de Freitas, Reall '14; Bakas, Skenderis '14]
- ► Next: perturbation of exact Einstein spaces as a deeper probe for transport can be made more systematic captured in the known h.d. terms of the ds²_{bulk} expansion

The ancestor of holography

Gravitational duality

Gravity, holography and the Fefferman-Graham expansion

Fluids and resummation

The Robinson-Trautman

Examples without vorticity

$$ds_{bry.}^2 = -dt^2 + \frac{2}{k^2 P^2} d\zeta d\bar{\zeta}$$
 (nv)

 $P(t, \zeta, \bar{\zeta})$ real & a priori arbitrary – define $K = 2P^2 \partial_{\zeta} \partial_{\bar{z}} \log P$

▶ Cotton-tensor components $C_{\mu\nu}$:

$$-i\begin{pmatrix} 0 & -\frac{k^2}{2}\partial_{\zeta}K & \frac{k^2}{2}\partial_{\zeta}K \\ -\frac{k^2}{2}\partial_{\zeta}K & -\partial_t\left(\frac{\partial_{\zeta}^2P}{P}\right) & 0 \\ \frac{k^2}{2}\partial_{\zeta}K & 0 & \partial_t\left(\frac{\partial_{\zeta}^2P}{P}\right) \end{pmatrix}$$

► Complex-conjugate geodesic & expansionless congruences $\mathbf{u}^+ = -\mathbf{d}t + \frac{\alpha^+}{P^2}\mathbf{d}\zeta$ and c.c.: $\alpha^\pm(\zeta,\bar{\zeta})$ satisfy

$$k^2 P \partial_{\zeta} \alpha^- = 2 \left(k^2 \alpha^- \partial_{\zeta} P + \partial_t P \right)$$
 plus c.c. (h)

- ► With M constant $\mathsf{T}^{\mathsf{ref}\pm} = \frac{Mk^2}{8\pi G} \left(3 \left(\mathsf{u}^{\pm} \right)^2 + \mathsf{d} s_{\mathsf{bry.}}^2 \right)$ is conserved
- ► Requiring $C = 8\pi Gk^2 \text{ ImT}^{\text{ref}+}$ sets 1 constraint on P

$$\left[\left(\partial_{\zeta} \mathcal{K} \right)^{2} + 6M \partial_{t} \left(\frac{\partial_{\zeta}^{2} P}{P} \right) = 0 \right] \tag{D}$$

plus 1 constraint on $\alpha^ \partial_{\bar{\zeta}}K = 3Mk^2\frac{\alpha^-}{P^2}$ – combined with (h) gives

$$P^2 \partial_{\bar{\zeta}} \partial_{\zeta} K - 6M \partial_t \log P = 0$$
 (E)

(plus c.c.)

The stress tensor T

▶ Using $T = ReT^{ref+}$ one finds the non-perfect $8\pi G/k^2T$

$$\begin{pmatrix} 2M & -\frac{1}{2k^2}\partial_{\xi}K & -\frac{1}{2k^2}\partial_{\xi}K \\ -\frac{1}{2k^2}\partial_{\xi}K & -\frac{1}{k^4}\partial_t\begin{pmatrix} \frac{\partial_{\xi}^2P}{P} \end{pmatrix} & \frac{M}{k^2P^2} \\ -\frac{1}{2k^2}\partial_{\xi}K & \frac{M}{k^2P^2} & -\frac{1}{k^4}\partial_t\begin{pmatrix} \frac{\partial_{\xi}^2P}{P} \end{pmatrix} \end{pmatrix}$$

► The perfect part is $T^{perf} = \frac{Mk^2}{8\pi G} \left(3u^2 + ds_{bry.}^2 \right)$ with u = -dt a geodesic expanding congruence with zero shear and zero vorticity – not conserved

Resummation: using ds_{bru}^2 , C, T and u in Eq. (R)

$$ds_{bulk}^2 = 2dt dr - 2Hdt^2 + 2\frac{r^2}{P^2}d\zeta d\bar{\zeta} + h.d.$$
 (RT)

with

$$2H = K + 2r\partial_t \log P - \frac{2M}{r} + k^2 r^2$$

The displayed part without h.d. is

- ► exact Einstein thanks to Eq. (E) → integrability condition
- ▶ Petrov type D thanks to Eq. (D) \Leftrightarrow $3\Psi_2\Psi_4 = 2\Psi_3^2$

Robinson–Trautman type D class

- ▶ u ← 2 multiplicity-2 bulk principle null directions
- ▶ $u_{\pm} \longleftarrow 2/4$ bulk tetrad elements

Now pure-radiation reference tensor

$$4\pi Gk^2 T^{ref+} = F(t,\zeta) d\zeta^2$$

arbitrary $F(t,\zeta) \Rightarrow T^{ref\pm}$ conserved

► Requiring $C = 8\pi Gk^2 \text{Im} T^{\text{ref}+}$ sets 1 constraint on P

plus

$$\partial_t \left(\frac{\partial_\zeta^2 P}{P} \right) + F(t, \zeta) = 0$$
 (F)

(plus c.c.)

- ▶ Eq. (N) sets K = K(t) and determines $P(t, \zeta, \bar{\zeta})$
- ▶ Eq. (F) determines $F(t,\zeta)$ no constraint

▶ Using $T = ReT^{ref+}$ one finds the *non-perfect* stress tensor

$$8\pi Gk^2 T = F(t,\zeta) d\zeta^2 + \bar{F}(t,\bar{\zeta}) d\bar{\zeta}^2$$

Using ds_{bru}^2 , C, T and u = -dt in Eq. (R) gives (RT) with M = 0

Petrov type N thanks to

$$M = 0 \Leftrightarrow \Psi_2 = 0$$

 $(N) \Leftrightarrow \Psi_3 = 0$

► Always exact Einstein

Note:
$$P(t,\zeta,\bar{\zeta}) = \frac{1+\epsilon/2\,g\,\bar{g}}{\sqrt{2f\,\partial_{\zeta}g\,\partial_{\bar{\zeta}}\bar{g}}}$$
 with $\varepsilon=0,\pm 1$ and $f(t),g(t,\zeta)$ arbitrary functions $-F(t,\zeta)$ expressed in terms of $g(t,\zeta)$ and its derivatives

Robinson-Trautman type N class

 $u \leftarrow 1$ multiplicity-4 bulk principle null direction

The ancestor of holography

Gravitational duality

Gravity, holography and the Fefferman-Graham expansion

Fluids and resummation

The Robinson-Trautman

Examples with vorticity

$$ds_{bry.}^{2} = -Q^{2} (dt - b)^{2} + \frac{2}{k^{2} P^{2}} d\zeta d\bar{\zeta}$$
 (nv)

P, Q real fcts and b = $b_{\zeta} d\zeta + b_{\bar{\zeta}} d\bar{\zeta}$ a real form – a priori arbitrary

- ▶ Impose \exists 1 Killing \Rightarrow 2nd one [Mukhopadhyay et al '13]
- ▶ Impose \exists 2 c.c. accelerating non-expanding congruences $u_{\pm} \Rightarrow$ perfect-fluid conserved $\mathsf{T}^{\mathsf{ref}\pm}$ (non-constant pressure)
- ▶ Impose C = $8\pi G k^2 \operatorname{ImT^{ref+}} \Rightarrow$ solve for P, Q and $b \Rightarrow ds^2_{\text{bry.}}$
- Extract $T = ReT^{ref+} = T^{perf} + \Pi$
- ▶ T^{perf} generally non-conserved aligned with u = -dt + b shearless, expanding accelerating congruence with vorticity
- ► Resum Eq. (R): exact Petrov type D Plebański–Demiański familly (mass, rotation, nut, "twist", acceleration)