Holographic fluids and integrability

Marios Petropoulos
CPHT - Ecole Polytechnique - CNRS

EESFYE 2015 - University of Athens
April 2015

Highlights

Foreword

Riemann, Weyl and Cotton

Fluids and gravity

Holographic fluids

Integrability and resummation

Outlook

Holography

Originally: microscopic correspondence

$$
\text { type II string theory on } A d S_{5} \times S^{5}
$$

$$
N=4 Y M \text { on } D=4 \text { conformal boundary of } A d S_{5}
$$

with $g_{\text {string }} \leftrightarrow 1 / g_{Y M}$

Later: macroscopic extension
gravity plus matter on $d=D+1$ asymptotically AdS background \downarrow
phenomenological description of states of a D-dim boundary CFT
Examples: AdS/QCD, AdS/CMT (superconductors, superfluids, ...)

Holography is a tool

- Ultimate goal: compute correlation functions in strongly coupled (conformal) field theories
- Alternatively: compute transport coefficients in fluids ${ }^{1}$ - fluid: hydrodynamic approximation of finite- T and finite- μ states of the (C)FT

Holographic fluid: hydrodynamic approximation of finite- T and finite- μ states of a boundary CFT holographically dual to some bulk gravitational set-up

[^0]
Fluid/gravity correspondence

Profound relationship

- Originally in a classical framework: relationship between two sets of non-linear equations, Einstein's Eqs. and Navier-Stokes EqS. [Damour 1997; also Eling, Lysoo, Oz, Strominger, ...since 2009]
- More recently within the holographic correspondence with a quantum perspective [Bhattacharyya, Hubery, Loganayggam, Minvoalla, Rangamani, ..since 2007]
Connected via renormalization-group flow from the boundary (UV) to the horizon (IR) where the former correspondence takes place
[Kuperstein, Mukhopadhyay, ...since 2012]

Holographic fluids

Original motivation: determine transport properties

- Start with some bulk gravitational background related to some boundary fluid in local thermodynamic equilibrium
- Perturb and analyse the response using the bulk-boundary dictionary
\longrightarrow perturbative response methods
Intriguing observation: some exact bulk solutions of Einstein Eqs. $\overline{\text { describe }}$ [Leigh, Petkou, Petropoulos ' 10 , '11; Callarerli, Leigh, Petkou, Petropoulos, Pozzoli, Siampos '12]
- non-trivial fluid stationary states
- on non-trivial boundary backgrounds
\longrightarrow enable to probe substantially transport properties without response analysis [Mukhopadhyay, Petkou, Petropoulos, Pozzoli, Siampos '13]

Here

The question: can one exhibit more systematically exact bulk Einstein solutions that would produce appropriately designed fluid states and provide more information on transport?

The spirit: find an integrable phase subspace corresponding to some first integral - effective reduction from 2nd- to 1st-order equations

The answer: yes

Highlights

Foreword

Riemann, Weyl and Cotton

Fluids and gravity

Holographic fluids

Integrability and resummation

Outlook

Curvature decomposition in 4 dim

Metric $d s^{2}=g_{A B} d x^{A} d x^{B}$, connection Γ and curvature \mathbf{R}

- The Riemann $R_{A B C D}$ has 20 independent components

1 the scalar R
9 the traceless Ricci $S_{A B}=R_{A B}-\frac{R}{4} g_{A B}$
10 the Weyl $W_{A B C D}$ (conformal properties)

- The Weyl can be split into 5 self-dual W^{+}and 5 anti-self-dual W^{-}components

Atiyah-Hitchin-Singer packaging in 3×3 matrices ${ }_{\text {ICahen, Debever, Defise }{ }^{\prime} 67 \text {; }}$
Atiyah, Hitchin, Singer '78]
$\lambda, \mu, v, \ldots=0,1,2$

- traceless Ricci $\rightarrow 9 \rightarrow$ generic matrix $S_{\mu v}$
- self-dual Weyl tensor $\rightarrow 5 \rightarrow$ symmetric and traceless $W_{\mu \nu}^{+}$
- anti-sd Weyl tensor $\rightarrow 5 \rightarrow$ symmetric and traceless $W_{\mu v}^{-}$

Here the signature is Lorentzian : $(+-++)$

- W^{+}and W^{-}are complex-conjugate
- The 10 independent components are captured in 5 complex functions $\Psi_{a}, a=0, \ldots, 4$ projections of W onto a null tetrad

The existence of 4 principal null directions, potentially degenerate with higher multiplicity, translates into special algebraic relationships among the Ψ s: Petrov type I, II, III, D, N, O

Curvature decomposition in 3 dim

The Riemann has 6 independent components

- All Riemann components are in the Ricci
- The Weyl tensor vanishes

The conformal properties are captured by the Cotton tensor

$$
C^{\mu \nu}=\frac{\epsilon^{\mu \rho \sigma}}{\sqrt{|g|}} \nabla_{\rho}\left(R_{\sigma}^{v}-\frac{R}{4} \delta_{\sigma}^{v}\right)
$$

- symmetric
- traceless
- identically conserved: $\nabla_{\mu} C^{\mu v}=0$

Highlights

Foreword

Riemann, Weyl and Cotton

Fluids and gravity

Holographic fluids

Integrability and resummation

Outlook

Relativistic fluid dynamics

Fluids in dim D gravitational backgrounds are described in terms of $g_{\mu \nu}$ and $D+1$ independent quantities u, ε, p all inside $T^{\mu v}$

$$
T^{\mu v}=T_{p e r f}^{\mu \nu}+T_{v i s c}^{\mu v}
$$

- $T_{\text {perf }}^{\mu v}=\varepsilon u^{\mu} u^{v}+p h^{\mu v}\left(h_{\mu v}:\right.$ metric on $\left.\Sigma \perp u\right)$
- $T_{\text {visc }}^{\mu v}$ as expansion in $\nabla^{n} u \rightarrow$ transport coefficients

Landau frame: all corrections are transverse wrt u-built on shear σ, expansion Θ, acceleration a, vorticity ω and higher derivatives

The Eqs. are $\nabla_{\mu} T^{\mu \nu}=0$ (D) plus an Eq. of state (1)

Fluids and gravity

Originally: black-hole horizon responds to perturbations as a viscous fluid [Damour 1979]

- damped shear waves
- viscosity $\eta=1 / 16 \pi G$
- Bekenstein-Hawking entropy $s=1 / 4 G \Rightarrow \eta / s=1 / 4 \pi$

Origin? Deeper and more general relationship between Einstein's
Eqs. and fluid dynamics [Eling, Lysoo, Oz, Strominger, ...since 2009]

Gravity in 4 dim: 10 Einstein's Eqs. involving $G_{A B}\left(\nabla_{A} G^{A B}=0\right)$

- 6 evolution: $G_{\mu v}$ (2nd order)
- 4 constraint: $G_{r r}, G_{r \mu}$ (1st order)

Initial-value formulation (Cauchy problem): $\Sigma_{t}, g_{\mu v}(6), K_{\mu v}(6)$ with

- Hamiltonian constraint (1): $R^{(3)}-2 \Lambda+K^{2}-K_{\mu \nu} K^{\mu \nu}=0$
- momentum constraint (3): $\nabla_{\mu}\left(K^{\mu v}-g^{\mu v} K\right)=0$ constraints in 4-dim $\mathcal{M} \leftrightarrow$ dynamics for $K_{\mu v}$ on 3-dim Σ_{t}

Imposing algebraic Petrov in 4 dim: $K_{\mu v}(6) \rightarrow(4)$ as for a fluid on Σ_{t}

- $K_{\mu \nu} \leftrightarrow \epsilon, p, \mathrm{u}$
- $R^{(3)}-2 \Lambda+K^{2}-K_{\mu \nu} K^{\mu \nu}=0$: Eq. of state
- $\nabla_{\mu}\left(K^{\mu v}-g^{\mu v} K\right)=0$: energy-momentum conservation incompressible Navier-Stokes appear e.g. on black-hole horizons and conformal fluids appear on the conformal boundary $\left.\Sigma_{t}\right|_{r \rightarrow \infty}$

Highlights

Foreword
Riemann, Weyl and Cotton
Fluids and gravity

Holographic fluids

Integrability and resummation

Outlook

The boundary geometry

Work in the phenomenological i.e. gravity approximation - here: pure gravitational backgrounds \rightarrow neutral boundary fluids

- Bulk Einstein space with $\Lambda=-3 k^{2}$: asymptotically AdS $d=D+1$-dim geometry
- Conformal boundary at $r \rightarrow \infty$: D-dim geometry

$$
\mathrm{d} s_{\text {bulk }}^{2} \approx \frac{\mathrm{~d} r^{2}}{k^{2} r^{2}}+k^{2} r^{2} g_{\mu v} \mathrm{~d} x^{\mu} \mathrm{d} x^{v}
$$

A primer: Schwarzschild AdS_{4} black hole

$$
\begin{gathered}
\mathrm{d} s^{2}=\frac{\mathrm{d} r^{2}}{1+k^{2} r^{2}-\frac{2 M}{r}}-\left(1+k^{2} r^{2}-\frac{2 M}{r}\right) \mathrm{d} t^{2}+r^{2}\left(\mathrm{~d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \varphi^{2}\right) \\
\mathrm{d} s_{\text {bry. }}^{2} \\
=-\mathrm{d} t^{2}+\frac{1}{k^{2}}\left(\mathrm{~d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \varphi^{2}\right)
\end{gathered}
$$

The boundary fluid

Holography: Hamiltonian evolution from data on the boundary captured in Fefferman-Graham expansion for large r [Fefferman, Graham'85]
Two independent boundary Cauchy data:

- metric: "generalized coordinate" - leading term
- fundamental form: "conjugate momentum" - subleading term

$$
\mathrm{d} s_{\text {bulk }}^{2}=\frac{\mathrm{d} r^{2}}{k^{2} r^{2}}+k^{2} r^{2} \mathrm{~d} s_{\text {bry. }}^{2}+\cdots+\frac{16 \pi G}{3 k(k r)^{D-2}} T_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\cdots
$$

$T_{\mu \nu}$ is traceless and conserved: interpreted as the stress-energy tensor of the boundary fluid in the hydrodynamic regime

The boundary fluid

- is related to the constant-r fluid via holographic RG flow
- is not perfect and satisfies $\eta / s \geq 1 / 4 \pi$ [Policastro, Son, Starinets ' 01$]$

Holographic approach is superior - it allows

- to determine more transport coefficients
- to integrate the boundary data into exact bulk solutions

Back to the primer: Schwarzschild AdS $_{4}$ black hole $(D=3)$
$T_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\frac{\varepsilon}{2}\left(2 \mathrm{~d} t^{2}+\frac{1}{k^{2}}\left(\mathrm{~d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \varphi^{2}\right)\right)=\frac{\varepsilon}{2}\left(3 \mathrm{u}^{2}+\mathrm{d} s_{\mathrm{b} \text { bry. }}^{2}\right)$
perfect-fluid stress tensor with $u=\partial_{t}$ and $\varepsilon=2 p=M k^{2} / 4 \pi G$

- $T^{\mu \nu}=T_{\text {perf }}^{\mu v}$ because of the kinematic state (fluid at rest)
- no information on any transport coefficient

Goal: find bulk Einstein spaces with

- involved ds $s_{\text {bry. }}^{2}$ and $u \rightarrow$ non-vanishing transverse $\nabla^{n} u$
- simple $T^{\mu \nu} \rightarrow$ extract information on transport properties exact bulk \rightarrow exact transport coefficients: integrability properties

Highlights

Foreword
Riemann, Weyl and Cotton
Fluids and gravity
Holographic fluids

Integrability and resummation

The philosophy

The question: given a boundary geometry $d s_{b r y}^{2}$. can one determine

- the conditions it should satisfy
- the stress tensor it should be accompanied with for the FG expansion to be exactly resummable?

Focus on the sd and asd components of the Weyl $W^{ \pm}-F G$ expansion:

$$
W_{\mu \nu}^{ \pm}=\frac{8 \pi G}{k^{2} r^{3}} T_{\mu \nu}^{r e f \pm}+\cdots
$$

Here

$$
T_{\mu \nu}^{\mathrm{ref} \pm}=T^{\mu \nu} \pm \frac{i}{8 \pi G k^{2}} C^{\mu \nu}
$$

symmetric, traceless and conserved

The answer

The metric ds ${ }_{b r y .}^{2}$. must admit 2 symmetric, traceless and exactly conserved rank-2 tensors $T^{\text {ref土 }}$ related by complex conjugation
The pattern: scan classes of $\mathrm{d} s_{\text {bry. }}^{2}$ admitting exact $T^{\text {ref } \pm}$ and

- further impose on $\mathrm{d} s_{\text {bry. }}^{2}$ the condition

$$
\begin{equation*}
\mathrm{C}=8 \pi G k^{2} \mathrm{Im} \mathrm{~T}^{\mathrm{ref}+} \tag{C}
\end{equation*}
$$

- build the bulk with the resulting $\mathrm{d} s_{\text {bry. }}^{2}$ and the stress tensor

$$
\begin{equation*}
\mathrm{T}=\mathrm{Re} \mathrm{~T}^{\mathrm{ref}+} \tag{T}
\end{equation*}
$$

The reference tensors $T^{r e f \pm}$

Integrability in Einstein spaces is tight to Petrov special types $\Longrightarrow W^{ \pm}$are remarkably simple and so must be $T^{\text {ref } \pm}$ simpler to scan for $\mathrm{T}^{\text {ref } \pm}$ than for C and T

Boundary geometries expected to lead to resummable series should have canonical $T^{r e f \pm}$ i.e.

- either possess complex-conjugate time-like geodesic congruences associated with perfect-fluid-form $T^{r e f \pm}$
- or admit null congruences associated with pure-radiation $T^{\text {ref } \pm}$
- or a combination of both
$\Longrightarrow \mathrm{T}^{\text {ref } \pm}$ follow the Segre classification of the 3-dim Cotton the right integrability recipe

Results

Using the boundary data $d s_{b r y .}^{2}$. and T constructed in this way, the derivative expansion

- is exactly resummable \rightarrow all Petrov-algebraic Einstein spaces: Kundt, Robinson-Trautman, Plebański-Demiański, ...
- gives access to transport properties \rightarrow the fluid is in non-trivial kinematical configurations and the stress-energy tensor is not perfect: $T=T^{\text {perf }}+\Pi$

Highlights

Foreword

Riemann, Weyl and Cotton

Fluids and gravity

Holographic fluids

Integrability and resummation

Outlook

Fluid/gravity correspondence

- constant-r slices Σ_{t} inside Petrov-algebraic bulk: Cauchy data plus constraints \leftrightarrow fluid plus dynamics
- on the conformal boundary of asymptotically AdS spaces macroscopic holography
- Cauchy data: $2+1$-dim ds $s_{b r y .}^{2}$ and T with fluid dynamics
- physical content: transport properties

In the latter: bottom-up approach based on integrability

- Idea: shape ds ${ }_{b r y}^{2}$. and T for exact ascendent
- Pattern: design conserved $T^{r e f \pm}$ of perfect fluid or radiation
- Integrability: guaranteed by the "1st order equation"
$C=8 \pi G k^{2}$ ImTreft - again Petrov-algebraic bulk

More general questions

- Corners of integrability of Einstein's Eqs.
- Solution-generating patterns à la Ehlers and Geroch in AdS spaces
- Higher-dimensional Einstein spaces: Spin(7) bulks and G_{2} boundaries

Highlights

The ancestor of holography

Gravitational duality

Gravity, holography and the Fefferman-Graham expansion

Fluids and resummation

The Robinson-Trautman

The Plebański-Demiański type D class

LeBrun's filling-in

The "filling-in" problem - 1982

- A round S^{3} can be "filled-in" by H_{4}

$$
\mathrm{d} s_{H_{4}}^{2}=\frac{\mathrm{d} r^{2}}{1+r^{2}}+r^{2} \mathrm{~d} \Omega_{S^{3}}^{2} \rightarrow r^{2} \mathrm{~d} \Omega_{S^{3}}^{2}
$$

- How to fill-in analytically a Berger sphere?

$$
\mathrm{d} \Omega_{\text {Berger }}^{2}=\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\gamma\left(\sigma^{3}\right)^{2}
$$

(σ^{i} : Maurer-Cartan forms of $S U(2)$)
Answer: Einstein space with self-dual Weyl tensor - quaternionic space [LeBrun' '82; Pedersen' '86; Peedersen, Poon' '90; Tod '94; Hitchin'95]

A classic example

Bianchi IX AdS Schwarzschild-Taub-NUT

- Einstein space with $\Lambda=-3 k^{2}$, mass M, nut charge n

$$
\begin{aligned}
\mathrm{d} s^{2}= & \frac{\mathrm{d} r^{2}}{V(r)}+\left(r^{2}-n^{2}\right)\left(\mathrm{d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \varphi^{2}\right) \\
& +V(r)\left(\mathrm{d} \tau+4 n \sin ^{2} \frac{\vartheta}{2} \mathrm{~d} \varphi\right)^{2} \\
V(r)=\frac{1}{r^{2}-n^{2}}[& \left.r^{2}+n^{2}-2 M r+k^{2}\left(r^{4}-6 n^{2} r^{2}-3 n^{4}\right)\right]
\end{aligned}
$$

- Weyl (anti-)self-dual (i.e. quaternionic) iff

$$
M= \pm n\left(1-4 k^{2} n^{2}\right)
$$

\Longleftrightarrow no conical singularity at $r=n$

The boundary geometry: $d s^{2} \underset{r \rightarrow \infty}{\rightarrow} \frac{d r^{2}}{k^{2} r^{2}}+k^{2} r^{2} d s_{b r y}^{2}$.

$$
\begin{aligned}
\mathrm{d} s_{\text {bry. }}^{2} & =\left(\mathrm{d} \tau+4 n \sin ^{2} \frac{\vartheta}{2} \mathrm{~d} \varphi\right)^{2}+\frac{1}{k^{2}}\left(\mathrm{~d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \varphi^{2}\right) \\
& =\frac{1}{k^{2}}\left(\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}\right)+4 n^{2}\left(\sigma^{3}\right)^{2}
\end{aligned}
$$

with $\tau=-2 n(\psi+\varphi)$ and $0 \leq \vartheta \leq \pi, 0 \leq \varphi \leq 2 \pi, 0 \leq \psi \leq 4 \pi$

$$
\left\{\begin{array}{l}
\sigma^{1}=\sin \vartheta \sin \psi \mathrm{d} \varphi+\cos \psi \mathrm{d} \vartheta \\
\sigma^{2}=\sin \vartheta \cos \psi \mathrm{d} \varphi-\sin \psi \mathrm{d} \vartheta \\
\sigma^{3}=\cos \vartheta \mathrm{d} \varphi+\mathrm{d} \psi
\end{array}\right.
$$

Conclusion: $\mathrm{d} s_{\text {bry. }}^{2}$ is a Berger sphere

Highlights

The ancestor of holography

Gravitational duality

Gravity, holography and the Fefferman-Graham expansion

Fluids and resummation

The Robinson-Trautman

The Plebański-Demiański type D class

Gravitational duality

Similar to electric-magnetic duality in general relativity - Euclidean regime

- Solve Einstein's Eqs. - self-dual gravitational instantons
[Newman, Tamburino, Unti '63; Eguchi, Hanson '78]
- Provide another handle for understanding the theory
- linear regime [works by Bunster, Julia, Henneaux...]
- mass and nut as electric and magnetic charges [Dowker '74]

Self-duality deeply related with integrability - in the '70 all integrable systems were thought to be SDYM reductions [Ward,'85]

Curvature decomposition

Metric $d s^{2}=\delta_{a b} \theta^{a} \theta^{b}$, connection one-form $\omega_{a b}$ and curvature two-form $\mathcal{R}_{a b} \in 6$ of $S O(4) \cong S O(3)_{s d} \otimes S O(3)_{\text {asd }}$

- Reducible under $S O(3)_{\text {sd }}$ and $S O(3)_{\text {asd }}: 6=(3,1) \oplus(1,3)$
- Curvature two-form $(\lambda, \mu \ldots=1,2,3)$

$$
\begin{aligned}
& (3,1) \mathcal{S}_{\lambda}=\frac{1}{2}\left(\mathcal{R}_{0 \lambda}+\frac{1}{2} \epsilon_{\lambda \mu v} \mathcal{R}^{\mu \nu}\right) \\
& (1,3) \mathcal{A}_{\lambda}=\frac{1}{2}\left(\mathcal{R}_{0 \lambda}-\frac{1}{2} \epsilon_{\lambda \mu \nu} \mathcal{R}^{\mu \nu}\right)
\end{aligned}
$$

and similarly for the connection one-form

- Basis for the space of two-forms \wedge^{2}

$$
\begin{aligned}
& (3,1) \phi^{\lambda}=\theta^{0} \wedge \theta^{\lambda}+\frac{1}{2} \epsilon^{\lambda}{ }_{\mu \nu} \theta^{\mu} \wedge \theta^{v} \\
& (1,3) \chi^{\lambda}=\theta^{0} \wedge \theta^{\lambda}-\frac{1}{2} \epsilon^{\lambda}{ }_{\mu \nu} \theta^{\mu} \wedge \theta^{v}
\end{aligned}
$$

Atiyah-Hitchin-Singer decomposition of $\mathcal{S}_{\mu}, \mathcal{A}_{\mu}$ ICahen, Debever, Defise' '67; Atiyhh,
Hitchin, Singer '78]

$$
\begin{aligned}
\mathcal{S}_{\mu} & =\frac{1}{2} W_{\mu \nu}^{+} \phi^{v}+\frac{1}{12} s \phi_{\mu}+\frac{1}{2} C_{\mu \nu}^{+} \chi^{v} \\
\mathcal{A}_{\mu} & =\frac{1}{2} W_{\mu \nu}^{-} \chi^{v}+\frac{1}{12} s \chi_{\mu}+\frac{1}{2} C_{\nu \mu}^{-} \phi^{v}
\end{aligned}
$$

with $W^{ \pm}$and $C^{ \pm} 3 \times 3$ matrices, and s a function encoding the 20 components of the Riemann

- $s=R / 2$ scalar curvature $\rightarrow 1$
- $C_{\mu \nu}^{ \pm}$traceless Ricci $\rightarrow 9$
- $W_{\mu \nu}^{+}$self-dual Weyl tensor symmetric and traceless $\rightarrow 5$
- $W_{\mu \nu}^{-}$anti-self-dual Weyl tensor symmetric and traceless $\rightarrow 5$

Quaternionic spaces: $C^{ \pm}=0 \quad s=2 \Lambda \quad W^{-}=0$ or $W^{+}=0 \Leftrightarrow$ Einstein \mathcal{E} Weyl (anti-)self-dual

Highlights

The ancestor of holography
 Gravitational duality
 Gravity, holography and the Fefferman-Graham expansion

Fluids and resummation

The Robinson-Trautman

The Plebański-Demiański type D class

Gravity in $d=4$

Palatini formulation and $3+1$ split [LLeigh, Petrou' ${ }^{\text {'07; }}$, Mansi, Petkou, Tagliabue' ${ }^{\text {'08] }}$

$$
I_{E H}=-\frac{1}{32 \pi G} \int_{\mathcal{M}} \epsilon_{a b c d}\left(\mathcal{R}^{a b}+\frac{k^{2}}{2} \theta^{a} \wedge \theta^{b}\right) \wedge \theta^{c} \wedge \theta^{d}
$$

θ^{a} an orthonormal frame $d s^{2}=\eta_{a b} \theta^{a} \theta^{b}(\eta:+\varepsilon++)$
gauge: no lapse, no shift

- Coframe: $\theta^{r}=\frac{\mathrm{d} r}{k r}$ and θ^{μ}

$$
\mathrm{d} s^{2}=\frac{\mathrm{d} r^{2}}{k^{2} r^{2}}+\eta_{\mu \nu} \theta^{\mu} \theta^{v}
$$

- Connection: $\omega^{r \mu}=\mathcal{K}^{\mu}$ and $\omega^{\mu \nu}=-\epsilon^{\mu \nu \rho} \mathcal{B}_{\rho}$ or (a)sd combination $1 / 2\left(\mathcal{K}^{\mu} \pm \mathcal{B}^{\mu}\right)$ for $\varepsilon=+$

Hamiltonian evolution of $\theta^{\mu}, \mathcal{K}^{\mu}, \mathcal{B}_{\rho}$ from boundary data - what are the independent boundary data? Answer in asymptotically AdS:
Fefferman-Graham expansion for large $r{ }_{\text {IFefferman, Graham' '85; subbleteies: de Haro, }}$
Skenderis, Solodukhin, '00]

$$
\begin{aligned}
\theta^{\mu}(r, x) & =k r E^{\mu}(x)+\frac{1}{k r} F_{[2]}^{\mu}(x)+\frac{1}{k^{2} r^{2}} F_{[3]}^{\mu}(x)+\cdots \\
\mathcal{K}^{\mu}(r, x) & =-k^{2} r E^{\mu}(x)+\frac{1}{r} F_{[2]}^{\mu}(x)+\frac{2}{k r^{2}} F_{[3]}^{\mu}(x)+\cdots \\
\mathcal{B}^{\mu}(r, x) & =B^{\mu}(x)+\frac{1}{k^{2} r^{2}} B_{[2]}^{\mu}(x)+\cdots
\end{aligned}
$$

Independent $2+1$ boundary data: E^{μ} and $F_{[3]}^{\mu}$

The holographic fluid

Interpretation of the boundary data

- E^{μ} : boundary orthonormal coframe - allows to determine

$$
\mathrm{d} s_{\text {bry. }}^{2}=\eta_{\mu v} E^{\mu} E^{v}=g_{\mu v} \mathrm{~d} x^{\mu} \mathrm{d} x^{v}
$$

- $F_{[2]}^{\mu}=-1 / 2 k^{2} S^{\mu v} e_{V}$: Schouten
- $B_{[2]}^{\mu}=1 / 2 k^{2} C^{\mu v} e_{v}$: Cotton
- $F_{[3]}^{\mu}$: stress current one-form - allows to construct the vev of the boundary stress tensor

$$
\mathrm{T}=\frac{3 k}{8 \pi G} F_{[3]}^{\mu} e_{\mu}=T_{v}^{\mu} E^{v} \otimes e_{\mu}
$$

Macroscopic object carrying microscopic data from the bulk

Bulk Weyl self-duality and its boundary manifestation

Expanding $W^{ \pm}=0$ leads to $B_{[2]}= \pm(i) \frac{3 k}{2} F_{[3]}$ i.e.

$$
8 \pi G k^{2} T_{\mu \nu} \pm(i) C_{\mu \nu}=0
$$

[Leigh, Petkou '07; de Haro '08; Mansi, Petkou, Tagliabue '08; Miskovic, Olea '09]
Key property: C and T are

- traceless
- conserved

Away from the self-dual point, so is

$$
T_{\mu \nu}^{\mathrm{ref} \pm}=T^{\mu \nu} \pm \frac{(i)}{8 \pi G k^{2}} C^{\mu \nu}
$$

reflecting $W_{\mu \nu}^{ \pm}=\frac{8 \pi G}{k^{2} r^{3}} T_{\mu \nu}^{\mathrm{ref} \pm}+\cdots \neq 0$

Highlights

> The ancestor of holography

> Gravitational duality

> Gravity, holography and the Fefferman-Graham expansion

Fluids and resummation

The Robinson-Trautman

The Plebański-Demiański type D class

Vector field u with $u_{\mu} u^{\mu}=-1$ and space-time variation $\nabla_{\mu} u_{v}$

$$
\nabla_{\mu} u_{v}=-u_{\mu} a_{v}+\sigma_{\mu v}+\frac{1}{D-1} \Theta h_{\mu v}+\omega_{\mu v}
$$

- $h_{\mu v}=u_{\mu} u_{v}+g_{\mu \nu}$: projector/metric on the orthogonal space
- $a_{\mu}=u^{\nu} \nabla_{\nu} u_{\mu}$: acceleration
- $\sigma_{\mu v}$: symmetric traceless part - shear
- $\Theta=\nabla_{\mu} u^{\mu}$: trace - expansion
- $\omega_{\mu \nu}$: antisymmetric part - vorticity

In $2+1$ dimensions

$$
T_{v i s c}^{\mu v}=-\left(2 \eta \sigma^{\mu v}+\zeta h^{\mu v} \Theta+\zeta_{H} \epsilon^{\rho \lambda(\mu} u_{\rho} \sigma_{\lambda}{ }^{v)}\right)+O\left(\nabla^{2} u\right)
$$

Conformal fluids (tracelessness): $\varepsilon=2 p, \zeta=0, \ldots$

On conformal perfect fluids with some time-like velocity field u

- $\mathrm{T}^{\text {perf }}=p\left(3 \mathrm{u}^{2}+\mathrm{d} s_{\text {bry. }}^{2}\right)$
- Euler equations $\left\{\begin{array}{l}\nabla_{\mathrm{u}} \log p+3 / 2 \Theta=0 \\ \nabla_{\perp} \log p+3 \mathrm{a}=0\end{array}\right.$
- Integrability criterion: $d A=0$ with $A=a-\frac{\Theta}{2} u$
\Longrightarrow geodesic and expansionless u solve them with constant p
On the actual stress tensor $T=\operatorname{Re} T^{\text {ref }+}$
- Not expected to be perfect: $T=T^{\text {perf }}+\Pi$
- The fluid congruence u is read off from the perfect piece
- $T^{\text {perf }}$ and Π are not separately conserved

The series expansion

Using the boundary data $d s_{b r y .}^{2}$. and T as well as C and u the partly resummed derivative expansion reads [Bhattacharyga et al '08; Caldarelli e tal '12]

$$
\begin{align*}
& d s_{\text {bulk }}^{2}=-2 u(d r+r A)+r^{2} k^{2} d s_{b r y .}^{2}+\frac{1}{k^{2}} \Sigma \\
& \quad+\frac{u^{2}}{\rho^{2}}\left(\frac{8 \pi G T_{\lambda \mu} u^{\lambda} u^{\mu}}{k^{2}} r+\frac{C_{\lambda \mu} u^{\lambda} \eta^{\mu v \sigma} \omega_{v \sigma}}{2 k^{6}}\right)+\text { h.d. } \tag{R}
\end{align*}
$$

- $A=a-\frac{\Theta}{2} u \quad \omega=\frac{1}{2}(d u+u \wedge a)$
- $\Sigma=-2 u \nabla_{v} \omega^{v}{ }_{\mu} d x^{\mu}-\omega_{\mu}{ }^{\lambda} \omega_{\lambda v} d x^{\mu} d x^{v}-$ $\frac{1}{2} u^{2}\left(R+4 \nabla_{\mu} A^{\mu}-2 A_{\mu} A^{\mu}\right)$
- $\rho^{2}=r^{2}+\frac{1}{2 k^{4}} \omega_{\mu v} \omega^{\mu v} \quad \eta^{\mu v \sigma}=\epsilon^{\mu v \sigma} / \sqrt{-g_{b r r y}}$.

Using Eqs. (C) and (T) the first terms of (R) are exact Einstein

Output:

- Integration achieved: limited derivative expansion is exact Einstein (Plebański-Demiański, Robinson-Trautman, Kundt....)
- Remarkable form of $T^{r e f \pm} \Rightarrow$ special form of $W^{ \pm}$: algebraic Petrov type (Kerr, Taub-NUT, C-metric, pp-waves....)

Consequence for holographic fluids: transport properties

- Status: exact solutions provide rich information on transport coefficients (in particular when T is non-perfect) IMukhopadhyay etal ${ }^{13}$; de
Freitas, Reall '14; Bakas, Skenderis '14]
- Next: perturbation of exact Einstein spaces as a deeper probe for transport can be made more systematic - captured in the known h.d. terms of the $d s_{\text {bulk }}^{2}$ expansion

Highlights

```
The ancestor of holography
Gravitational duality
Gravity, holography and the Fefferman-Graham expansion
```

Fluids and resummation

The Robinson-Trautman

The Plebański-Demiański type D class

Examples without vorticity

$$
\begin{equation*}
d s_{b r y .}^{2}=-d t^{2}+\frac{2}{k^{2} P^{2}} d \zeta d \bar{\zeta} \tag{nv}
\end{equation*}
$$

$P(t, \zeta, \bar{\zeta})$ real \& a priori arbitrary - define $K=2 P^{2} \partial_{\zeta} \partial_{\bar{\zeta}} \log P$

- Cotton-tensor components $C_{\mu v}$:

$$
-i\left(\begin{array}{ccc}
0 & -\frac{k^{2}}{2} \partial_{\zeta} K & \frac{k^{2}}{2} \partial_{\bar{\zeta}} K \\
-\frac{k^{2}}{2} \partial_{\zeta} K & -\partial_{t}\left(\frac{\partial_{\zeta}^{2} P}{P}\right) & 0 \\
\frac{k^{2}}{2} \partial_{\bar{\zeta}} K & 0 & \partial_{t}\left(\frac{\partial_{\bar{\zeta}}^{2} P}{P}\right)
\end{array}\right)
$$

- Complex-conjugate geodesic \& expansionless congruences $\mathrm{u}^{+}=-\mathrm{d} t+\frac{\alpha^{+}}{P^{2}} \mathrm{~d} \zeta$ and c.c.: $\alpha^{ \pm}(\zeta, \bar{\zeta})$ satisfy

$$
\begin{equation*}
k^{2} P \partial_{\zeta} \alpha^{-}=2\left(k^{2} \alpha^{-} \partial_{\zeta} P+\partial_{t} P\right) \quad \text { plus c.c. } \tag{h}
\end{equation*}
$$

- With M constant $T^{\text {ref } \pm}=\frac{M k^{2}}{8 \pi G}\left(3\left(u^{ \pm}\right)^{2}+d s_{\text {bry. }}^{2}\right)$ is conserved
- Requiring $C=8 \pi G k^{2} I m T^{\text {ref }+}$ sets 1 constraint on P

$$
\begin{equation*}
\left(\partial_{\zeta} K\right)^{2}+6 M \partial_{t}\left(\frac{\partial_{\zeta}^{2} P}{P}\right)=0 \tag{D}
\end{equation*}
$$

plus 1 constraint on $\alpha^{-} \partial_{\bar{\zeta}} K=3 M k^{2} \frac{\alpha^{-}}{P^{2}}-$ combined with (h) gives

$$
\begin{equation*}
P^{2} \partial_{\bar{\zeta}} \partial_{\zeta} K-6 M \partial_{t} \log P=0 \tag{E}
\end{equation*}
$$

(plus c.c.)

The stress tensor T

- Using $T=\operatorname{Re} T^{\text {ref+ }}$ one finds the non-perfect $8 \pi G / k^{2} T$

$$
\left(\begin{array}{ccc}
2 M & -\frac{1}{2 k^{2}} \partial_{\zeta} K & -\frac{1}{2 k^{2}} \partial_{\bar{\zeta}} K \\
-\frac{1}{2 k^{2}} \partial_{\zeta} K-\frac{1}{k^{4}} \partial_{t}\left(\frac{\partial_{\zeta}^{2} P}{P}\right) & \frac{M}{k^{2} P^{2}} \\
-\frac{1}{2 k^{2}} \partial_{\bar{\zeta}} K & \frac{M}{k^{2} P^{2}} & -\frac{1}{k^{4}} \partial_{t}\left(\frac{\partial_{\zeta}^{2} P}{P}\right)
\end{array}\right)
$$

- The perfect part is $T^{\text {perf }}=\frac{M k^{2}}{8 \pi G}\left(3 u^{2}+d s_{\text {bry. }}^{2}\right)$ with $u=-d t$ a geodesic expanding congruence with zero shear and zero vorticity - not conserved

Resummation: using $d s_{b r y,}^{2} C, T$ and u in Eq. (R)

$$
\begin{equation*}
d s_{\text {bulk }}^{2}=2 d t d r-2 H d t^{2}+2 \frac{r^{2}}{p^{2}} d \zeta d \bar{\zeta}+h . d \tag{RT}
\end{equation*}
$$

with

$$
2 H=K+2 r \partial_{t} \log P-\frac{2 M}{r}+k^{2} r^{2}
$$

The displayed part without h.d. is

- exact Einstein thanks to Eq. (E) \rightarrow integrability condition
- Petrov type D thanks to Eq. (D) $\Leftrightarrow 3 \Psi_{2} \Psi_{4}=2 \Psi_{3}^{2}$

Robinson-Trautman type D class

- u $\longleftarrow 2$ multiplicity-2 bulk principle null directions
- $u_{ \pm} \longleftarrow 2 / 4$ bulk tetrad elements

Now pure-radiation reference tensor

$$
4 \pi G k^{2} T^{r e f+}=F(t, \zeta) d \zeta^{2}
$$

arbitrary $F(t, \zeta) \Rightarrow T^{r e f \pm}$ conserved

- Requiring $C=8 \pi G k^{2} \operatorname{Im} T^{\text {ref+ }}$ sets 1 constraint on P

$$
\begin{equation*}
\partial_{\zeta} K=0 \tag{N}
\end{equation*}
$$

plus

$$
\begin{equation*}
\partial_{t}\left(\frac{\partial_{\zeta}^{2} P}{P}\right)+F(t, \zeta)=0 \tag{F}
\end{equation*}
$$

(plus c.c.)

- Eq. (N) sets $K=K(t)$ and determines $P(t, \zeta, \bar{\zeta})$
- Eq. (F) determines $F(t, \zeta)$ - no constraint
- Using $T=R e T^{r e f+}$ one finds the non-perfect stress tensor

$$
8 \pi G k^{2} \mathrm{~T}=F(t, \zeta) \mathrm{d} \bar{\zeta}^{2}+\bar{F}(t, \bar{\zeta}) \mathrm{d} \bar{\zeta}^{2}
$$

Using $d s_{b r y .}^{2}, C, T$ and $u=-d t$ in Eq. (R) gives (RT) with $M=0$

- Petrov type N thanks to

$$
\begin{array}{r}
M=0 \Leftrightarrow \Psi_{2}=0 \\
(N) \Leftrightarrow \Psi_{3}=0
\end{array}
$$

- Always exact Einstein

Note: $P(t, \zeta, \bar{\zeta})=\frac{1+\varepsilon / 2 g \bar{g}}{\sqrt{2 f \partial_{\zeta} g \partial_{\bar{\xi}} \bar{g}}}$ with $\varepsilon=0, \pm 1$ and $f(t), g(t, \zeta)$ arbitrary functions - $F(t, \zeta)$ expressed in terms of $g(t, \zeta)$ and its derivatives

Robinson-Trautman type N class
$\mathrm{u} \longleftarrow 1$ multiplicity-4 bulk principle null direction

Highlights

The ancestor of holography
 Gravitational duality
 Gravity, holography and the Fefferman-Graham expansion

Fluids and resummation

The Robinson-Trautman

The Plebański-Demiański type D class

Examples with vorticity

$$
\begin{equation*}
d s_{b r y .}^{2}=-Q^{2}(d t-b)^{2}+\frac{2}{k^{2} P^{2}} d \zeta d \bar{\zeta} \tag{nv}
\end{equation*}
$$

P, Q real fcts and $\mathrm{b}=b_{\zeta} \mathrm{d} \zeta+b_{\bar{\zeta}} \mathrm{d} \bar{\zeta}$ a real form - a priori arbitrary

- Impose $\exists 1$ Killing \Rightarrow 2nd one [Mukhopadhyay et al '13]
- Impose $\exists 2$ c.c. accelerating non-expanding congruences $\mathrm{u}_{ \pm} \Rightarrow$ perfect-fluid conserved $\mathrm{T}^{\text {ref } \pm}$ (non-constant pressure)
- Impose $C=8 \pi G k^{2} \operatorname{Im} T^{\text {ref+ }} \Rightarrow$ solve for P, Q and $b \Rightarrow d s_{\text {bry }}^{2}$.
- Extract $T=R e T^{\text {ref+ }}=T^{\text {perf }}+\Pi$
- $T^{\text {perf }}$ generally non-conserved - aligned with $\mathrm{u}=-\mathrm{d} t+\mathrm{b}$ shearless, expanding accelerating congruence with vorticity
- Resum - Eq. (R): exact Petrov type D Plebański-Demiański familly (mass, rotation, nut, "twist", acceleration)

[^0]: ${ }^{1}$ Kubo-like formulas: correlation functions \leftrightarrow transport coefficients

