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Holography

Originally: microscopic correspondence

type II string theory on AdS5 × S5

l
N = 4 YM on D = 4 conformal boundary of AdS5

with gstring ↔ 1/gYM

Later: macroscopic extension

gravity plus matter on d = D + 1 asymptotically AdS background
l

phenomenological description of states of a D-dim boundary CFT

Examples: AdS/QCD, AdS/CMT (superconductors, superfluids, . . . )



Holography is a tool
I Ultimate goal: compute correlation functions in strongly

coupled (conformal) field theories
I Alternatively: compute transport coefficients in fluids1 – fluid:

hydrodynamic approximation of finite-T and finite-µ states of
the (C)FT

Holographic fluid: hydrodynamic approximation of finite-T and
finite-µ states of a boundary CFT holographically dual to some bulk
gravitational set-up

1Kubo-like formulas: correlation functions ↔ transport coefficients



Fluid/gravity correspondence

Profound relationship
I Originally in a classical framework: relationship between two

sets of non-linear equations, Einstein’s Eqs. and Navier–Stokes
Eqs. [Damour 1979; also Eling, Lysov, Oz, Strominger, . . . since 2009]

I More recently within the holographic correspondence with a
quantum perspective [Bhattacharyya, Hubeny, Loganayagam, Minwalla, Rangamani, . . . since 2007]

Connected via renormalization-group flow from the boundary (UV)
to the horizon (IR) where the former correspondence takes place
[Kuperstein, Mukhopadhyay, . . . since 2012]



Holographic fluids

Original motivation: determine transport properties

I Start with some bulk gravitational background related to some
boundary fluid in local thermodynamic equilibrium

I Perturb and analyse the response using the bulk-boundary
dictionary

−→ perturbative response methods

Intriguing observation: some exact bulk solutions of Einstein Eqs.
describe [Leigh, Petkou, Petropoulos ’10, ’11; Caldarelli, Leigh, Petkou, Petropoulos, Pozzoli, Siampos ’12]

I non-trivial fluid stationary states
I on non-trivial boundary backgrounds

−→ enable to probe substantially transport properties without
response analysis [Mukhopadhyay, Petkou, Petropoulos, Pozzoli, Siampos ’13]



Here

The question: can one exhibit more systematically exact bulk Einstein
solutions that would produce appropriately designed fluid states –
and provide more information on transport?

The spirit: find an integrable phase subspace corresponding to some
first integral – effective reduction from 2nd- to 1st-order equations

The answer: yes
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Curvature decomposition in 4 dim

Metric ds2 = gAB dxAdxB , connection Γ and curvature R

I The Riemann RABCD has 20 independent components
1 the scalar R
9 the traceless Ricci SAB = RAB − R

4 gAB
10 the Weyl WABCD (conformal properties)

I The Weyl can be split into 5 self-dual W+ and 5 anti-self-dual
W− components

Atiyah–Hitchin–Singer packaging in 3× 3 matrices [Cahen, Debever, Defise ’67;

Atiyah, Hitchin, Singer ’78]

λ, µ, ν, . . . = 0, 1, 2
I traceless Ricci → 9→ generic matrix Sµν

I self-dual Weyl tensor → 5→ symmetric and traceless W+
µν

I anti-sd Weyl tensor → 5→ symmetric and traceless W−
µν



Here the signature is Lorentzian : (+−++)

I W+ and W− are complex-conjugate
I The 10 independent components are captured in 5 complex

functions Ψa, a = 0, . . . , 4 projections of W onto a null tetrad

The existence of 4 principal null directions, potentially degenerate
with higher multiplicity, translates into special algebraic relationships
among the Ψs: Petrov type I, II, III, D, N, O



Curvature decomposition in 3 dim

The Riemann has 6 independent components

I All Riemann components are in the Ricci
I The Weyl tensor vanishes

The conformal properties are captured by the Cotton tensor

C µν =
εµρσ√
|g |
∇ρ

(
Rν

σ −
R

4
δν

σ

)

I symmetric
I traceless
I identically conserved: ∇µC

µν = 0
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Relativistic fluid dynamics

Fluids in dim D gravitational backgrounds are described in terms of
gµν and D + 1 independent quantities u, ε, p all inside T µν

T µν = T
µν
perf + T

µν
visc

I T
µν
perf = εuµuν + phµν (hµν: metric on Σ ⊥ u)

I T
µν
visc as expansion in ∇nu→ transport coefficients

Landau frame: all corrections are transverse wrt u – built on shear
σ, expansion Θ, acceleration a, vorticity ω and higher derivatives

The Eqs. are ∇µT
µν = 0 (D) plus an Eq. of state (1)



Fluids and gravity

Originally: black-hole horizon responds to perturbations as a viscous
fluid [Damour 1979]

I damped shear waves
I viscosity η = 1/16πG

I Bekenstein–Hawking entropy s = 1/4G ⇒ η/s = 1/4π

Origin? Deeper and more general relationship between Einstein’s
Eqs. and fluid dynamics [Eling, Lysov, Oz, Strominger, . . . since 2009]

Gravity in 4 dim: 10 Einstein’s Eqs. involving GAB (∇AG
AB = 0)

I 6 evolution: Gµν (2nd order)
I 4 constraint: Grr ,Grµ (1st order)



Initial-value formulation (Cauchy problem): Σt, gµν (6), Kµν (6) with

I Hamiltonian constraint (1): R (3) − 2Λ +K 2 −KµνK
µν = 0

I momentum constraint (3): ∇µ (K µν − gµνK ) = 0

constraints in 4-dimM↔ dynamics for Kµν on 3-dim Σt

Imposing algebraic Petrov in 4 dim: Kµν (6)→ (4) as for a fluid on Σt

I Kµν ↔ ε, p, u

I R (3) − 2Λ +K 2 −KµνK
µν = 0: Eq. of state

I ∇µ (K µν − gµνK ) = 0: energy-momentum conservation

incompressible Navier–Stokes appear e.g. on black-hole horizons
and conformal fluids appear on the conformal boundary Σt|r→∞
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The boundary geometry

Work in the phenomenological i.e. gravity approximation – here: pure
gravitational backgrounds→ neutral boundary fluids

I Bulk Einstein space with Λ = −3k2: asymptotically AdS
d = D + 1-dim geometry

I Conformal boundary at r → ∞: D-dim geometry

ds2
bulk ≈

dr2

k2r2 + k2r2gµνdxµdxν

A primer: Schwarzschild AdS4 black hole

ds2 = dr2

1+k2r2− 2M
r

−
(
1+ k2r2 − 2M

r

)
dt2 + r2 (dϑ2 + sin2 ϑ dϕ2)

ds2
bry. = −dt2 + 1

k2

(
dϑ2 + sin2 ϑ dϕ2)



The boundary fluid

Holography: Hamiltonian evolution from data on the boundary –
captured in Fefferman–Graham expansion for large r [Fefferman, Graham ’85]

Two independent boundary Cauchy data:
I metric: “generalized coordinate” – leading term
I fundamental form: “conjugate momentum” – subleading term

ds2
bulk =

dr2

k2r2 + k2r2ds2
bry. + · · ·+

16πG

3k(kr)D−2Tµνdxµdxν + · · ·

Tµν is traceless and conserved: interpreted as the stress–energy
tensor of the boundary fluid in the hydrodynamic regime



The boundary fluid
I is related to the constant-r fluid via holographic RG flow
I is not perfect and satisfies η/s ≥ 1/4π [Policastro, Son, Starinets ’01]

Holographic approach is superior – it allows
I to determine more transport coefficients
I to integrate the boundary data into exact bulk solutions



Back to the primer: Schwarzschild AdS4 black hole (D = 3)

Tµνdxµdxν = ε
2

(
2dt2 + 1

k2

(
dϑ2 + sin2 ϑ dϕ2)) = ε

2

(
3u2 + ds2

bry.

)
perfect-fluid stress tensor with u = ∂t and ε = 2p = Mk2/4πG

I T µν = T
µν
perf because of the kinematic state (fluid at rest)

I no information on any transport coefficient

Goal: find bulk Einstein spaces with
I involved ds2

bry. and u→ non-vanishing transverse ∇nu
I simple T µν → extract information on transport properties

exact bulk→ exact transport coefficients: integrability properties



Highlights

Foreword

Riemann, Weyl and Cotton

Fluids and gravity

Holographic fluids

Integrability and resummation

Outlook



The philosophy

The question: given a boundary geometry ds2
bry. can one determine

I the conditions it should satisfy
I the stress tensor it should be accompanied with

for the FG expansion to be exactly resummable?

Focus on the sd and asd components of the Weyl W± – FG expansion:

W±
µν =

8πG

k2r3 T
ref±
µν + · · ·

Here

T ref±
µν = T µν ± i

8πGk2C
µν

symmetric, traceless and conserved



The answer

The metric ds2
bry. must admit 2 symmetric, traceless and exactly

conserved rank-2 tensors Tref± related by complex conjugation
The pattern: scan classes of ds2

bry. admitting exact Tref± and

I further impose on ds2
bry. the condition

C = 8πGk2 ImTref+ (C)

I build the bulk with the resulting ds2
bry. and the stress tensor

T = ReTref+ (T)



The reference tensors Tref±

Integrability in Einstein spaces is tight to Petrov special types
=⇒ W± are remarkably simple and so must be Tref±

simpler to scan for Tref± than for C and T

Boundary geometries expected to lead to resummable series should
have canonical Tref± i.e.

I either possess complex-conjugate time-like geodesic congruences
associated with perfect-fluid-form Tref±

I or admit null congruences associated with pure-radiation Tref±

I or a combination of both

=⇒ Tref± follow the Segre classification of the 3-dim Cotton
the right integrability recipe



Results

Using the boundary data ds2
bry. and T constructed in this way, the

derivative expansion
I is exactly resummable→ all Petrov-algebraic Einstein spaces:

Kundt, Robinson–Trautman, Plebański–Demiański, . . .
I gives access to transport properties→ the fluid is in non-trivial

kinematical configurations and the stress–energy tensor is not
perfect: T = Tperf + Π
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Fluid/gravity correspondence
I constant-r slices Σt inside Petrov-algebraic bulk: Cauchy data

plus constraints↔ fluid plus dynamics
I on the conformal boundary of asymptotically AdS spaces –

macroscopic holography
I Cauchy data: 2+ 1-dim ds2bry. and T with fluid dynamics
I physical content: transport properties

In the latter: bottom-up approach based on integrability
I Idea: shape ds2

bry. and T for exact ascendent

I Pattern: design conserved Tref± of perfect fluid or radiation
I Integrability: guaranteed by the “1st order equation”

C = 8πGk2 ImTref+ – again Petrov-algebraic bulk



More general questions
I Corners of integrability of Einstein’s Eqs.
I Solution-generating patterns à la Ehlers and Geroch in AdS

spaces
I Higher-dimensional Einstein spaces: Spin(7) bulks and G2

boundaries
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LeBrun’s filling-in

The “filling-in” problem – 1982

I A round S3 can be “filled-in” by H4

ds2
H4

=
dr2

1+ r2 + r2dΩ2
S3 → r2dΩ2

S3

I How to fill-in analytically a Berger sphere?

dΩ2
Berger =

(
σ1)2 + (σ2)2 + γ

(
σ3)2

(σi : Maurer–Cartan forms of SU(2))

Answer: Einstein space with self-dual Weyl tensor – quaternionic
space [LeBrun ’82; Pedersen ’86; Pedersen, Poon ’90; Tod ’94; Hitchin ’95]



A classic example

Bianchi IX AdS Schwarzschild–Taub–NUT

I Einstein space with Λ = −3k2, mass M, nut charge n

ds2 =
dr2

V (r)
+
(
r2 − n2) (dϑ2 + sin2 ϑdϕ2)

+V (r)

(
dτ + 4n sin2 ϑ

2
dϕ

)2

V (r) = 1
r2−n2

[
r2 + n2 − 2Mr + k2 (r4 − 6n2r2 − 3n4)]

I Weyl (anti-)self-dual (i.e. quaternionic) iff

M = ±n(1− 4k2n2)

⇐⇒ no conical singularity at r = n



The boundary geometry: ds2 →
r→∞

dr2
k2r2

+ k2r2ds2
bry.

ds2
bry. =

(
dτ + 4n sin2 ϑ

2
dϕ

)2

+
1
k2

(
dϑ2 + sin2 ϑdϕ2)

=
1
k2

((
σ1)2 + (σ2)2)+ 4n2(σ3)2

with τ = −2n(ψ + ϕ) and 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π, 0 ≤ ψ ≤ 4π
σ1 = sin ϑ sinψ dϕ + cosψ dϑ

σ2 = sin ϑ cosψ dϕ− sinψ dϑ

σ3 = cos ϑ dϕ + dψ.

Conclusion: ds2
bry. is a Berger sphere
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Gravitational duality

Similar to electric–magnetic duality in general relativity – Euclidean
regime

I Solve Einstein’s Eqs. – self-dual gravitational instantons
[Newman, Tamburino, Unti ’63; Eguchi, Hanson ’78]

I Provide another handle for understanding the theory
I linear regime [works by Bunster, Julia, Henneaux. . . ]

I mass and nut as electric and magnetic charges [Dowker ’74]

Self-duality deeply related with integrability – in the ’70 all
integrable systems were thought to be SDYM reductions [Ward, ’85]



Curvature decomposition

Metric ds2 = δabθaθb, connection one-form ωab and curvature
two-formRab ∈ 6 of SO(4) ∼= SO(3)sd ⊗ SO(3)asd

I Reducible under SO(3)sd and SO(3)asd: 6 = (3, 1)⊕ (1, 3)
I Curvature two-form (λ, µ . . . = 1, 2, 3)

(3, 1) Sλ = 1
2

(
R0λ + 1

2ελµνRµν
)

(1, 3) Aλ = 1
2

(
R0λ − 1

2ελµνRµν
)

and similarly for the connection one-form
I Basis for the space of two-forms ∧2

(3, 1) φλ = θ0 ∧ θλ + 1
2ελ

µνθµ ∧ θν

(1, 3) χλ = θ0 ∧ θλ − 1
2ελ

µνθµ ∧ θν



Atiyah–Hitchin–Singer decomposition of Sµ,Aµ [Cahen, Debever, Defise ’67; Atiyah,

Hitchin, Singer ’78]

Sµ = 1
2W

+
µνφν + 1

12sφµ +
1
2C

+
µνχν

Aµ = 1
2W

−
µνχν + 1

12sχµ +
1
2C
−
νµφν

with W± and C± 3× 3 matrices, and s a function encoding the 20
components of the Riemann

I s = R/2 scalar curvature → 1
I C±µν traceless Ricci → 9
I W+

µν self-dual Weyl tensor symmetric and traceless → 5
I W−

µν anti-self-dual Weyl tensor symmetric and traceless → 5

Quaternionic spaces: C± = 0 s = 2Λ W− = 0 or W+ = 0⇔
Einstein & Weyl (anti-)self-dual



Highlights

The ancestor of holography

Gravitational duality

Gravity, holography and the Fefferman–Graham expansion

Fluids and resummation

The Robinson–Trautman
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Gravity in d = 4

Palatini formulation and 3+ 1 split [Leigh, Petkou ’07; Mansi, Petkou, Tagliabue ’08]

IEH = − 1
32πG

∫
M

εabcd

(
Rab +

k2

2
θa ∧ θb

)
∧ θc ∧ θd

θa an orthonormal frame ds2 = ηabθaθb (η : + ε ++)
gauge: no lapse, no shift

I Coframe: θr = dr
kr and θµ

ds2 =
dr2

k2r2 + ηµνθµθν

I Connection: ωrµ = Kµ and ωµν = −εµνρBρ or (a)sd
combination 1/2(Kµ ±Bµ) for ε = +



Hamiltonian evolution of θµ,Kµ,Bρ from boundary data – what are
the independent boundary data? Answer in asymptotically AdS:
Fefferman–Graham expansion for large r [Fefferman, Graham ’85; subtleties: de Haro,

Skenderis, Solodukhin, ’00]

θµ(r , x) = kr E µ(x) + 1
kr F

µ

[2](x) +
1

k2r2
F

µ

[3](x) + · · ·
Kµ(r , x) = −k2r E µ(x) + 1

r F
µ

[2](x) +
2
kr2

F
µ

[3](x) + · · ·
Bµ(r , x) = Bµ(x) + 1

k2r2
B

µ

[2](x) + · · ·

Independent 2+ 1 boundary data: E µ and F
µ

[3]



The holographic fluid

Interpretation of the boundary data

I E µ: boundary orthonormal coframe – allows to determine
ds2

bry. = ηµνE
µE ν = gµνdxµdxν

I F
µ

[2] =
−1/2k2Sµνeν: Schouten

I B
µ

[2] =
1/2k2Cµνeν: Cotton

I . . .

I F
µ

[3]: stress current one-form – allows to construct the vev of
the boundary stress tensor

T = 3k
8πG F

µ

[3]eµ = T
µ
νE

ν ⊗ eµ

Macroscopic object carrying microscopic data from the bulk



Bulk Weyl self-duality and its boundary manifestation

Expanding W± = 0 leads to B[2] = ±(i) 3k
2 F[3] i.e.

8πGk2Tµν ± (i)Cµν = 0

[Leigh, Petkou ’07; de Haro ’08; Mansi, Petkou, Tagliabue ’08; Miskovic, Olea ’09]

Key property: C and T are
I traceless
I conserved

Away from the self-dual point, so is

T ref±
µν = T µν ± (i)

8πGk2C
µν

reflecting W±
µν = 8πG

k2r3
T ref±

µν + · · · 6= 0
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Vector field u with uµu
µ = −1 and space–time variation ∇µuν

∇µuν = −uµaν + σµν +
1

D − 1
Θhµν + ωµν

I hµν = uµuν + gµν: projector/metric on the orthogonal space
I aµ = uν∇νuµ: acceleration
I σµν: symmetric traceless part – shear
I Θ = ∇µu

µ: trace – expansion
I ωµν: antisymmetric part – vorticity

In 2+ 1 dimensions

T
µν
visc = −

(
2ησµν + ζhµνΘ + ζHε

ρλ(µ
uρσ

ν)
λ

)
+ O

(
∇2u

)
Conformal fluids (tracelessness): ε = 2p, ζ = 0, . . .



On conformal perfect fluids with some time-like velocity field u

I Tperf = p
(
3u2 + ds2

bry.

)
I Euler equations

{
∇u log p + 3/2 Θ = 0
∇⊥ log p + 3a = 0

I Integrability criterion: dA = 0 with A = a− Θ
2 u

=⇒ geodesic and expansionless u solve them with constant p

On the actual stress tensor T = Re Tref+

I Not expected to be perfect: T = Tperf + Π
I The fluid congruence u is read off from the perfect piece
I Tperf and Π are not separately conserved



The series expansion

Using the boundary data ds2
bry. and T as well as C and u the partly

resummed derivative expansion reads [Bhattacharyya et al ’08; Caldarelli et al ’12]

ds2
bulk = −2u(dr + rA) + r2k2ds2

bry. +
1
k2 Σ

+
u2

ρ2

(
8πGTλµu

λuµ

k2 r +
Cλµu

ληµνσωνσ

2k6

)
+ h.d.

(R)

I A = a− Θ
2 u ω = 1

2 (du + u∧ a)
I Σ = −2u∇νων

µdxµ −ω λ
µ ωλνdxµdxν −

1
2u2 (R + 4∇µA

µ − 2AµA
µ
)

I ρ2 = r2 + 1
2k4 ωµνωµν ηµνσ = εµνσ/√−gbry.

Using Eqs. (C) and (T) the first terms of (R) are exact Einstein



Output:
I Integration achieved: limited derivative expansion is exact

Einstein (Plebański–Demiański, Robinson–Trautman, Kundt. . . )
I Remarkable form of Tref± ⇒ special form of W±: algebraic

Petrov type (Kerr, Taub–NUT, C -metric, pp-waves. . . )

Consequence for holographic fluids: transport properties
I Status: exact solutions provide rich information on transport

coefficients (in particular when T is non-perfect) [Mukhopadhyay et al ’13; de

Freitas, Reall ’14; Bakas, Skenderis ’14]

I Next: perturbation of exact Einstein spaces as a deeper probe for
transport can be made more systematic – captured in the known
h.d. terms of the ds2

bulk expansion
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Examples without vorticity

ds2
bry. = −dt2 +

2
k2P2 dζdζ̄ (nv)

P(t, ζ, ζ̄) real & a priori arbitrary – define K = 2P2∂ζ∂ζ̄ logP
I Cotton-tensor components Cµν:

−i


0 − k2

2 ∂ζK
k2
2 ∂ζ̄K

− k2
2 ∂ζK −∂t

(
∂2

ζ
P

P

)
0

k2
2 ∂ζ̄K 0 ∂t

(
∂2

ζ̄
P

P

)


I Complex-conjugate geodesic & expansionless congruences

u+ = −dt + α+

P2 dζ and c.c.: α±(ζ, ζ̄) satisfy

k2P∂ζα− = 2
(
k2α−∂ζP + ∂tP

)
plus c.c. (h)



I With M constant Tref± = Mk2

8πG

(
3 (u±)2 + ds2

bry.

)
is conserved

I Requiring C = 8πGk2 ImTref+ sets 1 constraint on P

(
∂ζK

)2
+ 6M∂t

(
∂2

ζP

P

)
= 0 (D)

plus 1 constraint on α− ∂ζ̄K = 3Mk2 α−

P2 – combined with (h)
gives

P2∂ζ̄∂ζK − 6M∂t logP = 0 (E)

(plus c.c.)



The stress tensor T

I Using T = ReTref+ one finds the non-perfect 8πG/k2T
2M − 1

2k2
∂ζK − 1

2k2
∂ζ̄K

− 1
2k2

∂ζK − 1
k4

∂t

(
∂2

ζ
P

P

)
M

k2P2

− 1
2k2

∂ζ̄K
M

k2P2 − 1
k4

∂t

(
∂2

ζ̄
P

P

)


I The perfect part is Tperf = Mk2

8πG

(
3u2 + ds2

bry.

)
with u = −dt

a geodesic expanding congruence with zero shear and zero
vorticity – not conserved



Resummation: using ds2
bry., C, T and u in Eq. (R)

ds2
bulk = 2dt dr − 2Hdt2 + 2

r2

P2 dζdζ̄ + h.d. (RT)

with
2H = K + 2r∂t logP −

2M
r

+ k2r2

The displayed part without h.d. is
I exact Einstein thanks to Eq. (E) → integrability condition
I Petrov type D thanks to Eq. (D) ⇔ 3Ψ2Ψ4 = 2Ψ2

3

Robinson–Trautman type D class

I u←− 2 multiplicity-2 bulk principle null directions
I u± ←− 2/4 bulk tetrad elements



Now pure-radiation reference tensor

4πGk2 Tref+ = F (t, ζ) dζ2

arbitrary F (t, ζ)⇒ Tref± conserved

I Requiring C = 8πGk2 ImTref+ sets 1 constraint on P

∂ζK = 0 (N)

plus

∂t

(
∂2

ζP

P

)
+ F (t, ζ) = 0 (F)

(plus c.c.)
I Eq. (N) sets K = K (t) and determines P(t, ζ, ζ̄)
I Eq. (F) determines F (t, ζ) – no constraint



I Using T = ReTref+ one finds the non-perfect stress tensor

8πGk2 T = F (t, ζ) dζ2 + F̄ (t, ζ̄) dζ̄2

Using ds2
bry., C, T and u = −dt in Eq. (R) gives (RT) with M = 0

I Petrov type N thanks to
M = 0 ⇔ Ψ2 = 0

(N) ⇔ Ψ3 = 0
I Always exact Einstein

Note: P(t, ζ, ζ̄) = 1+ε/2 g ḡ√
2f ∂ζg ∂ζ̄ ḡ

with ε = 0,±1 and f (t), g(t, ζ) arbitrary

functions – F (t, ζ) expressed in terms of g(t, ζ) and its derivatives

Robinson–Trautman type N class
u←− 1 multiplicity-4 bulk principle null direction
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Examples with vorticity

ds2
bry. = −Q2 (dt − b)2 +

2
k2P2 dζdζ̄ (nv)

P,Q real fcts and b = bζdζ + bζ̄dζ̄ a real form – a priori arbitrary
I Impose ∃ 1 Killing ⇒ 2nd one [Mukhopadhyay et al ’13]

I Impose ∃ 2 c.c. accelerating non-expanding congruences
u± ⇒ perfect-fluid conserved Tref± (non-constant pressure)

I Impose C = 8πGk2 ImTref+ ⇒ solve for P,Q and b⇒ ds2
bry.

I Extract T = ReTref+ = Tperf + Π
I Tperf generally non-conserved – aligned with u = −dt + b

shearless, expanding accelerating congruence with vorticity
I Resum – Eq. (R): exact Petrov type D Plebański–Demiański

familly (mass, rotation, nut, “twist”, acceleration)
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