Measurements of vector boson plus heavy flavours in ATLAS

N. Orlando¹

¹Aristotle University of Thessaloniki

HEP 2015, Athens, Greece April 16, 2015

European Union European Social Fund

Co-financed by Greece and the European Union

Allant

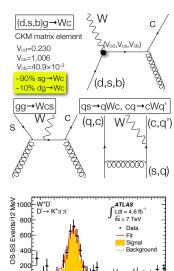
Run 1 measurements of vector boson plus jets

Covered by Sofia C. https://indico.cern.ch/event/366801/contributi	on/232
--	--------

Inclusive measurements of vector bosons plus jets			
Analysis	Goal	Reference	
W+jets	Validation of Monte Carlo event generators	Eur. Phys. J. C (2015) 75:82	
Z+jets	Validation of Monte Carlo event generators	JHEP 07 (2013) 032	
R _{jets}	Validation of Monte Carlo event generators	Eur. Phys. J. C (2014) 74: 3168	

Highlighted by Sofia C., main focus of this talk

Measurements of vector bosons plus heavy flavours

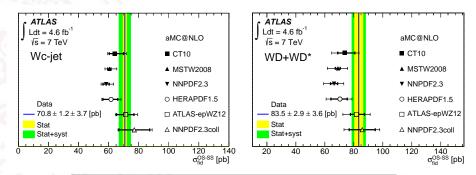

Analysis	Goal	Reference
W+charm	Constrain strange-quark PDF	JHEP 05 (2014) 068
W+b-jets	Validation of Monte Carlo event generators	JHEP 06 (2013) 084
Z+b-jets	Validation of Monte Carlo event generators	JHEP 10 (2014) 141

W+charm analysis: overview

- Measure W+single-charm production
- Sensitivity to strange-guark PDF, testing suppressed/unsuppressed scenarios
 - Suppressed strange PDFs: $r_s = 0.5 \times [s(x) + \overline{s}(x)]/\overline{d}(x) \sim 0.5$
 - Unsuppressed strange PDFs: $r_s = 0.5 \times [s(x) + \overline{s}(x)]/\overline{d}(x) \sim 1$
- Exploiting the charge correlation between the W boson and the charm-quark for suppressing the backgrounds
 - Presenting Opposite Sign (OS) subtracting the Same Sign (SS) W+charm cross section
- Using two analysis strategies
 - Soft-lepton tagging: identify inclusively semi-leptonic decays of charmed hadrons
 - C-hadron reconstruction: reconstruct the decay modes $\overline{D^+ \to K^- \pi^+ \pi^+, D^{*+} \to D^0 \pi^+ (D^0 \to K^- \pi^+), D^0 \to K^- \pi^+ \pi^0},$ $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$ and charge conjugates

Dominant systematic uncertainties					
Cross section	n Syst. error type Syst. error [%]				
$\sigma(W + D)$	Tracking efficiency	2.1			
	Branching ratio	2.1			
$\sigma(W + D^*)$	Tracking efficiency	2.2			
	Signal modeling	1.9			
σ (W+c-jets)	Background	3			
	c-hadrons decays	2.9			

Nicola Orlando

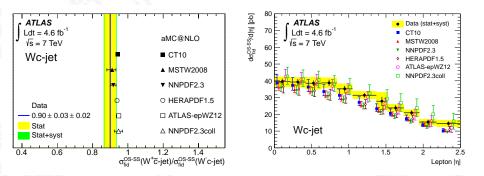


1.75 1.8 1.85 1.9 1.95 2 2.05

21

22 m(D) [GeV]

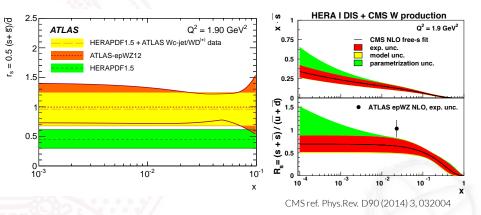
W+charm fiducial cross sections


PDF set	Data	Strange-quark
CT10	DIS+Collider (no LHC)	-
MSTW2008	DIS+Collider (no LHC)	Suppressed
NNPDF2.3	DIS+Collider (no LHC)	Suppressed
HERAPDF1.5	HERA	Suppressed
ATLAS-epWZ12	HERA+2010 W/Z ATLAS data	Unsuppressed
NNPDF2.3coll	DIS+Collider	Enhanced

4/28

Nicola Orlando

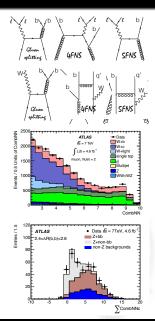
Aeasurements of vector boson plus heavy flavours in ATLAS


W+charm cross sections

• Physics motivations for the $\sigma_{fid}^{OS-SS}(W^+c-jet)/\sigma_{fid}^{OS-SS}(W^-c-jet)$ asymmetry

- Production modes induced by down-quark in the initial state
- Intrinsic asymmetry in s(x) $\overline{s}(x)$ as favored by neutrino data (taken into account NNPDF2.3 and MSTW2008)
- Distribution of lepton $|\eta|$ is well predicted (PDF sets differ in normalisation)

Constraint on the strange quark PDF

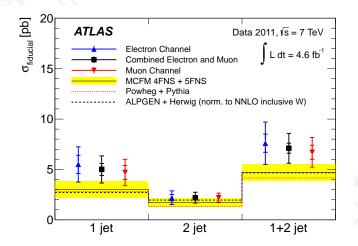


- CMS data favor a suppressed strange-quark PDF, within uncertainties still consistent with ATLAS data
- QCD analyses using high statistics W/Z and W+charm samples will help to clarify the current picture

Overview of the W/Z+b-jets analyses

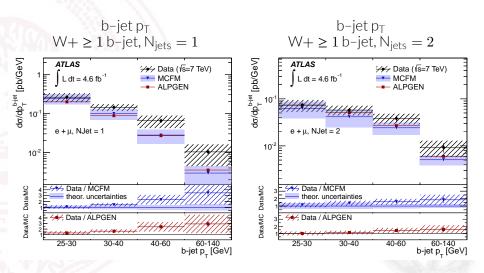
- The bulk of the Z+b(b) rate is driven by gluon-gluon (4 flavours scheme) bottom-gluon (5 flavours scheme) scattering
 - Gluon splitting is relevant at small bb opening angles
- A leading production mode for W+bb and W+b is provided by gluons splitting
- Two strategies for the backgrounds estimation
 - Data driven methods or MC predictions for the non-V+jets backgrounds
 - Fit to a neural-network (NN) distribution for the V+light-jets and V+charm backgrounds

Dominant systematic uncertainties				
Cross section Syst. error type Syst. error [%]				
$\sigma(W + b) (N_{jets} = 1)$	jet energy	21		
	MC modeling	8		
$\sigma(W + b) (N_{jets} = 2)$	jet energy	16		
	MC modeling	14		
$\sigma(Z + b)$	b-jets eff.	3.4		
	NN output shape	4.8		
$\sigma(Z + bb)$	b-jets eff.	9.8		
	NN output shape	4.8		

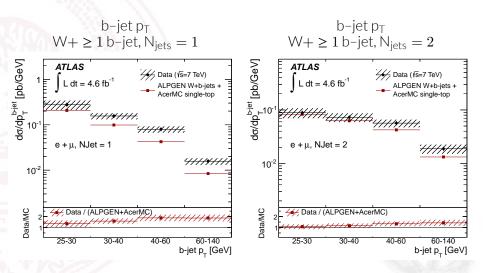


W/Z+b-jets theoretical predictions

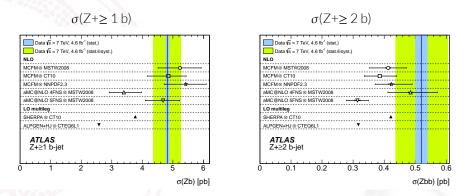
5	Program	Max number NLO $(\alpha_{s}^{N_{jets}+1})$	f of partons at LO $(\alpha_s^{N_{jets}})$	Cross section	H.f. scheme
	ALPGEN	-	5	$\sigma(W/Z+\geq 1 b), \sigma(W/Z+\geq 2 b)$	4FNS
	SHERPA	-	4	$\sigma(Z+\geq 1 b), \sigma(Z+\geq 2 b)$	5FNS
	MCFM (Z+b)	1	2	$\sigma(Z+\geq 1 b)$	5FNS
	MCFM (Z+bb)	2	3	<i>σ</i> (Z+≥ 2 b)	5FNS
	MCFM (W+b)	2	3	$\sigma(W+\geq 1 b), \sigma(W+\geq 2 b)$	4FNS+5FNS
	aMC@NLO	1	2	$\sigma(Z+\geq 1 b)$	5FNS
	aMC@NLO	2	3	<i>σ</i> (Z+≥ 2 b)	4FNS
	PowHeg	2	3	$\sigma(W+\geq 1 b), \sigma(W+\geq 2 b)$	4FNS


- MCFM predictions are corrected for non-perturbative effects, all other calculations are at particle level
- ALPGEN prediction for σ (W+ \geq 1/2 b) is normalised according to the NNLO k-factor (~1.2) for inclusive W cross section

Fiducial W+b-jets cross sections

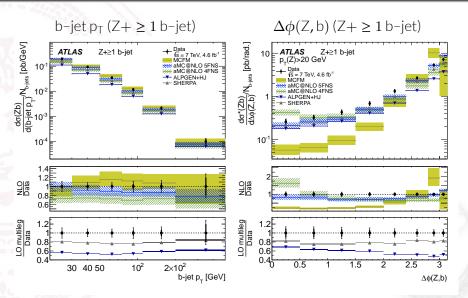


Contribution from DPI, 35%-20% depending on the jet multiplicity, is relevant for the fiducial cross section interpretation

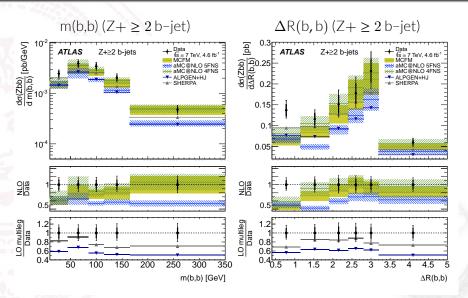

W+b-jets differential cross sections

W+b-jets + single top differential cross sections

Fiducial Z+b-jets cross sections



• NLO predictions provide a different description of the data depending on the b-jet multiplicity


Very interesting to test how this feature evolves at at 13 TeV

$\sigma(Zbb)/\sigma(Zb)$					
Data	MCFM	aMC@NLO (4FNS)	aMC@NLO (5FNS)	Sherpa	Alpgen
0.108	0.078	0.143	0.067	0.112	0.123

Z+b differential cross sections

Z+bb differential cross sections

Summary

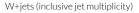
Summary of Run 1 results and Run 2 preparation

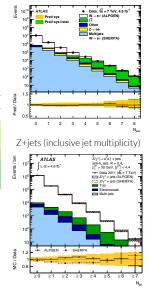
- Comprehensive set of particle level cross section measurements have been provided
- All results are based on 7 TeV data
 - Ongoing analyses of 8 TeV data expected to converge by the end of this year
- Available data have been used to define the baseline generators to be used in Run 2
- Many improvements are foreseen
 - New generators: MEPS@NLO, automated NLO, ..
 - New tunings, Monte Carlo settings

Analyses wish list for Run 2

- Fast measurements for validating the new Monte Carlo generators at 13 TeV
- Repeat all Run 1 analyses with the full Run 2 dataset
- $\bullet~$ Study in detail the gluon splitting process g $\rightarrow~$ bb
- More "exotic" measurements..

Backup

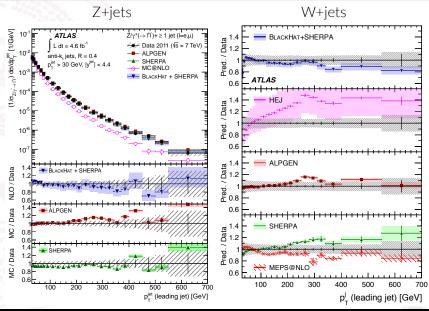



Overview of inclusive V+jets analyses

- Comprehensive test of Monte Carlo event generators
- Plenty of differential cross sections measurements in W+jets and Z+jets events: ~50 distributions were provided
- Measuring also $R_{jets} = \sigma(W + jets) / \sigma(Z + jets)$

Dominant systematic uncertainties			
Cross section	$N_{jets} \ge 1$	$N_{jets} \ge 4$	
$\sigma(W + jets)$	jet energy (8.5%)	jet energy (18%)	
	Multijet background (1.5%)	tt background (14.5%)	
$\sigma(Z + jets)$	jet energy (7.5%)	jet energy (16.5%)	
R _{jets}	jet energy (2.5%)	jet energy (6.4%)	
	E ^{miss} (1.4%)	t ī background (13%)	

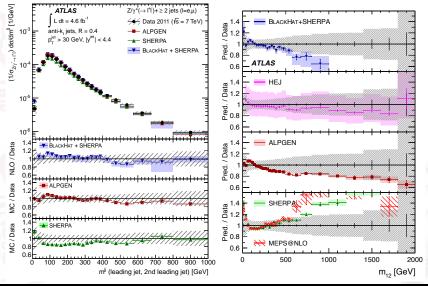
- Jet energy calibration is the dominant systematic uncertainty for both W+jets and Z+jets measurements
 - Strongly correlated across W+jets and Z+jets analyses; reduced in R_{jets}
- The uncertainty on the tt data driven estimation limits the experimental precision at high jet multiplicity



V+jets theory predictions

Program	Max number of partons at		Parton/particle	
	approx. NNLO $(\alpha_s^{N_{jets}+2})$	$(\alpha_{\rm s}^{\rm N_{jets}+1})$	$LO (\alpha_s^{N_{jets}})$	level
	W+jets	predictions		
LoopSim	1	2	3	parton level with corrections
BlackHat+SHERPA	-	5	6	parton level with corrections
BlackHat+SHERPA (excl. sums)	1	2	3	parton level with corrections
HEJ	All order	s resummatio	n	parton level
MEPS@NLO	-	2	4	particle level
ALPGEN	-	-	5	particle level
SHERPA	-	-	4	particle level
	Z+jets p	predictions		
BlackHat+SHERPA	-	4	5	parton level with corrections
ALPGEN	-	-	5	particle level
SHERPA	-	-	4	particle level

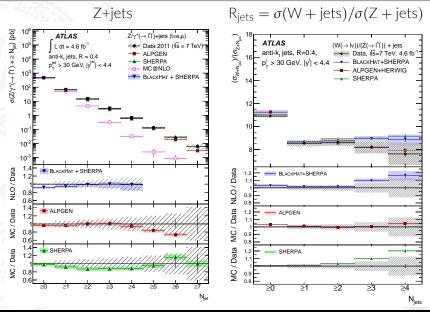
W/Z+jets results: transverse momentum of the leading jet


Measurements of vector boson plus heavy flavours in ATLAS

Nicola Orlando

W/Z+jets results: invariant mass of the leading jets

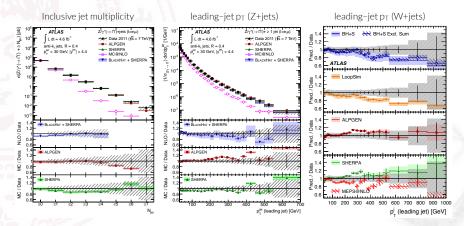
Z+jets



Measurements of vector boson plus heavy flavours in ATLAS

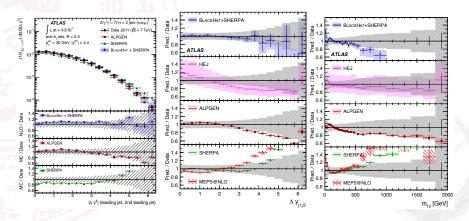
Nicola Orlando

Inclusive jet multiplicity

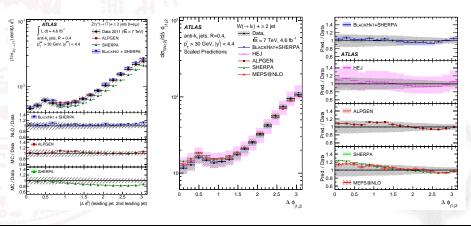

21/28

Nicola Orlando

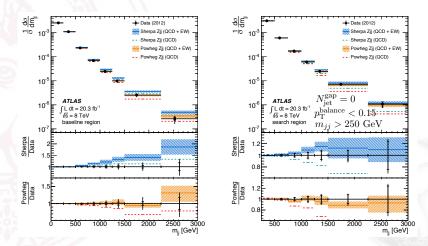
Measurements of vector boson plus heavy flavours in ATLAS


W/Z+jets

- Overall very good description of the data
- Jet multiplicity ratios are very well described too
 - Potentially useful for constraining the backgrounds with very early data
- Jet p_T has some features

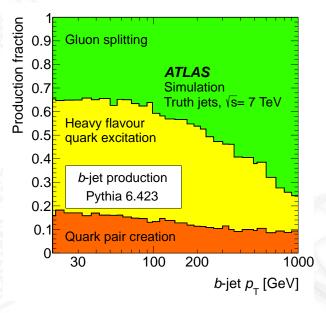

W/Z+jets: di-jet system

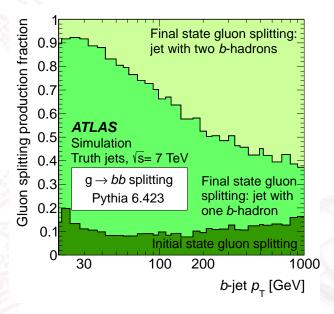
- Angular correlation and invariant mass of the di-jet system are useful tools for constraining the backgrounds in searches
- The description of the data is not fully satisfactory
 - Would be interesting to check the effect of the MC tunes such data-MC comparisons (not explored in Run 1)


W/Z+jets: di-jet system

- Angular correlation and invariant mass of the di-jet system are useful tools for constraining the backgrounds in searches
- The description of the data is not fully satisfactory
 - Would be interesting to check the effect of the MC tunes such data-MC comparisons (not explored in Run 1)

Z+jj production (VBF region)


- Still the only 8TeV V+jets measurements available from ATLAS
- Useful for validation of new Monte Carlo configurations



PDFs parametrization

$$\begin{aligned} x u_{v}(x) &= A_{u_{v}} x^{B_{u_{v}}} (1-x)^{C_{u_{v}}} (1+E_{u_{v}}x^{2}), \\ x d_{v}(x) &= A_{d_{v}} x^{B_{d_{v}}} (1-x)^{C_{d_{v}}}, \\ x \overline{U}(x) &= A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}}, \\ x \overline{D}(x) &= A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}}, \\ x g(x) &= A_{g} x^{B_{g}} (1-x)^{C_{g}} + A'_{g} x^{B'_{g}} (1-x)^{C'_{g}} \end{aligned}$$

$$x\overline{\mathbf{d}}(x) = A_{\overline{\mathbf{d}}} x^{B_{\overline{\mathbf{d}}}} (1-x)^{C_{\overline{\mathbf{d}}}},$$
$$x\overline{\mathbf{s}}(x) = A_{\overline{\mathbf{s}}} x^{B_{\overline{\mathbf{s}}}} (1-x)^{C_{\overline{\mathbf{s}}}}.$$

