

The microMegas construction project for the ATLAS New Small Wheel

D.Sampsonidis, C.Petridou, P.Charalampous, S.Kompogiannis and C.Lampoudis

Aristotle University of Thessaloniki

I.Gkialas
University of the Aegean

HEP 2015 – Conference on Recent Developments in High Energy Physics and Cosmology 15 – 18 April, Athens – Greece

Contents

- > ATLAS NSW project
- > microMegas: objectives and construction
- Work share (construction sites)
- > AUTh site readiness
 - tooling (clean room)
 - procedures (QA-QC)
- > The zebra connectors
- Concluding remarks

Where?

Tracking:

- Current tracking detectors are marginal for the Phase-1 upgrade, unusable after Phase-2.
- In Phase-2 expected hit rate >5 MHz/ MDT tube
- MDT single tube and reconstruction efficiency drop at rate >300 kHz/tube

Trigger:

- L1 muon trigger rate in the End-cap dominated by fakes (>90%) 8-9 times larger than in Barrel
- At 3x10³⁴ L1Mu20 ~60 kHz (bandwidth available ~15kHz) → prescale the trigger of factor 4 loose 75% of 'good' trigger; increasing the threshold does not help (still 30 kHz at 40 GeV)

New Small Wheel is needed with tracking and triggering capabilities

New Small Wheel: microMegas

micro-Mesh Gaseous detectors (microMegas) as primary precision tracker

- •spatial resolution < 100 μm independent of track incidence angle
- •good track separation due to small 0.5 mm readout granularity (strips)
- •excellent high rate capability due to small gas amplification region and small space charge effects

New Small Wheel

- 16 Sectors per wheel
 - 8 large
 - 8 small
- 2 multilayers per sector
- Each multilayer:
 - 4 sTGC planes primary detector for trigger
 - 4 microMegas planes primary detector for tracking

6

mM Radial Segmentation

4 mM types (differ in size)

SM1, SM2, LM1, LM2

microMegas construction

microMega modules production to be done in different production sites according to type:

SM1: Italy, INFN consortium – Pavia, Rome 1 + 3, Frascati, Lecce, Cosenza, Napoli

SM2: Germany (Wurzburg, LMU Munich, Freiburg, Mainz)

LM1: Saclay

LM2: Thessaloniki (drift panels, assembly) + Dubna (readout panels,

assembly)

Engineering challenges

Large Size detectors with planarity of the single plane and the alignment of different layers below 80 μm and mechanichal precision of 30 μm along the precision coordinate as required by the desired spatial resolution.

mM Quadruplet

A single mM module (quadruplet) consists of

5 panels of two PCB skins on a honeycomb structure,

2 readout panels (twin),

3 drift panels (2 external, 1 internal)

4 meshes stretched on frames

Mechanical frames, gas circulation system etc.

mM Quadruplet

4 microMegas planes primary detector for tracking

Panel Construction

Vacuum Table method (proposed by CERN)

A sandwich of two soft skins glued on a stiff plane <u>without mechanical</u> <u>constraints.</u>

A sandwich consists of:

- One PCB (glass fibre skin, 0.5mm)
- Aluminium honeycomb surrounded with an aluminium frame
- Second PCB (0.5mm)

Construction Procedure

Vacuum Table method at CERN

Aluminium frame installation

Honeycomb installation

Panel Construction

Top side flatness: 160μm (max-min)

Bottom side flatness: 90µm (max-min)

AUTh site: status

- ☐ Tooling for construction (drift panels)
- ☐ Tooling for QA/QC (drift panels)
- ☐ Logistics and Planning

13

Tooling: construction (drift panels)

Prerequisites:

- granite table as reference (ready/on site)
- stiff-back sandwich (pending/CERN)
- vacuum pump(s) (ready/on site)
- custom made Al-profile setup (ready/on site)
- automated gluing system (ready/on site)
- mesh tension setup (ongoing/industry)
- machinery for processing and custom needs (ready/on site)

Gluing setup

- Mounted on a variable length moving arm on the Al-profile frame.
- Automatically operated (start/stop, speed control).
- Need of new dispenser (ref. Pavia system).

Mesh stretching

- Mesh stretching to be done in industry or locally (construction site).
- Uniform stretching is required.
- Transfer frame to be used for final mounting but also for cleaning.

Need to consider: Cost, Logistics, Quality.

	left	mid-left	conter	mid-right	right
	Sign	25 cm	45-cm	65 cm	85 cm
5	21.0	18.2	16.0	19.0	21.4
25	16.6	15.1	12.6	15.6	17.2
45	30.2	10.6	9.2	11.2	12.6
65	8.0	9.0	7.8	8.8	8.8
85	7.2	7.8	7,0	7.8	7,4
305	7.0	8.2	7,4	8.0	8.6
125	17.4	16.0	12.8	15.2	17.8
	6.0	15.0	24.0		

Mesh stretching: AUTh

- Mesh stretching outsourced (company: YFOS).
- Custom made design with fine tuning option.
- Tests were performed with thicker wire mesh (!)
- Still need to verify tension uniformity/stability and finalize the design.

Tooling: QA/QC (drift panels)

Prerequisites:

- CMM, dial gauge (on site)
- tension meter (on site)
- Ar sniffer (on site)
- Ohm-meter, power supply etc. (on site)
- Rasniks (on site)
- Precision Ruler/Templates (pending)
- mesh cleaning device (pending)

Remarks and Conclusions

- Module 0 construction: scheduled for June 2015
- AUTh group (2 physicists + 2 engineers) will join the CERN group for mod – 0 construction

Transition to mass production

Studies on several types of zebra connectors

Principle: Instead of making direct contact between the leads

One can interject intermediate conductors (red color)

THE ISSUE

The Electronics board insertion method calls for sliding the board and pressing downwards at the same time.

This can create deformation in two dimensions and misalignment

Connectivity results

Zebra Type	Compression (%)								Comments
	3.4	4.7	5.8	7.0	9.0	10.0	11.0	12.5	
0		Reliable and reproducible contact							
I									No contact or very large resistance
II									Many non-contacts and shorts (2 to 4 at a time)
III	Shor ts		Ok		Ok				Yellow Ok but not always. Width is about the size of the holder gap. No free space
IV Holder gap 2.45 mm									It takes a couple of times to get it right

Compression test results

- Core of silicon rubber, 50 Shore A hardness
- C-shaped Fujipoly (Type-0) 1.1 kg/cm for 15% compression (data sheet and calculation)

Improvements of the Scheme

- Since the zebra idea is attractive not less because of its low cost, we want to use it provided we can improve its performance.
- Main problems identified
- Horizontal Positioning.
- Horizontal force during board positioning creates random distortions with unwanted and non-reproducible results.
- A method to apply the force vertically on zebra connector is desirable.
- Width of holder affects hardness and probably connectivity.
- So, a new method of positioning the frontend card is being implemented, to make better horizontal positioning, eliminate horizontal distortions and apply force on the zebra connector vertically only.
- Use zebra of finer pitch to allow for 3 conductors per strip

Thank you for your attention

