Integrability and Exact results in $\mathcal{N}=2$ gauge theories

Elli Pomoni

DESY Theory

Athens, 16th April 2015

HEP 2015

arXiv:1310.5709 arXiv:1406.3629 with Vladimir Mitev work in progress

Motivation: Can we go beyond perturbation theory?

$$= c_1 \lambda + c_2 \lambda^2 + c_3 \lambda^3 + \cdots$$

$$\lambda << 1$$

Noether: Symmetry • Conservation law

The more symmetry the easier it is to solve the problem.

Yes! If we add more symmetry to the problem: SUSY

The most symmetric gauge theory in 4D is $\mathcal{N} = 4$ super Yang Mills. See

Motivation: The success story for $\mathcal{N}=4$ SYM

Possible to compute observables in the **strong coupling regime** and in some cases to even obtain **Exact results** (for any value of the coupling).

• AdS/CFT (gravity/sigma model description)

• Integrability (The spectral problem is solved) at large N_c

• Localization (Exact results: e.x. Circular WL) for $\underline{any N_c}$

Which of these properties/techniques are transferable to **more realistic** gauge theories in 4D with less SUSY?

The statement

• \forall conformal $\mathcal{N}=2$ gauge theory there is a **purely gluonic** subset of local operators SU(2,1|2) integrable in the planar limit

$$\gamma_{\mathcal{N}=2}\left(g\right)=\gamma_{\mathcal{N}=4}\left(\mathbf{g}\right)$$

② The **Exact Effective coupling** (relative **finite renormalization** of g)

$$\mathbf{g}^2 = f(g^2) = g^2 + g^2 (Z_{\mathcal{N}=2} - Z_{\mathcal{N}=4})$$

we compute using localization

$$W_{\mathcal{N}=2}\left(g^2\right)=W_{\mathcal{N}=4}\left(\mathbf{g}^2\right)$$

$\mathcal{N}=4$ Super Yang Mills (SYM)

$$SU(4) \rightarrow U(1) \times SU(2)_R \times SU(2)_L$$

The $\mathcal{N}=4$ vector multiplet in the **adjoint** of SU(N):

the gluon and its SUSY partners:

• $\mathcal{N} = 2$ vector multiplet **adjoint** in SU(N):

$$\lambda_{lpha}^{1} \quad egin{array}{ccc} A_{\mu} & & & & & \\ \lambda_{lpha}^{1} & & \lambda_{lpha}^{2} & , & & \lambda^{\mathcal{I}} = \left(egin{array}{c} \lambda^{1} \\ \lambda^{2} \end{array}
ight) \, , & \mathcal{I} = 1, 2 \end{array}$$

• $\mathcal{N}=2$ hyper multiplet in the **adjoint** of SU(N):

$$\phi_2 egin{array}{ccc} \lambda_{lpha}^3 & & & \\ \phi_2 & & \phi_3 & , & \Phi^{\mathcal{I}} = \left(egin{array}{c} \phi_2 & & \\ \phi_3 & & \end{array}
ight)$$

It is conformal $\beta = 0$ and has an **exactly marginal coupling!**

 $\mathcal{N}=4$ SYM has no quarks!

$\mathcal{N}=2$ SuperConformal QCD (SCQCD)

 $U(1) \times SU(2)_R$

• $\mathcal{N}=2$ vector multiplet **adjoint** in SU(N):

$$egin{array}{cccc} \lambda_{lpha}^1 & A_{\mu} & & & & \\ \lambda_{lpha}^1 & & \lambda_{lpha}^2 & , & \lambda^{\mathcal{I}} = \left(egin{array}{c} \lambda^1 \\ \lambda^2 \end{array}
ight) \, , & \mathcal{I} = 1,2 \end{array}$$

• $\mathcal{N}=2$ hyper multiplet **fundamental** in SU(N) and $U(N_f)$:

$$egin{aligned} q_i & \psi_{lpha \; i} \ \left(ilde{q}
ight)_i^\dagger &, \quad Q^{\mathcal{I}} = \left(egin{array}{c} q \ ilde{q}^st \end{array}
ight) \;, \quad i = 1, \ldots \mathsf{N_f} \end{aligned}$$

When $N_f = 2N$: $\beta = \frac{g_{YM}^3}{16\pi^2} (N_f - 2N) = 0$, exactly marginal coupling!

$\mathcal{N}=2$ SuperConformal QCD (SCQCD)

• $\mathcal{N} = 2$ vector multiplet **adjoint** in SU(N):

$$U(1) \times SU(2)_R$$

 $egin{array}{cccc} \lambda_{lpha}^1 & \lambda_{lpha}^1 & \lambda_{lpha}^2 & , & \lambda^{\mathcal{I}} = \left(egin{array}{c} \lambda^1 \ \lambda^2 \end{array}
ight) \, , & \mathcal{I} = 1,2 \end{array}$

• $\mathcal{N}=2$ hyper multiplet **fundamental** in SU(N) and $U(N_f)$:

$$egin{aligned} q_i & \psi_{lpha \; i} \ \left(ilde{q}
ight)_i^\dagger &, \quad Q^{\mathcal{I}} = \left(egin{array}{c} q \ ilde{q}^st \end{array}
ight) \;, \quad i = 1, \ldots \mathsf{N_f} \end{aligned}$$

When $N_f = 2N$: $\beta = \frac{g_{YM}^3}{16\pi^2} (N_f - 2N) = 0$, exactly marginal coupling!

 $\mathcal{N}=2$ SCFT with $SU(N)\times SU(N)$ gauge group: **two exactly marginal** g and \check{g} :

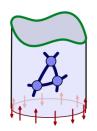
- \bullet For $g=\check{g}$ we get the $\mathcal{N}=4$ result (for the observables we consider)
- ullet In the limit $reve{g} o 0$ obtain $\mathcal{N}=2$ SCQCD with $N_f=2N$

Integrability of the purely gluonic SU(2, 1|2) Sector

$\mathcal{N}=4$ Integrability

 ${\cal N}=$ 4 SYM is integrable in the planar limit for **any coupling**

- · Perturbation theory: mapped to an integrable spin chain
- Strong coupling: integrable 2D theory on the string world-sheet

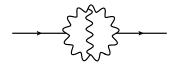


Powerful integrability toolkit

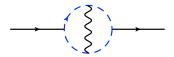
The spectral problem is solved exactly: for any coupling
 Integrability now is applied to other observables.

Next step $\mathcal{N}=2$: A diagrammatic observation

The only possible way to make diagrams with external fields in the vector mult. different from the $\mathcal{N}=4$ ones is to make a loop with hyper's and then in this loop let a **checked vector** propagate! (EP-Christoph Sieg)



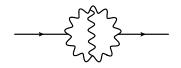
The same with $\mathcal{N}=4$ SYM



Different from $\mathcal{N} = 4$ SYM but **finite** !!

Next step $\mathcal{N}=2$: A diagrammatic observation

The only possible way to make diagrams with external fields in the vector mult. different from the $\mathcal{N}=4$ ones is to make a loop with hyper's and then in this loop let a **checked vector** propagate! (EP-Christoph Sieg)

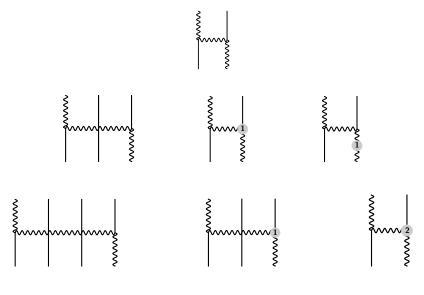


The same with $\mathcal{N}=4$ SYM

Different from $\mathcal{N} = 4$ SYM but **finite!!**

Novel Regularization prescription:

For every individual $\mathcal{N}=2$ diagram subtract its $\mathcal{N}=4$ counterpart.



$$H_{\mathcal{N}=2}^{(3)}(\lambda) - H_{\mathcal{N}=4}^{(3)}(\lambda) \sim H_{\mathcal{N}=4}^{(1)}(\lambda) \quad \Rightarrow \quad H_{\mathcal{N}=2}^{(3)}(\lambda) = H_{\mathcal{N}=4}^{(3)}(f(\lambda))$$

with
$$f(\lambda) = \lambda + c\lambda^3$$

Operator renormalization in the Background Field Gauge

Background Field Method: $\varphi \rightarrow A + Q$

where A the classical background and Q the quantum fluctuation

$$g_{\textit{bare}} = \textit{Z}_{\textit{g}} \; g_{\textit{ren}} \, , \, \textit{A}_{\textit{bare}} = \sqrt{\textit{Z}_{\textit{A}}} \, \textit{A}_{\textit{ren}} \, , \, \textit{Q}_{\textit{bare}} = \sqrt{\textit{Z}_{\textit{Q}}} \; \textit{Q}_{\textit{ren}} \, , \, \xi_{\textit{bare}} = \textit{Z}_{\xi} \, \xi_{\textit{ren}}$$

In the Background Field Gauge $\left(Z_g \sqrt{Z_A} = 1
ight)$ and $\left(Z_Q = Z_\xi
ight)$

Operator renormalization in the Background Field Gauge

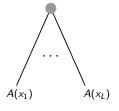
Background Field Method: $\varphi \rightarrow A + Q$

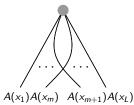
where A the classical background and Q the quantum fluctuation

$$g_{\textit{bare}} = \textit{Z}_{\textit{g}} \; g_{\textit{ren}} \, , \, \textit{A}_{\textit{bare}} = \sqrt{\textit{Z}_{\textit{A}}} \, \textit{A}_{\textit{ren}} \, , \, \textit{Q}_{\textit{bare}} = \sqrt{\textit{Z}_{\textit{Q}}} \; \textit{Q}_{\textit{ren}} \, , \, \xi_{\textit{bare}} = \textit{Z}_{\xi} \, \xi_{\textit{ren}}$$

In the Background Field Gauge $\overline{Z_g\sqrt{Z_A}=1}$ and $\overline{Z_Q=Z_\xi}$

• Compute $\langle \mathcal{O}(y)A(x_1)\cdots A(x_L)\rangle$ for $\mathcal{O}\sim \operatorname{tr}\left(\varphi^L\right)$.

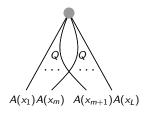




⊢ more diagrams

Wick contact $\mathcal{O}_{i}^{ren}\left(Q_{ren}\,,\,A_{ren}\right)=\sum_{j}Z_{ij}\mathcal{O}_{j}^{bare}\left(Z_{Q}^{1/2}Q\,,\,Z_{A}^{1/2}A\right)$

Background Field Method: No Q's outside, no A's inside!



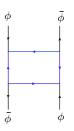
- ullet $\langle QQAA \rangle$ renormalize as $Z_Q^{2/2} Z_A^{2/2} \langle QQAA \rangle$
- The Q propagators as Z_Q^{-1}
- ullet the \mathcal{O}^{ren} has two more $Z_Q^{1/2}$
- all Z_Q will cancel (We knew it gauge invariance!)
- Only $Z=Z_g^2=Z_A^{-1}$, the combinatorics the same as in $\mathcal{N}=4$:

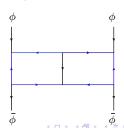
$$H_{\mathcal{N}=2}\left(g
ight)=H_{\mathcal{N}=4}\left(\mathbf{g}
ight) \quad ext{with} \quad \mathbf{g}^{2}=f\left(g^{2},\check{\mathbf{g}}^{2}
ight)=g^{2}+g^{2}\left(Z_{\mathcal{N}=2}-Z_{\mathcal{N}=4}
ight)$$

New vertices cannot contribute

$$\Gamma = \Gamma_{ren. tree} + \Gamma_{new}$$

- $\Gamma_{ren.\ tree}$: vertex and self-energy renormalization all encoded in $\delta Z = Z_{\mathcal{N}=2} Z_{\mathcal{N}=4}$
- New vertices cannot contribute due to the non-renormalization theorem (Fiamberti, Santambrogio, Sieg, Zanon)





Localization and Exact Effective couplings

Localization

$$Z_{S^4} = \int [D\Phi] e^{-S[\Phi]} = \int da |\mathcal{Z}(a)|^2$$

The **path integral** localizes to an **ordinary integral** (*Cancelations due to supersymmetry*)

We can do an ordinary integral.

Compute the path integral exactly.

For any value of the coupling constant.

(Pestun)

 $\mathcal{N}=4$ SYM:

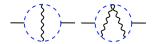
$$W_{\mathcal{N}=4}(g) = \frac{I_1(4\pi g)}{2\pi g}$$

 $\mathcal{N}=2$ theories:

$$W_{\mathcal{N}=2}(g,\check{g})=W_{\mathcal{N}=4}(f(g,\check{g}))$$

$$f(g, \check{g}) = \begin{cases} g^2 + 2 \left(\check{g}^2 - g^2 \right) \left[6\zeta(3)g^4 - 20\zeta(5)g^4 \left(\check{g}^2 + 3g^2 \right) \right] + \mathcal{O}(g^{10}) \\ \frac{2g\check{g}}{g + \check{g}} + \mathcal{O}(1) \end{cases}$$

Checked with Feynman diagrams calculation (up to 4-loops)



Agrees with AdS/CFT (strong coupling)

Conclusions

- ullet observable in the purely gluonic SU(2,1|2) sector
 - take the $\mathcal{N}=4$ answer and replace $g^2 o \mathbf{g}^2 = f(g^2)$
 - We need more checks!! (EP-Mitev), (Leoni-Mauri-Santambrogio) and (Fraser)
- Lesson: Think of the $\mathcal{N}=4$ SYM as a regulator !!
 - The integrable $\mathcal{N}=4$ model knows all about the combinatorics.
 - For $\mathcal{N}=2$: relative finite renormalization encoded in $\mathbf{g}^2=f(g^2)$.
- In asymptotically conformal $\mathcal{N}=2$ theories and $\mathcal{N}=1$ SCFTs all loop statement: purely gluonic SU(2,1|1) sector (EP-Roček)