Gauss-Bonnet Inflation

Panagiota Kanti

Department of Physics, University of loannina
 Department of Physics, NKUA

HEP 2015

Athens, 15-18 April 2015

Outline

- Introduction
- The Einstein-Scalar-Gauss-Bonnet Theory
- Is the Ricci term really necessary? A toy model
- A more general case
- The Scalar-Gauss-Bonnet Theory
- A de Sitter solution
- An inflationary solution with a natural exit
- Non-Singular cosmological solutions
- Conclusions

Based on 1503.01579 [hep-th], in collaboration with Naresh Dadhich (IUCAA, India) and Radouane Gannouji (Univ. of Santiago, Chile)

Introduction

The usual starting point is the following action functional

$$
S=\int d^{4} x \sqrt{-g}\left(\frac{R}{2 \kappa^{2}}+\mathcal{L}_{X}^{i}\right)
$$

where R is the Ricci scalar, and \mathcal{L}_{X}^{i} the source terms for all the "ingredients" present in the universe: $\left(\rho_{r}, \rho_{m}, \rho_{d m}, \rho_{d e}\right)$, as dictated by the current observations

We also assume the Friedmann-Robertson-Walker form for the metric tensor of a homogeneous and isotropic universe

$$
d s^{2}=d t^{2}-a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right],
$$

with $a(t)$ the scale factor and $k=0, \pm 1$

Introduction to Cosmology

In addition, the complete theory should account for the presence of a fifth ingredient, the inflaton field

$$
\mathcal{L}_{\phi}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+V(\phi)
$$

with an as-yet-unspecified potential, that cures the problems of the 'old' Cosmological Model (horizon, flatness, monopoles and density perturbations problems)

There are a lot of open questions in Cosmology today: the nature of dark matter and dark energy, the coincidence problem...

Is it our inability to find the correct answers to well-posed questions, or is it perhaps time to change the gravitational framework?

Introduction

The generalised theories of gravity have attracted a lot of attention

$$
S=\int d^{4} x \sqrt{-g}\left[f\left(R, R_{\mu \nu}, R_{\mu \nu \rho \sigma}\right)\right]
$$

- as part of the string effective action at low energies
- as part of a modified scalar-tensor (Horndeski) theory

In higher dimensions, a natural generalization of Einstein's theory of gravity seems to be Lovelock's theory, whose action is a homogeneous polynomial of degree N of the Riemann curvature:

- for $N=1$, we obtain Einstein's term, the Ricci scalar
- for $N=2$, we obtain the Gauss-Bonnet term

$$
R_{G B}^{2}=R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-4 R_{\mu \nu} R^{\mu \nu}+R^{2}
$$

Introduction

Lovelock's action leads to field equations that are PDE's of second order, satisfying Bianchi identities and are ghost-free

But, there is more... In 3 dimensions, Einstein's gravity is kinematic, i.e. when $R_{\mu \nu}=0$ (vacuum) then $R_{\mu \nu \rho \sigma}=0$ (flatness). For $d>3$, this does not hold - the Schwarzschild solution is a vaccum solution but it is not flat...

Pure Lovelock's theory - involving only single Nth order terms in the action - can be made kinematic by appropriately defining N th order Riemann and Ricci tensors

Does that mean that pure Lovelock's theory is simpler and perhaps more fundamental than Einstein's theory?

The Einstein-Scalar-Gauss-Bonnet Theory

Let us consider the more conventional, 4-dimensional theory

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{R}{2 \kappa^{2}}+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{8} f(\phi) R_{G B}^{2}\right]
$$

where $f(\phi)$ a coupling function. The field equations read

$$
\begin{gathered}
\frac{1}{\sqrt{-g}} \partial_{\mu}\left[\sqrt{-g} \partial^{\mu} \phi\right]=\frac{1}{8} \frac{d f}{d \phi} R_{G B}^{2} \\
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=-\partial_{\mu} \phi \partial_{\nu} \phi+\frac{1}{2} g_{\mu \nu} \partial_{\rho} \phi \partial^{\rho} \phi+K_{\mu \nu}
\end{gathered}
$$

with

$$
K_{\mu \nu}=\frac{1}{8}\left(g_{\mu \rho} g_{\nu \lambda}+g_{\mu \lambda} g_{\nu \rho}\right) \eta^{\kappa \lambda \alpha \beta} D_{\gamma}\left(\tilde{R}_{\alpha \beta}^{\rho \gamma} D_{\kappa} f\right)
$$

In 4D, the GB is a total derivative and, if $f=$ const., it drops out.
On the other hand, $R_{G B}^{2}$ provides a potential for the scalar field

The Einstein-Scalar-Gauss-Bonnet Theory

For the Friedmann-Robertson-Walker line-element, the equations take the explicit form

$$
\begin{gathered}
\ddot{\phi}+3 \frac{\dot{a}}{a} \dot{\phi}=\frac{d f}{d \phi} \frac{3 \ddot{a}}{a^{3}}\left(k+\dot{a}^{2}\right) \\
\frac{3\left(k+\dot{a}^{2}\right)}{a^{2}}\left(\underline{1}+\dot{f} \frac{\dot{a}}{a}\right)-\frac{\dot{\phi}^{2}}{2}=0 \\
\frac{\left(k+\dot{a}^{2}\right)}{a^{2}}(\underline{1}+\ddot{f})+\frac{2 \ddot{a}}{a}\left(\underline{1}+\dot{f} \frac{\dot{a}}{a}\right)+\frac{\dot{\phi}^{2}}{2}=0
\end{gathered}
$$

The scalar field seems unaffected as it doesn't couple to $R \ldots$ But the gravitational field equations do change...

A Toy Model

Let's impose in the theory the constraint $R_{G B}^{2}=0$. Then:

$$
R_{G B}^{2}=\frac{24 \ddot{a}}{a^{3}}\left(k+\dot{a}^{2}\right) \equiv 0 \Rightarrow a(t)=A t+B
$$

and

$$
\ddot{\phi}+3 \dot{\phi} \frac{\dot{a}}{a}=0 \Rightarrow \dot{\phi}(t)=\frac{C}{a^{3}(t)}
$$

If R is present, the system of equations closes only for

$$
f(\phi)=f_{1} \phi+\frac{f_{2}}{\phi}+f_{3}
$$

where A, B, C, and f_{i} are integration constants. If R is absent, then $f(\phi)$ is as above but with $f_{2}=0$.

A more general case

We now restore the GB term and assume that $f(\phi)=\lambda \phi$, where λ a constant. Then, the dilaton equation can be written as

$$
\frac{d\left(\dot{\phi} a^{3}\right)}{d t}=3 \lambda \ddot{a}\left(k+\dot{a}^{2}\right) \Rightarrow \dot{\phi}=\frac{C}{a^{3}}+\frac{\lambda \dot{a}\left(3 k+\dot{a}^{2}\right)}{a^{3}}
$$

Keeping only the second GB-related term, the Einstein's equations can be rearranged to eventually give the solution (only for $k=0$)

$$
a(t) F\left[\frac{1}{4}, \frac{1}{4}, \frac{5}{4} ; \frac{3 a^{4}(t)}{c_{1}}\right]=\left(\frac{2 c_{1}}{5 \lambda^{2}}\right)^{1 / 4}\left(t+t_{0}\right)
$$

with $F(a, b, c ; x)$ the hypergeometric function. For $a \rightarrow 0$, we find the asymptotic solution $a(t) \sim A t+B$

A more general case

Now, we ignore the presence of the Ricci term in the theory. Then, the gravitational equations are easily re-written to give the constraint

$$
\left(k+5 \dot{a}^{2}\right) \ddot{a}=0
$$

that leads again (much-much easier and for all values of k !) to the linear solution $a(t)=A t+B$ derived previously.

One may thus conclude that, in the context of a scalar-GB theory, ignoring the Ricci scalar:

- does not significantly modify the dynamics of either the scalar field or the scale factor
- makes the analytic treatment much easier

The Scalar-Gauss-Bonnet Theory

We thus forget henceforth the Ricci scalar and assume that $f(\phi)=\lambda \phi^{2}$. Then, Einstein's equations give the constraint

$$
\left(k+5 \dot{a}^{2}\right) \ddot{a}+24 \lambda \frac{\dot{a}^{2}}{a^{3}}\left(k+\dot{a}^{2}\right)=0
$$

which can be integrated once to give

$$
\frac{12 \lambda}{a^{2}}=-\frac{1}{k} \ln \left(\frac{\sqrt{k+\dot{a}^{2}}}{\dot{a}}\right)-\frac{2}{\left(k+\dot{a}^{2}\right)}+C_{1}
$$

In order to proceed, we have to set $k=0$, and then find

$$
\frac{5}{2 \dot{a}^{2}}=C_{1}-\frac{12 \lambda}{a^{2}}
$$

where C_{1} is an arbitrary integration constant

The Scalar-Gauss-Bonnet Theory

- If $C_{1}=0$ and $\lambda<0$, we easily obtain a pure de Sitter solution for the scale factor and an exponentially decaying solution for ϕ

$$
a(t)=a_{0} \exp \left(\sqrt{\frac{5}{24|\lambda|}} t\right), \quad \phi=\phi_{0} \exp \left(-\frac{5}{4} \sqrt{\frac{5}{6|\lambda|}} t\right)
$$

The Scalar-Gauss-Bonnet Theory

This may be an alternative for the usual inflation with the GB term providing a potential for ϕ

The effective potential of the scalar field receives contributions from both the Gauss-Bonnet term and the coupling function

$$
V_{e f f}=-\frac{1}{8} f(\phi) R_{G B}^{2}=\frac{25}{24} \frac{\phi^{2}}{8|\lambda|}
$$

The potential remains bounded as the field evolves, from its initial value ϕ_{0} to zero, but it may become arbitrarily large by appropriately choosing the coupling constant λ

The Scalar-Gauss-Bonnet Theory

- For $C_{1}>0$ and $\lambda<0$, we find the solution

$$
\sqrt{a^{2}+\tilde{\nu}^{2}}+\tilde{\nu} \ln \left(\frac{\sqrt{a^{2}+\tilde{\nu}^{2}}-\tilde{\nu}}{a}\right)= \pm \sqrt{\frac{5}{2 C_{1}}}\left(t+t_{0}\right)
$$

where $\tilde{\nu}^{2} \equiv 12|\lambda| / C_{1}$. In the limit $a(t) \rightarrow 0$, the above reduces to the pure de Sitter solution

$$
a(t) \simeq a_{0} \exp \left(\sqrt{\frac{5}{24|\lambda|}}\left(t+t_{0}\right)\right)
$$

while, for $a^{2} \gg \tilde{\nu}^{2}$, we obtain a linearly expanding Milne-type universe. Thus, this solution describes an inflationary phase with a natural exit mechanism

The Scalar-Gauss-Bonnet Theory

If we define the slow-roll parameter $\epsilon_{1}=-\dot{H} / H^{2}$, and use the previous solution, we find its exact behaviour

During inflation, ϵ_{1} aproaches zero, while at later times moves away from this value marking the end of the inflationary era The same behaviour is obtained for a large range of values of C_{1} and λ - no fine-tuning or super-Planckian field values are required

The Scalar-Gauss-Bonnet Theory

- For $C_{1}>0$ and $\lambda>0$, after integrating, we obtain

$$
\sqrt{a^{2}-\nu^{2}}-\nu \arccos \left(\frac{\nu}{a}\right)= \pm \sqrt{\frac{5}{2 C_{1}}}\left(t+t_{0}\right)
$$

where $\nu^{2} \equiv 12 \lambda / C_{1}$. The constraint $a^{2} \geq \nu^{2}$ should always hold, therefore the scale factor never vanishes and no singularity appears. Close to its minimum value, we find the approximate form

$$
a(t) \simeq \nu\left[1+(A t+B)^{2 / 3}\right]
$$

This is in agreement with previous studies (Kanti, Rizos \& Tamvakis, 1999) where singularity-free solutions were found in the presence of R

Conclusions

- Even in the absence of the Ricci term, the Gauss-Bonnet term, in conjunction with a scalar field, seems to encode all important information for the existing solutions in the theory
- By ignoring R, we have found very easily analytical solutions describing de Sitter inflationary expansion as well as solutions with a de Sitter phase at early times and a transition to a Milne-type expansion at later times
- We have also found analytically non-singular cosmological solutions - for an even, quadratic coupling function, in accordance to previous suggestions
- Is this a fundamental theory or a particular limit of a more general theory? More investigation is necessary...

