Recent results on associated vector boson (W, Z) production with the ATLAS experiment

Sofia Chouridou

University of Athens

HEP 2015, University of Athens, 15/4/15

Outline - References

- Motivation
- W + jets NEW!

- Results at $\sqrt{s} = 7 \text{ TeV}$ and $\sqrt{s} = 8 \text{ TeV}$
- arXiv:1409.8639, Eur. Phys. J. C (2015) **75**:82
- **Z** + jets
 - arXiv:1304.7098, JHEP07 (2013) 032
- Rjets = (W + jets) / (Z + jets) NEW!
 - arXiv:1408.6510, Eur. Phys. J. C (2014) 74:3168
- Zb, Zbb
 - arXiv:1407.3643, JHEP10 (2014) 141
- Wb
 - arXiv:1302.2929, JHEP06 (2013) 084
- Wc
 - arXiv:1402.6263, JHEP05 (2014) 068
- ttbarW, ttbarZ
 - ATLAS-CONF-2014-038
- Summary and Outlook

Motivation

- Precision measurements of associated vector boson production at the LHC are crucial
 - Vector boson leptonic decays (electrons, muons) are studied (clean signatures)
- **Test and validate** the perturbative QCD (**pQCD**) calculations
- Constrain the parton proton structure (PDFs)
- Provide important experimental constraints to improve the theoretical uncertainties on existing predictions
- Important background for numerous <u>Standard Model (SM) processes</u>
 - ttbar, single top
 - Higgs boson production

and for **physics beyond SM**

Supersymmetry

- **p**_{T μ}, **p**_{Te} > **25 GeV** |η| < 2.47 (e), 2.4 (μ)
- AntikT4 (R=0.4), Jet $p_T > 30 \text{ GeV}$, |y| < 4.4
- $E_{Tmiss} > 40 \text{ GeV}, m_T > 40 \text{ GeV}$
- **Unfolded** results (i.e. corrected for detector effects) compared at **particle level** with **LO** and **NLO** theory predictions
 - Bayesian Iterative Unfolding
- Parton-level predictions (e.g. BLACKHAT+SHERPA) corrected for hadronization, UE, QED FSR
- Theory systematic uncertainties: PDF, scale(μ_R , μ_F), α_S
- Dominant systematic uncertainties
 - Jet energy scale (JES)
 - Data driven ttbar background estimation (high jet multiplicities)

• **Inclusive jet multiplicity** for up to **7** jets

Measurements in agreement within uncertainties with theoretical predictions

- Leading jet p_T up to 1 TeV!
 - Up to 5th leading jet

BLACKHAT+SHERPA, LoopSim underestimate the data at high p_T

- ΔΦ(j1,j2)
- Many other variables measured
 - Exclusive jet multiplicity up to 7 jets
 - jets y, H_T: scalar sum of jets p_Ts, lepton p_Ts, E_{tmiss}
 - $\Delta Y(j1,j2)$, $\Delta R(j1,j2)$, m(j1,j2)

Small shape differences with **SHERPA**

- $p_{T\mu}$, $p_{Te} > 20 \text{ GeV}$ $|\eta| < 2.47 \text{ (e)}, 2.4 \text{ (}\mu\text{)}$
- AntikT4, **Jet** $p_T > 30$ **GeV**, |y| < 4.4
- Two OSSF $66 < m_{II} < 116 GeV$
- **Inclusive jet multiplicity** up to **7** jets

MC@NLO parton shower underestimates the observed rate

- Leading jet p_T up to 700 GeV and leading jet y
 - Up to 4th leading jet
- Also measured:
 - Exclusive jet multiplicity, H_T, S_T: scalar sum of all jets p_T
 - $N_{jet}+1/N_{jet}$
 - Δ Φ(j1,j2)
 - $-\Delta Y(j1,j2)$
 - $-\Delta R(j1,j2)$
 - m(j1,j2)

ALPGEN spectrum harder at higher p_T **SHERPA** small offset to data

Rjets (7 TeV)

- Some experimental uncertainties and non-perturbative effects are greatly reduced
- **Sensitive to new physics** at high energies
- Measured versus many more variables for up to 4 jets
- $p_{T\mu}$, $p_{Te} > 25 \text{ GeV}$ $|\eta| < 2.47 \text{ (e)}, 2.4 \text{ (}\mu\text{)}$
- AntikT4, **Jet** $p_T > 30$ **GeV**, |y| < 4.4
- **W:** $E_{Tmiss} > 25 \text{ GeV, } m_T > 40 \text{ GeV}$
- **Z:** Two OSSF $66 < m_{\parallel} < 116 \text{ GeV}$

SHERPA: discrepancies at the lowest values

Zb, Zbb (7 TeV)

- p_{T μ}, p_{Te} > 20 GeV
- $|\eta| < 2.47$ (e), 2.4 (μ)
- AntikT4, Jet p_T > 20 GeV, |y| < 2.4
- Two OSSF $76 < m_{\parallel} < 106 \text{ GeV}$
- At least one or two b-jets

- Jets originating from b quarks are tagged by the advanced multivariate MV1 algorithm
- Also measured:
 - $Z + \ge 1$ b-jet, $Z + \ge 2$ b-jet
 - b-jet p_T and rapidity, Zp_T and rapidity
 - $\Delta \Phi(Z,b)$, $\Delta Y(Z,b)$, $\Delta R(Z,b)$
 - m(b,b), $\Delta R(b,b)$

For W/Z + heavy flavour jets, see also Nicolas' Orlando talk

Zb, Zbb (7 TeV)

- Z production with at least two b-jets
- Two schemes in pQCD calculations containing heavy flavour quarks
 - 4FNS: no b quarks at initial state
 - 5FNS: b quarks considered at initial state

aMC@NLO (5FNS), ALPGEN (4FNS), SHERPA (5FNS): largest discrepancies

Wb (7 TeV)

- $\mathbf{p}_{T\mu}$, $\mathbf{p}_{Te} > 25$ GeV, $|\eta| < 2.47$ (e), 2.4 (μ)
- AntikT4, **Jet** $p_T > 25$ **GeV**, |y| < 2.1
- $E_{Tmiss} > 25 \text{ GeV, } m_T > 60 \text{ GeV}$
- W production with only one b-jet or at least two jets (only one of the two is a b-jet)

13

Wc (7 TeV)

- Sensitive to the s-quark PDF at momentum transfer ~M_W
- Six measurements:
 - W^{\pm} + c-jet, W^{\pm} + D, W^{\pm} + D*
- Important strategy:
 - Charge correlation between W and c => μ in c-jet and D/D* has a charge opposite (OS) to the W boson
 - W + c yields = OS events SS events (backgrounds)

Wc (7 TeV)

- Cross section ratio (W⁺ + cbar) / (W⁻ + c)
- The observed W⁻ + c yield slightly larger than the W⁺ + cbar
 - dominance of the d-quark over the d-antiquark in the proton (as expected)

- Also measured:
 - **Differential cross section** (W + c) vs. lepton $|\eta|$
 - **The ratio** (r_s) of the strange-to-down sea-quark distributions:

$$r_s \equiv 0.5(s + \overline{s})/\overline{d} = 0.96^{+0.26}_{-0.30}$$

• Supports the hypothesis of a symmetric light-quark sea

15

ttbarW, ttbarZ (8 TeV)

• Three channels considered:

- Same-sign **dimuon** (ttbarW)
- Trilepton (ttbarZ)
- Opp. Sign dilepton (ttbarW, ttbarZ)

and a second

The result of the **combined 2D simultaneous fit** for ttbarW and ttbarZ cross sections is **in agreement** with **NLO QCD predictions**:

Campbell (2012), Kardos (2011) and Garzelli (2011,2012)

Summary and Outlook

- ATLAS excellent performance allows the precise study of associated vector boson production
- A hot topic for theoretical studies for several years can be finally exploited with high precision experimental measurements!
- Several results for 7 TeV (2011) and 8 TeV (2012) were presented
 - Overall good agreement with theory predictions; some discrepancies exist
- Many 8 TeV (2012) measurements are in progress
- **Important feedback** to theorists and our understanding of QCD and electroweak processes in the high energy LHC regime

Looking forward for more precise measurements this year at 13 TeV!

BACKUP

Total Integrated Luminosity in 2011 and 2012

- Excellent performance
- Utilize most of the LHC delivered luminosity

ATLAS Standard Model Cross Sections

20