Performance Studies of Micromegas detectors under the influence of Magnetic Field

Despoina Sampsonidou, Charikleia Petridou, Kostas Kordas, Dimos Sampsonidis

Aristotle University of Thessaloniki

16 April 2015

Outline I

1 Test Beam @SPS CERN

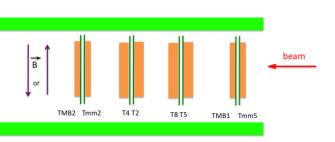
Operation of MicroMegas

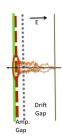
- 3 Analysis
 - Analysis Flow
 - Lorentz Angle
 - Spatial Resolution

Goal of the analysis

- Goal of this analysis → Study of the MicroMegas detector performance in magnetic field
- Test Beam @SPS, H4, CERN, December 2014
- Muon / pion beams -150 GeV
- ullet Goliath Magnet o B range: -1 to 1 T

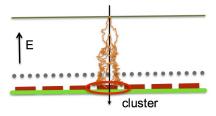
Test Beam Setup

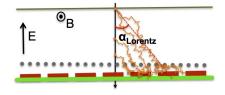




- ullet Goliath Magnet o almost uniform ullet field in two polarities
- MMSW2 and a hodoscope with 8 MM chambers arranged in 4 doublets.
- Analysis focused on the hodoscope chambers.

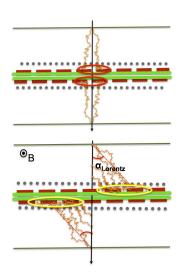
Test Beam Setup


chamber	Strip Pitch(mm)	Drift Gap(mm)	Pillar Pitch(mm)	Pillar Diameter(μ m)
Tmm5	0.250	2.5	5	500
Tmm2	0.250	2.5	5	500
T5	0.400	5.0	5	500
T8	0.400	5.0	5	500
T2	0.400	5.0	5	500
T4	0.400	5.0	5	500
TMB1	0.250	2.5	2.5	300
TMB2	0.250	2.5	2.5	300

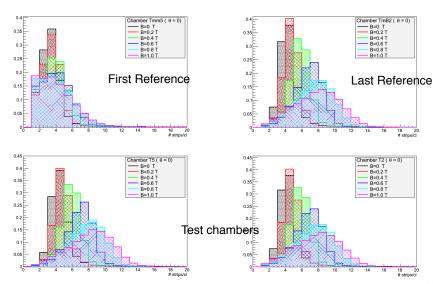

Operation of MicroMegas

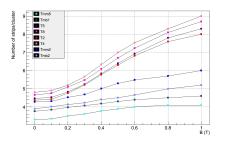
- Electrons drift following the E lines
- Charge collected to the strips
- Strips fired forming a cluster
- Cluster centroid corresponds to the track hit

Operation of MicroMegas inside B

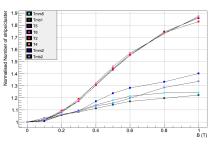

- The B tilts drift lines by the Lorentz angle with respect to the E
- B⊥ E
- $tan \alpha_L = \frac{v_{d\perp}}{|v_{d\parallel}|}$

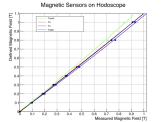
Back to back configuration


- Similar to NSW configuration in quadrplets
- Back to back cancels some systematics
- Without B
 - Hit position is used for the alignment
- Inside B
 - Clusters are wider
 - Displaced in opposite directions
 - Hit position with μTPC method

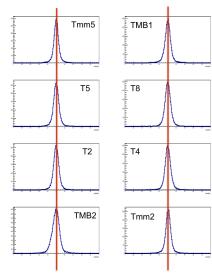

Analysis Flow

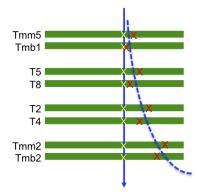
- Start from Raw Data, only $\theta = 0$
- Crosstalk removal (Leontsinis et al. algorithm)
- Reconstruction from raw data (Recomm)
 - ullet For each fired strip o stripID, time, charge (by fitting the signal)
- Clustering (topological)
 - Number of strips/cluster Vs. distance
- Alignment of the chambers with straight tracks (B=0)
 - Iterations after moving the chambers (offline)


Strip Multiplicity per cluster



Cluster size Vs. B

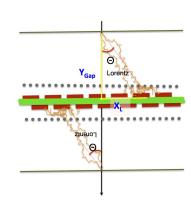

 B measured on the 4 doublets non uniformity of level 10%, as seen in K. Ntekas' presentation


Chamber Alignment

- Track reconstruction
 - at least 6 chambers
 - events with 1 cluster
- Residuals distribution for every chamber
- Chamber shifting according to gaussian mean
- Repeat track reconstruction with new chamber position
- After few iterations →all chambers aligned within few microns

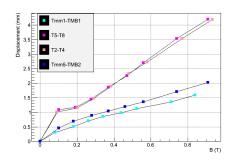
Back to back geometry in Magnetic Field

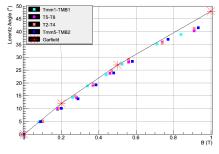
- D_1 : Hit position in 1st chamber in doublet
- D₂: Hit position in 2nd chamber in doublet
- X_B : Beam deflection
- X_L: Displacement due to Lorentz angle



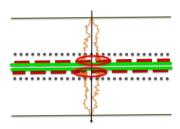
Lorentz angle – Beam Position

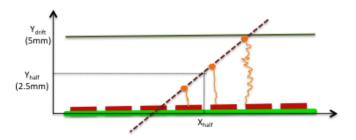
•
$$D_1 = X_B + X_L \ D_2 = X_B - X_L \ X_L = (D_1 - D_2)/2$$


$$\bullet \ \Theta_L = atan \frac{X_L}{Y_{Gap}}$$


•
$$D_1 = X_B + X_L \ D_2 = X_B - X_L \ X_B = (D_1 + D_2)/2$$

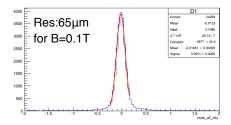
Lorentz Angle reconstruction


- Lorentz angle can be reconstructed using
 - Cluster displacement and
 - Drift Gap
- Results consistent with Garfield prediction.

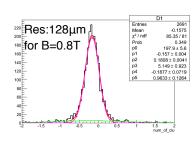


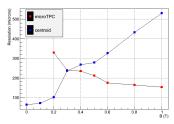
Spatial Resolution

- Resolution is obtained from the gaussian σ of the *hit* difference of two back to back chambers: $\sigma(x) = \frac{\sigma_{gaus}}{\sqrt{2}}$
- For small incident angles \rightarrow hit position defined by cluster centroid, $x_i = \frac{\sum x_i Q_i}{\sum Q_i}$



• For larger incident angles $(>10^{o})$ \rightarrow hit position defined by μTPC method. A tracklet is reconstructed in the drift gap using the time information of the signal and the x_{half} (the x in the middle layer) is considered as the hit position.




 \bullet For B > 0.1T, use of μ TPC even for perpendicular tracks

Spatial Resolution

 Resolution improvement: One hit position is computed for each doublet, and the difference of the doublet hits is used to find the resolution. (proposed by C. Bini)

Conclusion

- The results of the test beam of MicroMegas in magnetic field are well understood.
- Results are in agreement with the simulation as well as the expectations from the previous test beam results.
- \bullet Room for improvement in μTPC method
- Further studies with inclined tracks are in progress