









Co-financed by Greece and the European Union

# Muon and Neutrino Energy Reconstruction for KM3NeT



Drakopoulou Evangelia N.C.S.R. Demokritos



#### **Track Reconstruction**



Muons produced by neutrinos via Charged Current interactions were reconstructed and used for the energy estimation study. Hits from signal and  $K^{40}$  background are considered. The muon tracks under consideration are <u>crossing the detector volume</u>.



- A good purity ( $\geq$  **80%**) of the reconstructed events for  $E_{\mu} \geq 25 \, TeV$  can be attained, with an efficiency of 75% for  $E_{\mu} \geq 25 \, TeV$ .
- The efficiency is  $\geq$  **80%** for  $E_{\mu} \geq$  40 TeV rising with energy to  $\sim$  **95%** for  $E_{\mu} \geq$  100 TeV.



### **Track Reconstruction**









- $\Delta\Omega$  < 0.5° for  $E_{\mu}$  > 1 TeV
- $\Delta\Omega$  < **0.33**° for  $E_{\mu}$ >25 *TeV*  <u>Very good angular resolution</u> in the high energy regime.



### **MultiVariate Analysis**



- **Muon and Neutrino Energy Estimation:** a Multi-Layer Percepton (MLP) Neural Network has been trained using information referring to:
- Number of photomultipliers (PMTs) with signal
   (weighted considering the PMT distance from the reconstructed muon track)
- → Total Time over Threshold (ToT) in PMTs (as a measure of charge in PMTs)
- Number of OMs with signal
  - (weighted taken into account that muons with lower energies travel shorter distances inside the detector than muons with higher energies)
- Number of PMTs without signal
  - (weighted considering that the number of PMTs that have no signal is larger for muons with lower energies)
- ◆ A minimum muon track length inside the detector volume is required in order to estimate muon and neutrino energy.



## MultiVariate Analysis



We consider the PMTs with signal used by the fitting procedure reduction of  $K^{40}$  contribution





## Muon Energy Estimation Neural Network Input Variables

Log<sub>10</sub> (Number of PMTs without Pulses

Log<sub>10</sub>(Number of PMTs with Pulses)



300

250

200

150

100

50









**Number of PMTs without signal** 

HEP-2015



## **Muon Energy Reconstruction**



$$1 \text{ TeV} \leq E_{\mu} \leq 100 \text{ PeV}$$



There is a very good linear relation between the reconstructed and the simulated muon energy for  $E_u \ge 10 \, TeV$ .



## **Muon Energy Reconstruction**



$$1 \text{ TeV} \leq E_{\mu} \leq 100 \text{ PeV}$$





The energy resolution is  $\sim 0.26$  for  $E_{\mu} \ge 1 \text{ TeV}$ .



## **Muon Energy Reconstruction**



• This method for muon energy reconstruction was also applied to other track reconstruction algorithm (based on a pdf fit).

$$1 \text{ TeV} \leq E_{\mu} \leq 100 \text{ PeV}$$





The energy resolution is  $\sim 0.26$  for  $E_{\mu} \ge 1 \, TeV$ .



## Efficiency of the Energy Reconstruction



 $Efficiency = \frac{Number of Events that pass the energy selection}{Number of events that pass the reconstruction selection}$ 



 A very high efficiency for the energy reconstruction is achieved for all events crossing the detector volume.



#### **Conclusions**



- Improvements were made to the existing track reconstruction algorithm leading to  $\Delta\Omega$  < 0.5° for  $E_{\mu} \ge 1 TeV$ .
- A new method for the muon and neutrino energy estimation using a Multi-Layer Percepton Neural Network with appropriate input variables was presented.
- The performance of the energy estimator is very good, particularly in the high energy region ( $E_{\mu} \ge 10 \, TeV$ ) which is the energy regime we are mostly interested in.
- This method was successfully applied to two different track direction reconstruction algorithms with comparable results.
- The energy resolution is  $\sim 0.26$  for  $E_{\mu} \ge 1 TeV$ .
- This method will be used for the Letter of Intent of the experiment.







## **Backup Slides**



#### **KM3NeT**



- KM3NeT Neutrino Telescope with volume of several km<sup>3</sup> which will be placed in the Mediterranean Sea.
- The telescope will search for neutrinos from galactic and extragalactic astrophysical sources (like Gamma Ray Bursts, Supernovae, Colliding Stars).





- Sky coverage in galactic coordinates for a detector located in the Mediterranean Sea.
- Dark (light) areas are visible at least 75% (25%) of the time.



### **KM3NeT - Backgrounds**



- **Atmospheric Muons :** contained in the extensive air showers produced by cosmic rays in the atmosphere.
- Atmospheric Neutrinos: produced by charged kaons or pions in cosmic rays interactions in the atmosphere.
- $K^{40}$ : radioactive potassium isotope
- Bioluminescence: life forms that inhabit in the deep sea emit light.









#### **Detector Configuration**





- Each of the 6 blocks has an almost hexagonal geometry with 115 strings at 90m distance. Each string has 18 floors and each floor has 1 Optical Module (OM).
- The optical modules are arranged in **vertical strings** with a height of almost **600m**.
- All data are transmitted to shore via an optical fibre network.
- Each optical module consists of a 17" glass sphere, equipped with 31 3 inches photomultipliers.



## **Energy Reconstruction Selecting Cuts**



- <u>Minimum Expected Path</u> =  $0.5*\mathbf{h} + (\mathbf{R} 0.5*\mathbf{h}) * \sin(\theta \mathbf{rec})$ <u>where</u>:  $\mathbf{h}$ : string's height,  $\mathbf{R}$ : detector radius,  $\theta \mathbf{rec}$ : reconstructed muon angle
- For Horizontal Muons Minimum Expected Path is the <u>Detector Radius</u>
- For <u>Vertical Muons</u> Minimum Expected Path is <u>0.5\*String height</u>
- PMT Distance: distance between first and last PMT positions
- The PMT Distance should be more than the half of minimum expected path or at least:

$$\frac{PMT\ Distance}{Minimum\ Expected\ Path} \ge 0.3$$

- The distances between OMs are different in horizontal and vertical direction
- minimum expected path length should change with respect to the muon zenith

muon

muon