

ALICE Experiment Status and Run2 Plans

LBNL resources review meeting

11 February 2015 Latchezar Betev

RUN 2 physics programme and rates

- Target integrated luminosity of 1nb⁻¹ of Pb-Pb collisions (combined RUN 1+RUN 2)
 - Consistent with the ALICE approved programme
 - 4-fold increase in instant luminosity for Pb-Pb
- Double event rate of TPC/TRD
- Increased capacity of HLT and DAQ systems
 - Rate up to 8GB/sec to T0

Heavy Ion data taking

RUN 2 detector upgrades

TPC, TRD readout electronics consolidation

TRD full azimuthal coverage

(+5 modules)

 +1 PHOS calorimeter module

New DCAL calorimeter

RUN 2 resources considerations

- Same CPU power needed for reconstruction
- 25% larger raw event size
 - Additional detectors
 - Higher track multiplicity with increased beam energy and event pileup
- ALICE requirements for RUN2 were approved by CRSG in April 2014
- The CPU request growth is compatible with 'flat' budget, i.e. depends purely on technology development
- Major demand on resources towards the end of 2015 (Pb-Pb data taking)

Basics for 2015-2018 operation

- ALICE Grid model remains largely unchanged in RUN2
 - Integration of every new computing centre into the Grid
 - Average 2 replicas of analysis objects => dependency on resources stability
 - Low differentiation of tasks T0/T1s are still RAW data keepers and producers, all other tasks are performed everywhere
 - Tasks are generally send to data, but data can go to the tasks if needed

Computing tasks and workflow

Wall time resources share 2014

Individual analysis: 14%

@all centres

425 users

Organized analysis: 14%

@all centres

Efficiency per workflow

Resources distribution

Remarkable 50/50 share between large (T0/T1) and smaller computing centres

Resources distribution - Americas

ALICE data model

- All ALICE data are annotated in the AliEn catalogue
 - Including the location on site SEs
- Data files are accessed directly
 - Jobs go to the data, in case of local failure reads from closest replica
 - User access to data is managed through a shell, which connects to the catalogue and downloads/uploads data to the site SEs
- Exclusive use of xrootd protocol
 - Also supporting http, ftp, torrent for downloading other input files
 - At the end of the job N replicas are uploaded from the job itself (2x ESDs, 2xAODs, 1x logs and other service files)

Typical data access rates

Data access in analysis tasks

- 1M analysis tasks (mix of all types)
 - 14.2M input files
 - 90% accessed from the site local SE at 3.1MB/s
 - 10% read from remote at 0.97MB/s
 - Average processing speed 2.76MB/s
- Job efficiency 70% for an average CPU power of 10.14 HepSpec06
- => need 0.4MB/s/HepSpec06 for analysis on any site (T0/T1s/T2s)

Summary

- In the period 2015-2018 (LHC RUN2) ALICE will collect data volume ~3x larger than during RUN1
- The computing model remains largely unchanged, storage access exclusively through xrootd, SE stability remains a number one priority for operations
- The planned computing resources increase is expected to meet the demands
- The focus of Grid development will be on improving the analysis efficiency and decreasing the turnaround time of the organized trains