

# Prospects of testing general relativity with gravitational waves detectors

Walter Del Pozzo

eLISA Cosmology Working Group Workshop 16th April 2015 CERN

## Outline

- Motivation
- GW Waveforms
- Data analysis
- Method to detect generic violations
- Example for LIGO/Virgo
- Outlook

# Motivation

- Gravitational waves observations will open a new window on the dynamics of space-time in extreme curvature
- Clean system
  - Contamination from absorptions/ scattering negligible



## Motivation

- GR signal well understood
  - inspiral
  - merger
  - ringdown



## Inspiral waveform

• The inspiral waveform in the post-Newtonian approximation

$$h(t) = A(t)\cos(\Phi(t))$$
  

$$\Phi(t) = v(t)^{-5} \sum_{n=0}^{7} (\phi_n + \phi_n^l \log(v(t)))v^n(t)$$

- The  $\phi_n$  (post-Newtonian coefficients) encode the physical predictions from the theory of gravity

## Inspiral waveform

- In GR the  $\phi_n$  are unique functions of the component masses and their spins
  - $\phi_3$  lowest-order "tail" effects and spin-orbit interaction
  - $\phi_4$  spin-spin coupling
  - $\phi_5^{(l)}$  lowest order logarithmic coefficient

#### non-GR effects on the waveform

- In GR the  $\phi_n$  are unique functions of the component masses and their spins
- Alternative theories of gravity modify the waveform
  - change the  $\phi_n$  coefficients by introducing additional parameters
  - add extra orders not present in the GR waveform















#### Data analysis

- Given a model of gravity H and some data d, we want to
  - infer the parameters  $\theta$
  - estimate the "goodness of fit" of the model

• Bayes' theorem  

$$p(\theta|d, H) = p(\theta|H) \frac{p(d|\theta, H)}{p(d|H)}$$
is posterior prior prior evidence  
• Evidence  

$$Z \equiv p(d|H) = \int d\theta p(\theta|H) p(d|\theta, H)$$

#### Data analysis

- Consider two alternative models  ${\rm H_1}$  and  ${\rm H_2}$
- Given some data *d* the odds ratio

$$O_{1,2} \equiv \frac{p(H_1)}{p(H_2)} \frac{Z_1}{Z_2} \equiv \frac{p(H_1)}{p(H_2)} B_{1,2} - factor$$
 Bayes factor

 Bayesian figure of merit for the relative "goodness of fit"

#### Data analysis

- The odds ratio *accumulates* across multiple statistically independent events
- Given some data  $d_1, \ldots, d_n$  and two competing hypotheses  $H_1$  and  $H_2$ :

$$O_{1,2} = \frac{p(H_1)}{p(H_2)} \prod_j B_{1,2}^{(j)}$$

## The noise

Signals are embedded in noise

 $d = n + h(\theta)$ 

• The likelihood for  $h(\theta)$  is defined by the expected noise distribution f(n)

 $p(d|\theta, \mathbf{H}) = f(d - h(\theta))$ 

 mis-modelling the noise leads to biases and may mimic GR violations



- We detected a GW event, how do we then test GR?
- Enumerate all possible alternatives  $\{H_i\}_{i=1,...,n}$
- Given a GW event, for all  $\mathrm{H}_i$  compute the odds ratio against GR
- Select the theory with the highest odds as the "correct" one
- There is an infinite number of potential alternatives to GR

• Look at the GR waveform

$$h(t) = A(t)\cos(\Phi(t))$$
  

$$\Phi(t) = v(t)^{-5} \sum_{n=0}^{7} (\phi_n + \phi_n^l \log(v(t)))v^n(t)$$

- The GR model is a set of very definite propositions  $H_{GR} = (\phi_1 = \phi_1^{GR}) \land (\phi_2 = \phi_2^{GR}) \land \dots$
- Define  $H_{modGR}$  as the hypothesis that one or more of the  $\phi_i$  is not as predicted by GR, but not specifying which

- $H_{modGR}$  has no waveform model associated to it
- Decompose into mutually exclusive subhypotheses
  - $H_{i_1,i_2,...,i_n}$  is the hypothesis that  $\phi_{i_1}, \phi_{i_2}, \ldots, \phi_{i_n}$ do not have the dependence on masses and spins as GR, but all the other  $\phi_j, j \notin i_1, i_2, \ldots, i_n$ do
  - Let  $\theta = \{m_1, m_2, s_1, s_2, \ldots\}$ , then  $H_{i_1, i_2, \ldots, i_n}$  is tested by waveforms with parameters  $\{\theta, \phi_{i_1}, \phi_{i_2}, \ldots, \phi_{i_n}\}$

- $H_{modGR}$  is the logical union of all the  $H_{i_1,i_2,...,i_n}$
- Example: 2 PN coefficients,  $\phi_1, \phi_2$ :

 $\mathbf{H}_{modGR} = \mathbf{H}_1 \vee \mathbf{H}_2 \vee \mathbf{H}_{12}$ 

• Tested by three waveforms with parameters

H<sub>1</sub>: {
$$m_1, m_2, s_1, s_2, \dots, \phi_1$$
}  
H<sub>2</sub>: { $m_1, m_2, s_1, s_2, \dots, \phi_2$ }  
H<sub>12</sub>: { $m_1, m_2, s_1, s_2, \dots, \phi_1, \phi_2$ }

• The odds ratio is given by

 $O_{\mathcal{H}_{modGR},\mathcal{H}_{GR}} = \frac{p(\mathcal{H}_{1})}{p(\mathcal{H}_{GR})} \frac{p(d|\mathcal{H}_{1})}{p(d|\mathcal{H}_{GR})} + \frac{p(\mathcal{H}_{2})}{p(\mathcal{H}_{GR})} \frac{p(d|\mathcal{H}_{2})}{p(d|\mathcal{H}_{GR})} + \frac{p(\mathcal{H}_{12})}{p(\mathcal{H}_{GR})} \frac{p(d|\mathcal{H}_{12})}{p(\mathcal{H}_{GR})}$ 

 It can be generalised to N<sub>T</sub> hypotheses and N events:

$$^{(N_T)}\mathcal{O}_{\mathrm{GR}}^{\mathrm{modGR}} = \frac{\alpha}{2^{N_T} - 1} \sum_{k=1}^{N_T} \sum_{i_1 < i_2 < \dots < i_k} \prod_{A=1}^{\mathcal{N}} {}^{(A)} B_{\mathrm{GR}}^{i_1 i_2 \dots i_k}$$
$$\alpha = \frac{p(\mathrm{H}_{modGR})}{p(\mathrm{H}_{GR})}$$

### The noise - again

- Given a GW detection, the odds ratio alone is not sufficient
  - mis-modelling of the noise and/or different noise realisations lead to a different odds for the same signal
- Compute the expected distribution of odds from simulated GR signals in many different stretches of data
  - false alarm probability
  - significance of the detection



# TIGER

- We implemented the Test Infrastructure for GEneral Relativity (TIGER) for LIGO/Virgo data and binary neutron stars (BNS) systems
- 10% level violation in the 1.5PN (tail) term



# TIGER

• Capture "non-PN" deviations, e.g. a "1.25PN"



## Prospects for O1

- TIGER is the testing GR pipeline for the LVC
- Robustness against systematics proved in Agathos, DP et al 2014
- TIGER is robust in real (non-Gaussian) data



# Outlook

- The ability to test GR depends on
  - the understanding of GR
    - faithful WF models
  - the understanding of the instrument
    - noise distribution, non-Gaussianities
- Combining information across sources is a powerful tool to increase sensitivity to small GR violations