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Motivation

• Gravitational waves (tensor modes) are a 
unique window into the early universe:

• Inflation

• Phase transitions

• Potential signatures of quantum gravity

• Once generated, they essentially propagate 
unperturbed towards us

• exceptionally “clean” probe



Motivation

• Gravitational waves (tensor modes) are a 
unique window into the early universe:

• Inflation

• Phase transitions

• Potential signatures of quantum gravity

• Once generated, they essentially propagate 
unperturbed towards us

• exceptionally “clean” probe



• Detecting primordial gravitational waves: 
decisive probe of inflation

• Amplitude of GW is set only by expansion 
rate during inflation, and

• Thus, we can use it to measure the energy scale 
of inflation (anywhere from 103 to 1019 GeV)

Gravitational waves 
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Searching for GW

• General problem: How do we disentangle 
gravitational waves from (much larger) density 
fluctuations ?

• Let us classify observables by their 
behavior under rotation on the sky:

• Spin 0 (“2-scalar”): density, 
temperature, ...

• Spin 1 (“2-vector”):  “arrow” on the sky

• Spin 2: polarization; galaxy shapes
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• Scalar observables - density, 
temperature, ... - do not  allow 
for a separation between scalar 
and tensor perturbations

• Vector and tensor observables 
do: via E/B decomposition

• E (gradient) type: even parity, 
scalar perturbations contribute

• B (curl) type: odd parity, no 
scalar contribution
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Spin 2: 
(galaxy shapes, polarization)

• Scalar observables - density, 
temperature, ... - do not  allow 
for a separation between scalar 
and tensor perturbations

• Vector and tensor observables 
do: via E/B decomposition

• E (gradient) type: even parity, 
scalar perturbations contribute

• B (curl) type: odd parity, no scalar 
contribution



Searching for GW

E

B

• Reason: tensor modes 
have two polarization 
states 

• If one state generates P-
even pattern, the other 
will generate P-odd

• Density perturbations on 
the other hand can create 
only one type of pattern

rotate 
45o

Spin 2: 
(galaxy shapes, polarization)



Can we independently confirm 
CMB detection of tensor modes ?

• Dust contamination is clearly an issue for 
CMB measurements - it will only get more 
difficult when pushing sensitivity to lower 
values

• Are there any observables in the large-scale 
structure that can probe gravitational waves ?

• Cross-correlation LSS-CMB should be 
exceptionally clean

• We want a spin-1 or spin-2 observable



Galaxy shape 
correlations

• Large-scale imaging surveys (DES, HSC, 
Euclid, LSST) will measure shapes for 
billions of galaxies

• The shape (ellipticity) of a galaxy is a spin-2 
observable, like polarization

• Intrinsic galaxy shapes are weakly correlated 
over large distances; apparent correlations 
are (mostly) due to gravitational lensing



Gravitational lensing by 
tensor modes

Dodelson, Rozo, Stebbins 2003
FS, Jeong, 2012b

• The most well-known 
contribution to galaxy shape 
correlations is gravitational lensing 
(shear)

• GW transverse to the line of 
sight contribute to shear



• The signal, 
unfortunately, is 
very small

• Too small…

Noise achievable with 
a futuristic survey

Gravitational lensing by 
tensor modes

Dodelson, Rozo, Stebbins 2003
FS, Jeong, 2012b



Tidal alignment contribution 
to galaxy shape correlations

• Tidal alignments known to 
be typically smaller than 
lensing signal for scalar 
perturbations

• What about tensor modes ? 
Do they produce tidal 
alignment ?

• Very difficult problem: impact 
of horizon-scale modes on 
nonlinear structure
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Figure 1. Measurements of [30] and LA model prediction for wg+. The black dashed line is calculated
using the linear theory Pδ(k), and the red solid line uses the Halofit model.
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Figure 2. Measurements of [29] and model predictions for w++ (left panel) and w×× (right panel).
The measurements have been projected along the line-of-sight. Open circles, indicating the original
measurements without the (1 + ξg(r)) correction, are only shown for w++ and on small scales where
there is an appreciable difference. For clarity, these points have a small horizontal offset. Line
convention is the same as in figure 1. A linear y-axis is used for w××. The normalization of the LA
prediction for both statistics is set from the fit to w++.

3.3 Autocorrelation E- and B-modes

The w×× and w++ statistics can be written in terms of curl-free (E) and divergence-free (B)
modes. Lensing by matter produces only E-modes, making such a decomposition a useful
diagnostic in studying the effects of intrinsic alignment and other systematics [49]. As shown
below, only E-modes are produced in the LA model, and thus B-modes could indicate the
presence of separate alignment mechanisms [43].

Following [50], we can express the E- and B-components of the auto-correlation func-
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As we had anticipated, for an indefinite amount of time, the metric near the spatial origin
is approximately the Minkowski one, with corrections starting at order r2L and suppressed by
powers of H rL ⌧ 1. So for example this metric is valid for distances smaller than Hubble,
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• Consider wordline of a small 
patch within the Universe

• Conformal Fermi frame: 
constructed so that close to 
the wordline, the spacetime 
looks close to an unperturbed 
universe at all times

• natural frame to describe 
local gravitational 
experiments in cosmology

H
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• In the conformal Fermi frame, 
GW induces a tidal field once it 
enters the horizon, encoded in

• The same effect that moves 
the mirrors of a GW 
detector    

• This affects the formation of 
large-scale structure

• In perturbation theory, we can 
calculate exactly what that 
effect is

hCFC
00
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GW effects in 
perturbation theory

• Tensor tidal field ~α hij couples to scalar 
tidal field

• α approaches constant as tensor mode has 
decayed away - observable effects at low 
redshift even when GW has long disappeared

• “Memory” effect - only happens because 
GW were superhorizon

�(x, t)
���
h
= ↵(t)hij(x, t)

@i@j

r2
�lin(x, t)Matter density 

perturbation



Signatures of GW tidal 
alignments

• B-mode shape 
correlations

• Tidal effect is much 
larger than “lensing” 
contribution

• The exact opposite of 
scalar perturbations!

r = 0.1

FS, Pajer, Zaldarriaga, 2013
FS, Jeong, 2012b



Why is intrinsic alignment 
so large for GW ?

• Actually, the correct 
question is: why is the 
GW lensing contribution 
so small ?

• Cancelation of lensing 
effect along the line of 
sight because GW 
propagate

Scalar 
perturbations

GW



• Still very small signal - 
difficult to measure even 
for EUCLID

• Depends sensitively on 
how strong galaxies align 
with tidal fields

• One of the few possible 
ways to independently 
confirm detection of GW 
in CMB

r = 0.1

FS, Pajer, Zaldarriaga, 2013
FS, Jeong, 2012b

Signatures of GW tidal 
alignments



From 2D to 3D

• So far, considered shapes of galaxies

• What if we have 3D observations ?

• Examples: 

• galaxies with spatially resolved spectra

• measurement of 3D small-scale 
correlation function (21cm background)

• Distortions of a “standard ruler” in 3 
dimensions
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Working to first order in perturbations, we then obtain

r20 − r̃2 = 2∆ ln a r̃2 + ã2hijδx̃
iδx̃j

+ 2ã2(v∥δx̃
2
∥ + v⊥ iδx̃

i
⊥δx̃∥)

+ 2ã2δijδx̃
i
(

δx̃∥∂χ̃ + δx̃k
⊥∂⊥ k

)

∆xj . (29)

All terms are straightforward to interpret: there are the
perturbations to the metric (both from the metric per-
turbation itself and the perturbation to the scale factor
at emission); the contribution ∝ v from the projection
from fixed-η to fixed-proper-time hypersurfaces; and the
difference in the spatial displacements of the endpoints
of the ruler.

A. Evolving ruler

So far, we have assumed that the physical scale of the
ruler is fixed. This does not have to hold in general; for
example, the BAO scale is fixed in terms of comoving
coordinates. We now consider the case where the (mean)
physical scale r0 evolves over cosmic time. It is simplest
to consider r0 as a function of scale factor; one can easily
convert to other variables such as conformal time using
the relation with the scale factor in the background Uni-
verse.
Then, r20 on the left-hand side of Eq. (29) is to be

evaluated for the scale factor at emission:

r20 [a(x
0)] = r20(ã)

[

1 + 2
∂ ln r0
∂ ln a

∆ ln a

]

. (30)

Thus, if we compare the apparent size of the standard
ruler to the true size at the apparent time of emission
(of course assuming that we are able to predict r0(a)),
Eq. (29) becomes

r20(ã)− r̃2 = 2∆ lna

[

1−
∂ ln r0
∂ ln a

]

r̃2 + ã2hijδx̃
iδx̃j

+ 2ã2(v∥δx̃
2
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)

∆xj . (31)

Note that if r0 ∝ a, i.e. if the ruler corresponds to a fixed
comoving scale, the terms multiplying ∆ ln a cancel. This
is as expected, since a perturbation to the scale factor at
emission does not affect a fixed comoving scale.

IV. SCALAR-VECTOR-TENSOR
DECOMPOSITION ON THE SKY

It is useful to separate the contributions to Eq. (29)
in terms of the observed longitudinal and transverse dis-
placements. For some applications, only the transverse
displacements are relevant. This is the case for dif-
fuse backgrounds without redshift resolution, such as the
CMB or the cosmic infrared background, and largely the

FIG. 2: Illustration of the distortion of standard rulers due
to the longitudinal (2-)scalar C, (2-)vector B, and transverse
components, magnification M and shear γ. The first row
shows the projection onto the sky plane, while the second
(third) row show the projection onto the line-of-sight and x1

⊥

(x2

⊥) axes, respectively. In case of B and γ, we only show one
of the two components. See also Fig. 3 in [12].

case for photometric galaxy surveys. On the other hand,
spectroscopic surveys and redshift-resolved backgrounds
such as the 21cm emission from high-redshifts are able to
measure the longitudinal displacements as well.
Noting that r̃2 = ã2[δx̃2

∥ + (δx̃⊥)2], and taking the

square root of Eq. (31), we obtain the relative perturba-
tion to the physical scale of the ruler as
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2
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j
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where we have defined r̃c ≡ r̃/ã as the apparent comoving
size of the ruler. The quantities multiplying C, Bi, Aij

are thus simply geometric factors. The coefficients are
given by

C = −∆ ln a

[
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−
1

2
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where ∆x∥, ∆xi
⊥ are the parallel and perpendicular com-

ponents of the displacements ∆xi. Note that while we
have assumed that the ruler is small (i.e. δx̃i ≪ χ̃),
the expressions for C, Bi, Aij are valid on the full sky.
Fig. 2 illustrates the distortions induced by these com-
ponents. Observationally, we have 6 free parameters (as-
suming accurate redshifts are available): the location of

From 2D to 3D

• A ruler is defined by two 
endpoints in 3D space (4 
angles, 2 redshifts)

• In principle we can thus 
measure 6 independent 
d.o.f. from the distortion 
of the ruler

• This the most general 
“weak lensing in 3 
dimensions” Scalar ScalarVector      

on the sky
(spin 1)

Spin 2 
tensor

line of 
sight

FS, Jeong, 2012a
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[

1 + 2
∂ ln r0
∂ ln a

∆ ln a

]

. (30)

Thus, if we compare the apparent size of the standard
ruler to the true size at the apparent time of emission
(of course assuming that we are able to predict r0(a)),
Eq. (29) becomes
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size of the ruler. The quantities multiplying C, Bi, Aij

are thus simply geometric factors. The coefficients are
given by

C = −∆ ln a

[

1−
∂ ln r0
∂ ln a

]

−
1

2
h∥ − v∥ − ∂χ̃∆x∥

Bi = − P j
i hjkn̂

k − v⊥i − n̂k∂⊥ i∆xk − ∂χ̃∆x⊥i

Aij = −∆ ln a

[

1−
∂ ln r0
∂ ln a

]

Pij −
1

2
P k
i P l

j hkl

−
1

2
(Pjk∂⊥ i + Pik∂⊥ j)∆xk, (33)

where ∆x∥, ∆xi
⊥ are the parallel and perpendicular com-

ponents of the displacements ∆xi. Note that while we
have assumed that the ruler is small (i.e. δx̃i ≪ χ̃),
the expressions for C, Bi, Aij are valid on the full sky.
Fig. 2 illustrates the distortions induced by these com-
ponents. Observationally, we have 6 free parameters (as-
suming accurate redshifts are available): the location of

From 2D to 3D

• A ruler is defined by two 
endpoints in 3D space (4 
angles, 2 redshifts)

• In principle we can thus 
measure 6 independent 
d.o.f. from the distortion 
of the ruler

• This the most general 
“weak lensing in 3 
dimensions” Scalar ScalarVector      

on the sky
(spin 1)

Spin 2 
tensor

line of 
sight

Scalars
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Working to first order in perturbations, we then obtain

r20 − r̃2 = 2∆ ln a r̃2 + ã2hijδx̃
iδx̃j

+ 2ã2(v∥δx̃
2
∥ + v⊥ iδx̃

i
⊥δx̃∥)

+ 2ã2δijδx̃
i
(

δx̃∥∂χ̃ + δx̃k
⊥∂⊥ k

)

∆xj . (29)

All terms are straightforward to interpret: there are the
perturbations to the metric (both from the metric per-
turbation itself and the perturbation to the scale factor
at emission); the contribution ∝ v from the projection
from fixed-η to fixed-proper-time hypersurfaces; and the
difference in the spatial displacements of the endpoints
of the ruler.

A. Evolving ruler

So far, we have assumed that the physical scale of the
ruler is fixed. This does not have to hold in general; for
example, the BAO scale is fixed in terms of comoving
coordinates. We now consider the case where the (mean)
physical scale r0 evolves over cosmic time. It is simplest
to consider r0 as a function of scale factor; one can easily
convert to other variables such as conformal time using
the relation with the scale factor in the background Uni-
verse.
Then, r20 on the left-hand side of Eq. (29) is to be

evaluated for the scale factor at emission:

r20 [a(x
0)] = r20(ã)

[

1 + 2
∂ ln r0
∂ ln a

∆ ln a

]

. (30)

Thus, if we compare the apparent size of the standard
ruler to the true size at the apparent time of emission
(of course assuming that we are able to predict r0(a)),
Eq. (29) becomes

r20(ã)− r̃2 = 2∆ lna

[

1−
∂ ln r0
∂ ln a

]

r̃2 + ã2hijδx̃
iδx̃j

+ 2ã2(v∥δx̃
2
∥ + v⊥ iδx̃

i
⊥δx̃∥)

+ 2ã2δijδx̃
i
(

δx̃∥∂χ̃ + δx̃k
⊥∂⊥ k

)

∆xj . (31)

Note that if r0 ∝ a, i.e. if the ruler corresponds to a fixed
comoving scale, the terms multiplying ∆ ln a cancel. This
is as expected, since a perturbation to the scale factor at
emission does not affect a fixed comoving scale.

IV. SCALAR-VECTOR-TENSOR
DECOMPOSITION ON THE SKY

It is useful to separate the contributions to Eq. (29)
in terms of the observed longitudinal and transverse dis-
placements. For some applications, only the transverse
displacements are relevant. This is the case for dif-
fuse backgrounds without redshift resolution, such as the
CMB or the cosmic infrared background, and largely the

FIG. 2: Illustration of the distortion of standard rulers due
to the longitudinal (2-)scalar C, (2-)vector B, and transverse
components, magnification M and shear γ. The first row
shows the projection onto the sky plane, while the second
(third) row show the projection onto the line-of-sight and x1

⊥

(x2

⊥) axes, respectively. In case of B and γ, we only show one
of the two components. See also Fig. 3 in [12].

case for photometric galaxy surveys. On the other hand,
spectroscopic surveys and redshift-resolved backgrounds
such as the 21cm emission from high-redshifts are able to
measure the longitudinal displacements as well.
Noting that r̃2 = ã2[δx̃2

∥ + (δx̃⊥)2], and taking the

square root of Eq. (31), we obtain the relative perturba-
tion to the physical scale of the ruler as

r̃ − r0
r̃

= C
(δx̃∥)

2

r̃2c
+ Bi

δx̃∥δx̃
i
⊥

r̃2c
+Aij

δx̃i
⊥δx̃

j
⊥

r̃2c
, (32)

where we have defined r̃c ≡ r̃/ã as the apparent comoving
size of the ruler. The quantities multiplying C, Bi, Aij

are thus simply geometric factors. The coefficients are
given by

C = −∆ ln a

[

1−
∂ ln r0
∂ ln a

]

−
1

2
h∥ − v∥ − ∂χ̃∆x∥

Bi = − P j
i hjkn̂

k − v⊥i − n̂k∂⊥ i∆xk − ∂χ̃∆x⊥i

Aij = −∆ ln a

[

1−
∂ ln r0
∂ ln a

]

Pij −
1

2
P k
i P l

j hkl

−
1

2
(Pjk∂⊥ i + Pik∂⊥ j)∆xk, (33)

where ∆x∥, ∆xi
⊥ are the parallel and perpendicular com-

ponents of the displacements ∆xi. Note that while we
have assumed that the ruler is small (i.e. δx̃i ≪ χ̃),
the expressions for C, Bi, Aij are valid on the full sky.
Fig. 2 illustrates the distortions induced by these com-
ponents. Observationally, we have 6 free parameters (as-
suming accurate redshifts are available): the location of

From 2D to 3D

• A ruler is defined by two 
endpoints in 3D space (4 
angles, 2 redshifts)

• In principle we can thus 
measure 6 independent 
d.o.f. from the distortion 
of the ruler

• This the most general 
“weak lensing in 3 
dimensions” Scalar ScalarVector      

on the sky
(spin 1)

Spin 2 
tensor

line of 
sight

Vector / tensor - allow for 
E/B decomposition
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Example: 21cm emission

• Before reionization (z >~ 10), 
HI can be observed in 21cm 
spin-flip transition

• Cold gas (T ~ 100K): Jeans scale 
extremely small; undamped 
linear P(k) out to k ~ pc-1

• Number of modes available 
beats any other probe

• Issue: galactic foregrounds; 
enormous sensitivity needed to 
probe fluctuations

FIG. 2. Angular power spectrum of 21cm anisotropies
on the sky at various redshifts. From top to bottom,
z = 55, 40, 80, 30, 120, 25, 170.

Figure 2 shows the angular power spectrum at var-
ious redshifts. The ability to probe the small scale
power of density fluctuations is only limited by the Jeans
scale, below which the dark matter inhomogeneities are
washed out by the finite pressure of the gas. Interestingly,
the cosmological Jeans mass reaches its minimum value,
∼ 3×104M⊙, within the redshift interval of interest here
[2]. During the epoch of reionization, photoionization
heating raises the Jeans mass by several orders of mag-
nitude and and broadens spectral features, thus limiting
the ability of other probes of the intergalactic medium,
such as the Lyα forest, from accessing the same very low
mass scales. The 21cm tomography has the additional
advantage of probing the majority of the cosmic gas, in-
stead of the trace amount (∼ 10−5) of neutral hydrogen
probed by the Lyα forest after reionization. Similarly to
the primary CMB anisotropies, the 21cm signal is simply
shaped by gravity, adiabatic cosmic expansion, and well-
known atomic physics, and is not contaminated by com-
plex astrophysical processes that affect the intergalactic
medium at z <∼ 30.

The small scale power spectrum. In most models of
inflation, the evolution of the Hubble parameter during
inflation leads to departures from a scale-invariant spec-
trum that are of order 1/Nefold with Nefold ∼ 60 being
the number of e–folds between the time when the scale of
our horizon was of order the horizon during inflation and
the end of inflation [14]. Recent WMAP data combined
with other measures of the power on smaller scales, sug-
gests that the power spectrum changes with scale much
faster than inflation would have predicted [7], although
this result is still somewhat controversial. Independent
hints that the standard ΛCDM model may have too much
power on galactic scales have inspired several proposals
for suppressing the power on small scales. Examples in-
clude the possibility that the dark matter is warm and it

decoupled while being relativistic so that its free stream-
ing erased small-scale power [8], or direct modifications
of inflation that produce a cut-off in the power on small
scales [15]. An unavoidable collisionless component of the
cosmic mass budget beyond CDM, is provided by mas-
sive neutrinos (see [16] for a review). Particle physics
experiments established the mass splittings among dif-
ferent species which translate into a lower limit on the
fraction of the dark matter accounted for by neutrinos of
fν > 0.3%, while current constraints based on galaxies
as tracers of the small scale power imply fν < 12% [17].

In Fig. 3 we show the 21cm power spectrum for various
models that differ in their level of small scale power. It
is clear that a precise measurement of the 21cm power
spectrum will dramatically improve current constraints
on alternatives to the standard ΛCDM spectrum.

FIG. 3. Upper panel: Power spectrum of 21cm anisotropies
at z = 55 for a ΛCDM scale-invariant power spectrum,
a model with n = 0.98, a model with n = 0.98 and
αr ≡ 1

2
(d2 ln P/d ln k2) = −0.07, a model of warm dark mat-

ter particles with a mass of 1 keV, and a model in which
fν = 10% of the matter density is in three species of massive
neutrinos with a mass of 0.4 eV each. Lower panel: Ratios
between the different power spectra and the scale-invariant
spectrum.

Unprecedented information. The 21cm signal con-
tains a wealth of information about the initial fluctua-
tions. A full sky map at a single photon frequency mea-
sured up to lmax, can probe the power spectrum up to
kmax ∼ (lmax/104)Mpc−1. Such a map contains l2max in-
dependent samples. By shifting the photon frequency,
one may obtain many independent measurements of the
power. When measuring a mode l, which corresponds
to a wavenumber k ∼ l/r, two maps at different photon
frequencies will be independent if they are separated in
radial distance by 1/k. Thus, an experiment that covers
a spatial range ∆r can probe a total of k∆r ∼ l∆r/r in-
dependent maps. An experiment that detects the 21cm
signal over a range ∆ν centered on a frequency ν, is sensi-
tive to ∆r/r ∼ 0.5(∆ν/ν)(1+ z)−1/2, and so it measures

3
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FIG. 1: The power spectrum for the deflection-field curl com-
ponent for lensing of sources at various redshifts by a scale-
invariant spectrum of IGWs of the largest amplitude (r = 0.2)
consistent with current measurements. We also superimpose
noise power spectra for lensing reconstruction carried out to
various values of l

max

. Also shown is the noise power spec-
trum we estimate from co-adding the signals from all possible
redshifts, assuming an l

max

= 106.

where

F

⌦

L (k) = �

s
2⇡(L+ 2)!

(L� 2)!

Z k⌘0

k⌘(z)

T (w)

L(L+ 1)

jL(k⌘0 � w)

(k⌘
0

� w)2
dw,

(3)
and ⌘

0

and ⌘(z) are the conformal time today and at
redshift z, respectively. Here T (w) ' 3j

1

(w)/w is the
gravitational-wave transfer function, and jn(x) are the
spherical Bessel functions. The angular power spectra
for the lensing of sources at several redshifts are shown in
Fig. 1; for L . 6, the source-redshift dependence is weak
for a scale-invariant gravitational-wave background.

We now review how this power spectrum is measured
following the treatment of lensing of the CMB in Ref. [14],
focusing on a single redshift slice first. Given a map I(n̂)
of the 21-cm intensity as a function of position n̂ on the
sky, the minimum-variance estimator for the spherical-
harmonic coe�cients for the curl component of lensing
is

[⌦LM =

P
ll0 Q
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ll0
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(Cmap

l C
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l0 )
P

ll0

��
Q

 L
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��2
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l0 )
, (4)

where C

map

l = Cl + C

n

l is the angular power spectrum
of the map with Cl the power spectrum of the 21-cm
intensity and C

n

l the noise power spectrum, and the sums

are only over l+l

0+L =odd. We use lower-case l for CMB
fluctuations and upper-case L for the lensing-deflection
field. Here,
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where \
A

 LM
ll0 are estimators for odd-parity bipolar-

spherical-harmonic coe�cients [18] in terms of the
spherical-harmonic coe�cients a

map

lm of the 21-cm map
and Clebsch-Gordan coe�cients CLM

lm l0,�m0 . The estima-
tor for the power spectrum of the curl component of the

deflection field is then c
C

⌦

L =
P

m |[⌦LM |2/(2L+ 1). The

variance of [⌦LM under the null hypothesis is given by
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(6)
This noise power spectrum is plotted in Fig. 1 using the
21-cm power spectra from Ref. [3] and taking the noise
power spectrum C

n

l = 0 for l < l

max

and C

n

l = 1 for
l > l

max

. We show results for several l
max

which are,
roughly speaking, the maximum value of l with which
the 21-cm power spectrum can be measured with high
signal-to-noise. The signal-to-noise (squared) with which
IGWs can be detected is then

(S/N)2 =
X

L

(L+ 1/2)
�
C

⌦

L

�
2

/(�⌦

L)
4

. (7)

Before reviewing the numerical results, it is instructive
to consider an analytic estimate of the noise power spec-

trum
�
�

⌦

L

�
2

. To do so, we use the flat-sky approximation
[13],

�
�

⌦
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Z
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2
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2Cmap

l C

map

|~L�~l|
. (8)

For L ⌧ l we approximate |~L � ~

l| ' l � L cos↵, where
cos↵ ⌘ L̂ · l̂, and C|~L�~l| ' Cl � L(cos↵)(@Cl/@l). If
Cl / l

n, then
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2
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/(64⇡). (9)

The flat-sky calculation is accurate for L & 20 and
overestimates the noise by up to 30% at smaller L. As
shown in Fig. 2 in Ref. [3], the 21-cm power spectrum
extends without suppression out to l & 106, and values

21cm emission from 
the “dark ages”

• Reconstruction of GW 
lensing from B-mode 
shear (4-pt function)

• Vector B not considered 
here - but possibly 
easier to measure

• Possibly the ultimate 
probe of GW ? Mode 
counting yields

r = 0.2

3

of l

max

⇠ 107 are perhaps achievable with a bit more ef-
fort. However, given the rapid suppression of the 21-cm
power spectrum at higher l, the return on the investment
of noise reduction in terms of higher l

max

will probably
be small above l

max

' 107.
We now approximate the ⌦ power spectrum (for r =

0.2) as C

⌦

L ' 10�11 (L/2)�6. Although this approxima-
tion di↵ers from the numerical results for di↵erent red-
shifts z at L ' 30, it is quite accurate for all 30 . z . 200
for the smallest L where most of the signal arises. From
Eq. (7), the signal-to-noise with which the gravitational-
wave background can be detected is

(S/N) ' 4.5
�
l

max

/106

�
2 (n/2)2 (L

min

/2)�1

, (10)

where L

min

is the minimum L that can be measured.
There are several things to note about this result: (1)

The signal-to-noise obtained with the adopted fiducial
values for l

max

, L, and n is significant. (2) The scaling
of the signal-to-noise with l

max

is very rapid, and greater
than what might have been expected (/ l

max

) naively.
The origin of this rapid scaling is similar to that for de-
tection of the local-model trispectrum [19] (as the signal
we are measuring here is, strictly speaking, an intensity
trispectrum). Thus, the sensitivity to a gravitational-
wave background increases very rapidly as the angular
resolution of the map is improved. (3) The sensitivity
decreases as L

min

is increased, so good sky coverage is
important for gravitational-wave detection.

While a signal-to-noise of 4.5 is respectable, and could
be improved with even larger l

max

, we can go much fur-
ther: By changing the frequency at which the 21-cm map
is made, we look at spherical shells of atomic hydrogen
at di↵erent redshifts. Suppose, then, that we have 21-
cm maps at two di↵erent frequencies that correspond
to spherical shells separated along the line of sight by
a comoving distance �R. Those two maps are statisti-
cally independent at the highest l (where the vast ma-
jority of the signal-to-noise for IGW detection arises) if
(�R/R) & l

�1. If �R is the separation in comoving ra-
dius corresponding to the entire frequency range covered
by the observations (say, redshifts z ' 30�200), then the
total number of statistically independent maps that can
be obtained is Nz ' (�R/�R) ' l(�R/R) ' 0.15 l. If
so, then the signal-to-noise from all these redshift ranges
can be added in quadrature, and the signal-to-noise then
increases by a factor N

1/2

z . But there may be room for
even more improvement: If most of the lensing occurs at
redshifts z . 30 (as is the case for the lowest L), then
the lensing pattern is the same for all redshift shells in
which case every redshift shell contributes coherently to
an estimator for ⌦LM . In this case, (�⌦

L)2 is decreased by
factor N

�1

z , and the signal-to-noise increased by a factor
Nz relative to the single-z estimate. Since most of the
signal comes from the lowest L, we estimate that the
signal-to-noise for IGW detection obtained by coadding

redshift shells will be

(S/N)
tot

' 6.8⇥ 105

�
l

max

/106

�
3 (n/2)2 (L

min

/2)�1

,

(11)
assuming (as above) the largest currently allowed IGW
amplitude r ' 0.2. Put another way, the smallest tensor-
to-scalar ratio that can be detected at the 3� level is

r ' 10�6 (L
min

/2)
�
l

max

/106

��3 (n/2)�2

. (12)

Note that the dependence on l

max

is very steep, and in-
cluding all the information to l

max

= 107 could yield a
detection threshold of r ' 10�9. The full-sky calculation,
including a more realistic shape of Cl, yields a result con-
sistent with this estimate (Fig. 1).

To put this result in perspective, we note that the cur-
rent upper bound r . 0.22 comes from WMAP measure-
ments of temperature-polarization correlations, although
not from B-mode null searches. The forthcoming gen-
eration of sub-orbital B-mode experiments are target-
ing r . 0.1, and a dedicated CMB-polarization satellite
might then get to r ⇠ 10�2 [20].

Measurement of gravitational-wave amplitudes r .
0.01 with CMB polarization will have to contend with
the additional contribution to B-mode polarization from
gravitational lensing (by density perturbations) of pri-
mordial E modes [21]. The two contributions (IGW and
lensing) to B modes can be distinguished if the lensing de-
flection angle can be reconstructed with small-scale CMB
fluctuations [22, 23]. This may allow values r ⇠ 10�3

to be probed, although it requires a far more sophisti-
cated CMB experiment (with far better angular resolu-
tion) than simple detection of B modes would require.

Further progress in separation of lensing and IGW con-
tributions to B modes can be obtained with 21-cm mea-
surements [17] of precisely the type we discuss here but of
the curl-free lensing component (due to density perturba-
tions) rather than the curl component from IGWs. Such
measurements, when combined with a precise CMB po-
larization experiment, can in principle get to IGW ampli-
tudes comparable to those we have discussed here. Mea-
surement of the 21-cm curl component may therefore ul-
timately be competitive for the most sensitive probe of
IGWs, even if a sensitive CMB-polarization experiment
is done. Furthermore, if both 21-cm observations and a
CMB-polarization map are available, then measurement
of the 21-cm curl component can be used as a cross-check
and to complement a measurement from the combination
of B-mode polarization with 21-cm lensing subtraction.

While we have focussed here on the dark ages, similar
measurements can also be performed with 21-cm fluc-
tuations from the epoch of reionization and also with
galaxy surveys; the critical issue will be how high l

max

can get. While the 21-cm curl component induced by
lensing by density perturbations at second order is too
small to be an issue [13], a curl component may conceiv-
ably arise since the atomic-hydrogen distribution is not

L. Book, MK, FS
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Summary
• Detecting primordial GW from inflation is still one of 

the primary goals of cosmology

• Large-scale structure can potentially confirm a 
future CMB detection with shear correlations - 
thanks to tidal alignment by GW

• Especially important given the higher than 
expected CMB contamination by dust 
polarization

• ... or detect even smaller amplitudes with far-future 
21cm surveys



Contaminations by 
scalar perturbations

• At second order, scalar 
perturbations lead to B 
modes

• Non-linear corrections 
to light propagation 
(“Born”)

• Non-linearities in shear 
estimation (“red. shear”)


