Searching for Inflationary Gravitational Waves with Large-Scale Structure

Fabian Schmidt MPA

with
Liang Dai, Donghui Jeong, Enrico Pajer, Matias Zaldarriaga

Motivation

- Gravitational waves (tensor modes) are a unique window into the early universe:
- Inflation
- Phase transitions
- Potential signatures of quantum gravity
- Once generated, they essentially propagate unperturbed towards us
- exceptionally "clean" probe

Motivation

- Gravitational waves (tensor modes) are a unique window into the early universe:
- Inflation
- Phase transitions
- Potential signatures of quantum gravity
- Once generated, they essentially propagate unperturbed towards us
- exceptionally "clean" probe

Gravitational waves from inflation

- Detecting primordial gravitational waves: decisive probe of inflation

$$
k^{3} P_{t}(k)=\left.\frac{2}{\pi^{2}} \frac{H^{2}}{M_{\mathrm{Pl}}^{2}}\right|_{k=a H}
$$

- Amplitude of GW is set only by expansion rate during inflation, and $H^{2} \propto V(\phi)$
- Thus, we can use it to measure the energy scale of inflation (anywhere from 10^{3} to $10^{19} \mathrm{GeV}$)

Searching for GW

- General problem: How do we disentangle gravitational waves from (much larger) density fluctuations?

Searching for GW

- General problem: How do we disentangle gravitational waves from (much larger) density fluctuations?
- Let us classify observables by their behavior under rotation on the sky:
- Spin 0 ("2-scalar"): density, temperature, ...
- Spin I ("2-vector"): "arrow" on the sky
- Spin 2: polarization; galaxy shapes

Searching for GW

- Scalar observables - density, temperature, ... - do not allow for a separation between scalar and tensor perturbations

Searching for GW

- Scalar observables - density, temperature, ... - do not allow for a separation between scalar and tensor perturbations
- Vector and tensor observables do: via E/B decomposition
- E (gradient) type: even parity, scalar perturbations contribute
- B (curl) type: odd parity, no scalar contribution

Spin I:

B

Searching for GW

- Scalar observables - density, temperature, ... - do not allow for a separation between scalar and tensor perturbations
- Vector and tensor observables do: via E/B decomposition
- E (gradient) type: even parity, scalar perturbations contribute

Spin 2:
(galaxy shapes, polarization)

E

- B (curl) type: odd parity, no scalar contribution

Searching for GW

- Scalar observables - density, temperature, ... - do not allow for a separation between scalar and tensor perturbations
- Vector and tensor observables do: via E/B decomposition
- E (gradient) type: even parity, scalar perturbations contribute
- B (curl) type: odd parity, no scalar contribution

Searching for GW

- Reason: tensor modes have two polarization states
- If one state generates P even pattern, the other will generate P -odd

- Density perturbations on

Spin 2:
(galaxy shapes, polarization)
 the other hand can create only one type of pattern

Can we independently confirm CMB detection of tensor modes ?

- Dust contamination is clearly an issue for CMB measurements - it will only get more difficult when pushing sensitivity to lower values
- Are there any observables in the large-scale structure that can probe gravitational waves ?
- Cross-correlation LSS-CMB should be exceptionally clean
- We want a spin-I or spin-2 observable

Galaxy shape correlations

- Large-scale imaging surveys (DES, HSC, Euclid, LSST) will measure shapes for billions of galaxies
- The shape (ellipticity) of a galaxy is a spin-2 observable, like polarization
- Intrinsic galaxy shapes are weakly correlated over large distances; apparent correlations are (mostly) due to gravitational lensing

Gravitational lensing by tensor modes

- The most well-known contribution to galaxy shape correlations is gravitational lensing (shear)
- GW transverse to the line of sight contribute to shear

Gravitational lensing by tensor modes

- The signal, unfortunately, is very small
- Too small...

Dodelson, Rozo, Stebbins 2003

Tidal alignment contribution to galaxy shape correlations

- Tidal alignments known to be typically smaller than lensing signal for scalar perturbations
- What about tensor modes ? Do they produce tidal alignment ?
- Very difficult problem: impact of horizon-scale modes on nonlinear structure

Impact of GW on

galaxies

Dai, Pajer, FS, 2015a
Pajer, FS, Zaldarriaga, 20 I 3a,b

- Consider wordline of a small patch within the Universe
- Conformal Fermi frame: constructed so that close to the wordline, the spacetime looks close to an unperturbed universe at all times

$$
\begin{aligned}
& g_{\mu \nu}^{\mathrm{CFC}}=a_{\mathrm{loc}}^{2}(\tau)\left[\eta_{\mu \nu}+h_{\mu \nu}^{\mathrm{CFC}}\right] \\
& h_{\mu \nu}^{\mathrm{CFC}}=\mathcal{O}\left(x^{i} x^{j}\right)
\end{aligned}
$$

Impact of GW on

galaxies

Dai, Pajer, FS, 2015a
Pajer, FS, Zaldarriaga, 20 I 3a,b

- Consider wordline of a small patch within the Universe
- Conformal Fermi frame: constructed so that close to the wordline, the spacetime looks close to an unperturbed universe at all times
- natural frame to describe local gravitational experiments in cosmology

Impact of GW on

galaxies

- In the conformal Fermi frame, GW induces a tidal field once it enters the horizon, encoded in h_{00}^{CFC}
- The same effect that moves the mirrors of a GW detector

Impact of GW on

galaxies

- In the conformal Fermi frame, GW induces a tidal field once it enters the horizon, encoded in h_{00}^{CFC}
- The same effect that moves the mirrors of a GW detector

```\(h_{00}^{\mathrm{CFC}}\)
```


GW effects in

perturbation theory

$\left.\underset{\substack{\text { Matter density } \\ \text { perturbation }}}{\longrightarrow} \delta(\mathbf{x}, t)\right|_{h}=\alpha(t) h_{i j}(\mathbf{x}, t) \frac{\partial^{i} \partial^{j}}{\nabla^{2}} \delta_{\text {lin }}(\mathbf{x}, t)$

- Tensor tidal field $\sim \alpha h_{i j}$ couples to scalar tidal field
- α approaches constant as tensor mode has decayed away - observable effects at low redshift even when GW has long disappeared
- "Memory" effect - only happens because GW were superhorizon

Signatures of GW tidal

alignments

- B-mode shape correlations
- Tidal effect is much larger than "lensing" contribution
- The exact opposite of scalar perturbations!

FS, Pajer, Zaldarriaga, 2013
FS, Jeong, 20I2b

Why is intrinsic alignment so large for GW ?

- Actually, the correct question is: why is the GW lensing contribution so small ?

- Cancelation of lensing effect along the line of sight because GW propagate

Signatures of GW tidal

alignments

- Still very small signal difficult to measure even for EUCLID
- Depends sensitively on how strong galaxies align with tidal fields
- One of the few possible ways to independently confirm detection of GW in CMB

FS, Pajer, Zaldarriaga, 2013
FS, Jeong, 20 I 2b

From 2D to 3D

- So far, considered shapes of galaxies
- What if we have 3D observations ?
- Examples:
- galaxies with spatially resolved spectra
- measurement of 3D small-scale correlation function (21 cm background)
- Distortions of a "standard ruler" in 3 dimensions

From 2D to 3D

- A ruler is defined by two endpoints in 3D space (4 angles, 2 redshifts)
- In principle we can thus measure 6 independent d.o.f. from the distortion of the ruler
- This the most general "weak lensing in 3 dimensions"

Scalar
\mathcal{B}

Vector on the sky (spin I)

From 2D to 3D

- A ruler is defined by two endpoints in 3D space (4 angles, 2 redshifts)
- In principle we can thus measure 6 independent d.o.f. from the distortion of the ruler
- This the most general "weak lensing in 3 dimensions"

Scalars

Scalar

Scalar

From 2D to 3D

- A ruler is defined by two endpoints in 3D space (4 angles, 2 redshifts)
- In principle we can thus measure 6 independent d.o.f. from the distortion of the ruler
- This the most general "weak lensing in 3 dimensions"

Example: 21 cm emission

- Before reionization (z >~ 10), HI can be observed in 21 cm spin-flip transition
- Cold gas (T ~ I00K): Jeans scale extremely small; undamped linear $P(k)$ out to $k \sim c^{-1}$
- Number of modes available beats any other probe
- Issue: galactic foregrounds;

21 cm emission from the "dark ages"

- Reconstruction of GW lensing from B-mode shear (4-pt function)
- Vector \mathcal{B} not considered here - but possibly easier to measure
- Possibly the ultimate probe of GW ? Mode counting yields
 $r \simeq 10^{-6}\left(L_{\min } / 2\right)\left(l_{\max } / 10^{6}\right)^{-3}$
L. Book, MK, FS

IIII. 0567

Summary

- Detecting primordial GW from inflation is still one of the primary goals of cosmology
- Large-scale structure can potentially confirm a future CMB detection with shear correlations thanks to tidal alignment by GW
- Especially important given the higher than expected CMB contamination by dust polarization
- ... or detect even smaller amplitudes with far-future 21 cm surveys

Contaminations by
 scalar perturbations

- At second order, scalar perturbations lead to B modes
- Non-linear corrections to light propagation ("Born")
- Non-linearities in shear estimation ("red. shear")

