The bubble wall velocity Cosmological phase transition front propagation

Ariel Mégevand

CONICET - University of Mar del Plata - Argentina

eLISA Cosmology Working Group Workshop - April 2015

◆□> ◆□> ◆三> ◆三> 三三 のへで

3

イロン イ団と イヨン イヨン

The free energy density (finite-temperature effective potential)

3

イロト イヨト イヨト イヨト

The free energy density (finite-temperature effective potential)

► The free energy density *F*(*T*) determines the equation of state: *p* = −*F*(*T*), *s* = *dp*/*dT*, *e* = *Ts* − *p*,...

The free energy density (finite-temperature effective potential)

- ► The free energy density *F*(*T*) determines the equation of state: *p* = −*F*(*T*), *s* = *dp*/*dT*, *e* = *Ts* − *p*,...
- ▶ In the presence of a background field ϕ , the minimum of $\mathcal{F}(\phi, T)$ gives the equilibrium expectation value $\langle \phi \rangle$

イロン イロン イヨン イヨン 三日

The free energy density (finite-temperature effective potential)

- ► The free energy density *F*(*T*) determines the equation of state: *p* = −*F*(*T*), *s* = *dp*/*dT*, *e* = *Ts* − *p*,...
- In the presence of a background field φ, the minimum of F(φ, T) gives the equilibrium expectation value ⟨φ⟩

The electroweak theory $\langle H \rangle = (0, \langle \phi \rangle / \sqrt{2})^T$, ϕ real (Higgs)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

The free energy density (finite-temperature effective potential)

- ► The free energy density *F*(*T*) determines the equation of state: *p* = −*F*(*T*), *s* = *dp*/*dT*, *e* = *Ts* − *p*,...
- In the presence of a background field φ, the minimum of F(φ, T) gives the equilibrium expectation value ⟨φ⟩

The electroweak theory $\langle H \rangle = (0, \langle \phi \rangle / \sqrt{2})^T$, ϕ real (Higgs) $\mathcal{F}(\phi, T) = V(\phi) + \Delta V(\phi, T)$, where

(日) (雪) (ヨ) (ヨ) (ヨ)

The free energy density (finite-temperature effective potential)

- ► The free energy density *F*(*T*) determines the equation of state: *p* = −*F*(*T*), *s* = *dp*/*dT*, *e* = *Ts* − *p*,...
- In the presence of a background field φ, the minimum of F(φ, T) gives the equilibrium expectation value ⟨φ⟩

The electroweak theory $\langle H \rangle = (0, \langle \phi \rangle / \sqrt{2})^T$, ϕ real (Higgs) $\mathcal{F}(\phi, T) = V(\phi) + \Delta V(\phi, T)$, where

zero-T effective potential: $V(\phi) = -m^{2}\phi^{2} + \lambda\phi^{4} \text{ (tree-level)}$ $+ \sum_{i} \frac{\pm g_{i}}{64\pi^{2}} \left[m_{i}^{4}(\phi) \left(\log \left(\frac{m_{i}^{2}(\phi)}{m_{i}^{2}(v)} \right) - \frac{3}{2} \right) + 2m_{i}^{2}(\phi)m_{i}^{2}(v) \right]$ $(1\text{-loop, } m_{i}(\phi) = \text{Higgs-dependent particle masses})$

イロン イロン イヨン イヨン 三日

The free energy density (finite-temperature effective potential)

- ► The free energy density *F*(*T*) determines the equation of state: *p* = −*F*(*T*), *s* = *dp*/*dT*, *e* = *Ts* − *p*,...
- In the presence of a background field φ, the minimum of F(φ, T) gives the equilibrium expectation value ⟨φ⟩

The electroweak theory $\langle H \rangle = (0, \langle \phi \rangle / \sqrt{2})^T$, ϕ real (Higgs) $\mathcal{F}(\phi, T) = V(\phi) + \Delta V(\phi, T)$, where

zero-T effective potential:spontaneous symmetry
breaking $V(\phi) = -m^2 \phi^2 + \lambda \phi^4$ (tree-level)breaking $+ \sum_i \frac{\pm g_i}{64\pi^2} \left[m_i^4(\phi) \left(\log \left(\frac{m_i^2(\phi)}{m_i^2(v)} \right) - \frac{3}{2} \right) + 2m_i^2(\phi) m_i^2(v) \right]$
(1-loop, $m_i(\phi) =$ Higgs-dependent particle masses) $\Delta V(\phi, T) = \sum_i (\pm g_i) \int \frac{d^3p}{(2\pi)^3} \log \left(1 \mp e^{-\sqrt{p^2 + m_i(\phi)^2}/T} \right)$
finite-temperature correctionssymmetry restoration at high T

• At high T we have $\langle \phi \rangle = 0$ while at T = 0 we have $\langle \phi \rangle = v$

- At high T we have $\langle \phi \rangle = 0$ while at T = 0 we have $\langle \phi \rangle = v$
- At intermediate temperatures, the minimum of the free energy density *F*(φ, *T*) changes from φ = 0 to φ = v

- At high T we have $\langle \phi \rangle = 0$ while at T = 0 we have $\langle \phi \rangle = v$
- At intermediate temperatures, the minimum of the free energy density *F*(φ, *T*) changes from φ = 0 to φ = v
- For a first-order phase transition we have

 Two minima separated by a barrier (the absolute minimum is stable)

- 4 同 6 4 日 6 4 日 6

- At high T we have $\langle \phi \rangle = 0$ while at T = 0 we have $\langle \phi \rangle = v$
- At intermediate temperatures, the minimum of the free energy density *F*(φ, *T*) changes from φ = 0 to φ = v
- For a first-order phase transition we have

 Two minima separated by a barrier (the absolute minimum is stable)

(日) (周) (日) (日)

• High $T: \phi = 0$

- At high T we have $\langle \phi \rangle = 0$ while at T = 0 we have $\langle \phi \rangle = v$
- At intermediate temperatures, the minimum of the free energy density *F*(φ, *T*) changes from φ = 0 to φ = ν
- For a first-order phase transition we have

 Two minima separated by a barrier (the absolute minimum is stable)

イロト イポト イヨト イヨト

- High $T: \phi = 0$
- Low $T: \phi = \phi_b(T)$

- At high T we have $\langle \phi \rangle = 0$ while at T = 0 we have $\langle \phi \rangle = v$
- At intermediate temperatures, the minimum of the free energy density *F*(φ, *T*) changes from φ = 0 to φ = ν
- For a first-order phase transition we have

- Two minima separated by a barrier (the absolute minimum is stable)
- High $T: \phi = 0$
- Low $T: \phi = \phi_b(T)$
- T_c = critical temperature: $\mathcal{F}(0, T_c) = \mathcal{F}(\phi_b, T_c)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

- At high T we have $\langle \phi \rangle = 0$ while at T = 0 we have $\langle \phi \rangle = v$
- At intermediate temperatures, the minimum of the free energy density *F*(φ, *T*) changes from φ = 0 to φ = v
- For a first-order phase transition we have

- Two minima separated by a barrier (the absolute minimum is stable)
- High $T: \phi = 0$
- Low $T: \phi = \phi_b(T)$

• T_c = critical temperature: $\mathcal{F}(0, T_c) = \mathcal{F}(\phi_b, T_c)$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► The two phases are characterized by two different EOS $\mathcal{F}_u(T) = \mathcal{F}(0, T)$ and $\mathcal{F}_b(T) = \mathcal{F}(\phi_b(T), T)$ unbroken-symmetry phase broken-symmetry phase

At a temperature $T_n < T_c$ (supercooling) bubbles nucleate

イロト イポト イヨト イヨト

At a temperature $T_n < T_c$ (supercooling) bubbles nucleate

At a temperature $T_n < T_c$ (supercooling) bubbles nucleate

- 小田 ト イヨト

At a temperature $T_n < T_c$ (supercooling) bubbles nucleate

A. Mégevand, Bubble wall velocity

(本部) (本語) (本語)

At a temperature $T_n < T_c$ (supercooling) bubbles nucleate

・ロン ・四 ・ ・ ヨン ・ ヨン

At a temperature $T_n < T_c$ (supercooling) bubbles nucleate

- $p_b(T_c) = p_u(T_c)$, but $p_b(T_n) > p_u(T_n)$
- ▶ also, $e_b(T_c) < e_u(T_c)$. Latent heat: $L = e_u(T_c) e_b(T_c)$.
- The latent heat reheats the plasma

・ロン ・四 ・ ・ ヨン ・ ヨン

At a temperature $T_n < T_c$ (supercooling) bubbles nucleate

- $p_b(T_c) = p_u(T_c)$, but $p_b(T_n) > p_u(T_n)$
- ▶ also, $e_b(T_c) < e_u(T_c)$. Latent heat: $L = e_u(T_c) e_b(T_c)$.
- The latent heat reheats the plasma
- Configuration of the Higgs field $(\phi \equiv \langle \hat{\phi} \rangle)$

・ロン ・四 ・ ・ ヨン ・ ヨン

At a temperature $T_n < T_c$ (supercooling) bubbles nucleate

- $p_b(T_c) = p_u(T_c)$, but $p_b(T_n) > p_u(T_n)$
- ▶ also, $e_b(T_c) < e_u(T_c)$. Latent heat: $L = e_u(T_c) e_b(T_c)$.
- The latent heat reheats the plasma
- Configuration of the Higgs field $(\phi \equiv \langle \hat{\phi} \rangle)$

• Bubbles expand (bubble walls move): $\phi = \phi(\mathbf{x}, t)$

The field equation can be derived from the operator equation, with a suitable statistical average

・ロト ・ 四ト ・ ヨト ・ ヨト

- The field equation can be derived from the operator equation, with a suitable statistical average
- ► We have

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi, T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int\frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

$$i = \text{particle species, } E_{i} = \sqrt{p^{2} + m_{i}^{2}(z, t)}$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

- The field equation can be derived from the operator equation, with a suitable statistical average
- We have

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi, T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int\frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

i = particle species, $E_{i} = \sqrt{p^{2} + m_{i}^{2}(z, t)}$
 δf_{i} = deviations from equilibrium particle distributions f_{0i} :
 $f_{i} = f_{0i} + \delta f_{i}, \qquad f_{0i} = 1/(e^{E_{i}/T} \pm 1)$

3

イロト イヨト イヨト イヨト

- ► The field equation can be derived from the operator equation, with a suitable statistical average
- We have

1 δ

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi, T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int\frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

i = particle species, $E_{i} = \sqrt{p^{2} + m_{i}^{2}(z, t)}$
 δf_{i} = deviations from equilibrium particle distributions f_{0i} :
 $f_{i} = f_{0i} + \delta f_{i}, \qquad f_{0i} = 1/(e^{E_{i}/T} \pm 1)$

The wall motion and latent heat release cause reheating and bulk motions of the fluid.

・ロン ・四 と ・ ヨン ・ ヨン

- The field equation can be derived from the operator equation. with a suitable statistical average
- We have

1 δ

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi,T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int\frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

i = particle species, $E_{i} = \sqrt{p^{2} + m_{i}^{2}(z,t)}$
 δf_{i} = deviations from equilibrium particle distributions f_{0i}
 $f_{i} = f_{0i} + \delta f_{i}, \quad f_{0i} = 1/(e^{E_{i}/T} \pm 1)$

The wall motion and latent heat release cause reheating and bulk motions of the fluid. We have e.g. T = T(x)

イロト イヨト イヨト イヨト

- The field equation can be derived from the operator equation, with a suitable statistical average
- We have

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi,T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int\frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

i = particle species, $E_{i} = \sqrt{p^{2} + m_{i}^{2}(z,t)}$
 δf_{i} = deviations from equilibrium particle distributions f_{0i}
 $f_{i} = f_{0i} + \delta f_{i}, \quad f_{0i} = 1/(e^{E_{i}/T} \pm 1)$

- The wall motion and latent heat release cause reheating and bulk motions of the fluid. We have e.g. T = T(x)
- So we must also consider the fluid equations

$$\partial_{\mu}\left(T^{\mu\nu}_{\mathrm{plasma}}+T^{\mu\nu}_{\phi}
ight)=0$$

f

イロト イヨト イヨト イヨト

► The equations for the fluid variables v(x, t), T(x, t) and the field φ(x, t) can be solved together (numerically)

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

- ► The equations for the fluid variables v(x, t), T(x, t) and the field φ(x, t) can be solved together (numerically)
- However, the width of the wall is much smaller than the length scale of fluid profiles

< ロ > < 同 > < 回 > < 回 > < 回 > <

- ► The equations for the fluid variables v(x, t), T(x, t) and the field φ(x, t) can be solved together (numerically)
- However, the width of the wall is much smaller than the length scale of fluid profiles
- The interface can be assumed to be infinitely thin

< ロ > < 同 > < 回 > < 回 > < 回 > <

- ► The equations for the fluid variables v(x, t), T(x, t) and the field φ(x, t) can be solved together (numerically)
- However, the width of the wall is much smaller than the length scale of fluid profiles
- The interface can be assumed to be infinitely thin
- On each side of the interface, we have $\partial_{\mu}T^{\mu\nu} = 0$, with $T^{\mu\nu} = w u^{\mu}u^{\nu} - p g^{\mu\nu}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

- ► The equations for the fluid variables v(x, t), T(x, t) and the field φ(x, t) can be solved together (numerically)
- However, the width of the wall is much smaller than the length scale of fluid profiles
- The interface can be assumed to be infinitely thin
- On each side of the interface, we have $\partial_{\mu}T^{\mu\nu} = 0$, with $T^{\mu\nu} = w u^{\mu}u^{\nu} - p g^{\mu\nu}$
- Matching conditions at the interface (integrating $\partial_{\mu}T^{\mu\nu} = 0$) $\Delta(wv\gamma^2) = 0$, $\Delta(wv^2\gamma^2 + p) = 0$

イロン 不良と 不良と 一度 …

- ► The equations for the fluid variables v(x, t), T(x, t) and the field φ(x, t) can be solved together (numerically)
- However, the width of the wall is much smaller than the length scale of fluid profiles
- The interface can be assumed to be infinitely thin
- On each side of the interface, we have $\partial_{\mu}T^{\mu\nu} = 0$, with $T^{\mu\nu} = w u^{\mu}u^{\nu} - p g^{\mu\nu}$
- Matching conditions at the interface (integrating $\partial_{\mu}T^{\mu\nu} = 0$) $\Delta(wv\gamma^2) = 0$, $\Delta(wv^2\gamma^2 + p) = 0$
- ► The fluid equations depend on $c_s^2 = dp/de$ (c_s = speed of sound; for radiation, $c_s = \sqrt{1/3}$)
Steady state solutions (planar walls)

Weak deflagration:

- subsonic: $v_w < c_s$
- preceded by a shock front

• $T_u > T_n$

Jouguet deflagration

[Kurki-Suonio & Laine, 1995]

- supersonic: $c_s < v_w < v_J$
- shock front and rarefaction wave

Weak detonation:

- supersonic: $v_w > v_J(T_u) > c_s$
- followed by a rarefaction wave

(日)

$$\bullet \ T_u = T_n \ (T_b > T_u)$$

3

The equation for the wall is derived from the field equation

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi,T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int\frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

э

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

The equation for the wall is derived from the field equation

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi,T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int\frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

To transform into an equation for the bubble wall:

э

◆□ > ◆圖 > ◆臣 > ◆臣 > ○

The equation for the wall is derived from the field equation

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi,T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int\frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

To transform into an equation for the bubble wall:

• Assume planar wall: $\phi = \phi(z, t)$

イロン イロン イヨン イヨン 三日

The equation for the wall is derived from the field equation

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi,T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int\frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

To transform into an equation for the bubble wall:

- Assume planar wall: $\phi = \phi(z, t)$
- Assume steady state [In general, reached after a very short acceleration stage]

The equation for the wall is derived from the field equation

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi,T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int\frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

To transform into an equation for the bubble wall:

- Assume planar wall: $\phi = \phi(z, t)$
- Assume steady state [In general, reached after a very short acceleration stage]
- Go to the reference frame of the wall: $\phi = \phi(z)$, $\partial_{\mu}\partial^{\mu}\phi = \phi''(z)$

イロト イヨト イヨト イヨト ヨー のへの

The equation for the wall is derived from the field equation

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi,T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int\frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

To transform into an equation for the bubble wall:

- Assume planar wall: $\phi = \phi(z, t)$
- Assume steady state [In general, reached after a very short acceleration stage]
- ► Go to the reference frame of the wall: $\phi = \phi(z)$, $\partial_{\mu}\partial^{\mu}\phi = \phi''(z)$
- Multiply × φ'(z), integrate ∫ dz across the wall ⇒ the first term vanishes

$$\int_{b}^{u} dz \frac{d\phi}{dz} \frac{\partial \mathcal{F}(\phi, T)}{\partial \phi} + \sum_{i} \int_{b}^{u} dz \frac{dm_{i}^{2}}{dz} \int \frac{d^{3}p}{(2\pi)^{3} 2E_{i}} \delta f_{i} = 0$$

3

・ロト ・聞ト ・ヨト ・ヨト

(日) (周) (日) (日)

(日) (周) (日) (日)

• $F_{\rm fr}$ depends on wall velocity through δf_i

(日) (同) (三) (三)

- $F_{\rm dr}$ does not depend on the wall velocity
- $F_{\rm fr}$ depends on wall velocity through δf_i
- For small velocities we have $\delta f_i \propto v_w$ and $F_{\rm fr} = -\eta_{NR} v_w$

・ロト ・聞ト ・ ヨト ・ ヨト

- $F_{\rm fr}$ depends on wall velocity through δf_i
- For small velocities we have $\delta f_i \propto v_w$ and $F_{\rm fr} = -\eta_{NR} v_w$

Hence, in the non-relativistic limit we have $p_b(T) - p_u(T) - \eta_{NR}v_w = 0$

イロン イヨン イヨン イヨン

• For small velocities we have $\delta f_i \propto v_w$ and $F_{\rm fr} = -\eta_{NR} v_w$

Hence, in the non-relativistic limit we have $p_b(T) - p_u(T) - \eta_{NR} v_w = 0 \implies v_w = \Delta p / \eta_{NR}$

ヘロト 人間ト 人造ト 人造トー

- $F_{\rm fr}$ depends on wall velocity through δf_i
- For small velocities we have $\delta f_i \propto v_w$ and $F_{\rm fr} = -\eta_{NR} v_w$

Hence, in the non-relativistic limit we have $p_b(T) - p_u(T) - \eta_{NR} v_w = 0 \implies v_w = \Delta p / \eta_{NR}$

In the general case we have

• A non-linear friction force $F_{\rm fr}(v_w)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

- $F_{\rm dr}$ does not depend on the wall velocity
- $F_{\rm fr}$ depends on wall velocity through δf_i
- For small velocities we have $\delta f_i \propto v_w$ and $F_{\rm fr} = -\eta_{NR} v_w$

Hence, in the non-relativistic limit we have $p_b(T) - p_u(T) - \eta_{NR} v_w = 0 \implies v_w = \Delta p / \eta_{NR}$

In the general case we have

- A non-linear friction force $F_{\rm fr}(v_w)$
- An inhomogeneous temperature, so $F_{dr} = p_b(T_b) - p_u(T_u) + \int_b^u s(\phi, T) dT$

BAR 4 BA

$$F_{\rm fr} = \sum_i \int_b^u dz \frac{dm_i^2}{dz} \int \frac{d^3p}{(2\pi)^3 2E_i} \delta f_i(z,p)$$

(日) (四) (三) (三) (三)

$$F_{\rm fr} = \sum_i \int_b^u dz \frac{dm_i^2}{dz} \int \frac{d^3p}{(2\pi)^3 2E_i} \delta f_i(z,p)$$

Moore & Prokopec, 1995 (SM)

$$F_{\rm fr} = \sum_i \int_b^u dz \frac{dm_i^2}{dz} \int \frac{d^3p}{(2\pi)^3 2E_i} \delta f_i(z,p)$$

Moore & Prokopec, 1995 (SM)

► Boltzmann equations for $f_i = f_{0i} + \delta f_i$, small wall velocity \Rightarrow small δf_i

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

$$F_{\rm fr} = \sum_{i} \int_{b}^{u} dz \frac{dm_i^2}{dz} \int \frac{d^3p}{(2\pi)^3 2E_i} \delta f_i(z,p)$$

Moore & Prokopec, 1995 (SM)

- ► Boltzmann equations for $f_i = f_{0i} + \delta f_i$, small wall velocity \Rightarrow small δf_i
 - Valid for $p \gg L_w^{-1}$ (L_w = wall width)

イロト 不得 トイヨト イヨト

$$F_{\rm fr} = \sum_{i} \int_{b}^{u} dz \frac{dm_i^2}{dz} \int \frac{d^3p}{(2\pi)^3 2E_i} \delta f_i(z,p)$$

Moore & Prokopec, 1995 (SM)

- ► Boltzmann equations for $f_i = f_{0i} + \delta f_i$, small wall velocity \Rightarrow small δf_i
 - Valid for $p \gg L_w^{-1}$ (L_w = wall width)
 - Good approximation for p ~ T (thermal particles)
 Does not take into account infrared boson excitations

<ロ> (四) (四) (三) (三) (三) (三)

$$F_{\rm fr} = \sum_{i} \int_{b}^{u} dz \frac{dm_i^2}{dz} \int \frac{d^3p}{(2\pi)^3 2E_i} \delta f_i(z,p)$$

Moore & Prokopec, 1995 (SM)

- ► Boltzmann equations for $f_i = f_{0i} + \delta f_i$, small wall velocity \Rightarrow small δf_i
 - Valid for $p \gg L_w^{-1}$ (L_w = wall width)
 - Good approximation for p ~ T (thermal particles)
 Does not take into account infrared boson excitations
 - System of integro-differential equations, depends on all the particle interactions, several approximations needed

< ロ > < 回 > < 回 > < 回 > < 回 > <

$$F_{\rm fr} = \sum_{i} \int_{b}^{u} dz \frac{dm_i^2}{dz} \int \frac{d^3p}{(2\pi)^3 2E_i} \delta f_i(z,p)$$

Moore & Prokopec, 1995 (SM)

- ► Boltzmann equations for $f_i = f_{0i} + \delta f_i$, small wall velocity \Rightarrow small δf_i
 - Valid for $p \gg L_w^{-1}$ (L_w = wall width)
 - Good approximation for p ~ T (thermal particles)
 Does not take into account infrared boson excitations
 - System of integro-differential equations, depends on all the particle interactions, several approximations needed
- Results (SM, $0 < m_H < 90$ GeV): $v_w \approx 0.4$

イロト 不得下 イヨト イヨト 二日

This is the usual approach. However...

3

< ロ > < 圖 > < 画 > < 画 > <

This is the usual approach. However...

Moore, 2000 (SM)

Considered infrared bosons

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

This is the usual approach. However...

Moore, 2000 (SM)

Considered infrared bosons

Classical treatment, overdamped evolution

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

This is the usual approach. However...

Moore, 2000 (SM)

Considered infrared bosons

Classical treatment, overdamped evolution

Results for the SM:

• $v_w \simeq 0.1$ for $m_H \simeq 45 {
m GeV}$, $v_w \simeq 0.01$ for $m_H \simeq 80 {
m GeV}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

This is the usual approach. However...

Moore, 2000 (SM)

Considered infrared bosons

Classical treatment, overdamped evolution

Results for the SM:

• $v_w \simeq 0.1$ for $m_H \simeq 45 {
m GeV}$, $v_w \simeq 0.01$ for $m_H \simeq 80 {
m GeV}$

 v_w quite smaller than the Boltzmann result ($v_w \approx 0.4$)

イロト 不得 トイヨト イヨト

This is the usual approach. However...

Moore, 2000 (SM)

Considered infrared bosons

Classical treatment, overdamped evolution

Results for the SM:

• $v_w \simeq 0.1$ for $m_H \simeq 45 {
m GeV}$, $v_w \simeq 0.01$ for $m_H \simeq 80 {
m GeV}$

 v_w quite smaller than the Boltzmann result ($v_w \approx 0.4$) For the SM, this infrared boson contribution gives a larger friction than the thermal particles contribution

イロト 不得 トイヨト イヨト 二日

Parametric dependence (analytic approximations) To lowest order in v_w we have $F_{\rm fr} = -\eta_{NR}v_w$ with $\eta_{NR} = \eta_{\rm th} + \eta_{\rm ir}$

イロン イロン イヨン イヨン 三日

Parametric dependence (analytic approximations) To lowest order in v_w we have $F_{\rm fr} = -\eta_{NR}v_w$ with $\eta_{NR} = \eta_{\rm th} + \eta_{\rm ir}$

- thermal particles: $\eta_{
 m th} \sim \sum_i (g_i h_i^4 / \bar{\Gamma}) (\phi_b^2 \sigma)$
 - h_i = coupling of particles with Higgs
 - $\bar{\Gamma}$ = effective interaction rate $\sim 10^{-2} T$
- infrared bosons: $\overline{\eta_{\mathrm{ir}}} \sim \sum_i (g_i m_D^2 / L_w) \log(m_i L_w)$

[See, e.g., A.M. & A.Sánchez, NPB 825, 151 (2010)]

イロン イロン イヨン イヨン 三日

 Away from the NR limit, the friction has been hardly calculated (more on this in a moment)

3

イロト イヨト イヨト イヨト

- Away from the NR limit, the friction has been hardly calculated (more on this in a moment)
- ► To obtain a description for 0 < v_w < 1 it is convenient to replace the last term of the field equation</p>

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi,T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int\frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

with a simpler dissipative term.

・ロン ・四 と ・ ヨン ・ ヨン … ヨ

- Away from the NR limit, the friction has been hardly calculated (more on this in a moment)
- To obtain a description for 0 < v_w < 1 it is convenient to replace the last term of the field equation

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi,T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int\frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

with a simpler dissipative term. For instance

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial \mathcal{F}(\phi, T)}{\partial \phi} + \tilde{\eta}(\phi) u^{\mu} \partial_{\mu}\phi = 0$$

 $u^{\mu} = (\gamma, \gamma \mathbf{v})$ fluid four-velocity

- Away from the NR limit, the friction has been hardly calculated (more on this in a moment)
- To obtain a description for 0 < v_w < 1 it is convenient to replace the last term of the field equation

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi, T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int \frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

with a simpler dissipative term. For instance

$$\partial_{\mu}\partial^{\mu}\phi+rac{\partial\mathcal{F}(\phi,T)}{\partial\phi}+\widetilde{\eta}(\phi)\,u^{\mu}\,\partial_{\mu}\phi=0$$

 $u^{\mu}=(\gamma,\gamma\mathbf{v})$ fluid four-velocity

To convert the field equation into a wall equation, assume φ = φ(z) in the rest frame of the wall, multiply ×∂_zφ, integrate ∫ dz. We obtain

$$\int_{b}^{u} \frac{\partial \mathcal{F}}{\partial \phi} \frac{d\phi}{dz} dz + \int_{b}^{u} \tilde{\eta} \gamma v \left[\frac{d\phi}{dz}\right]^{2} dz = 0$$

イロン 不聞 とうき とうせい ほ
A phenomenological approach to the friction

- Away from the NR limit, the friction has been hardly calculated (more on this in a moment)
- To obtain a description for 0 < v_w < 1 it is convenient to replace the last term of the field equation

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial\mathcal{F}(\phi, T)}{\partial\phi} + \sum_{i}\frac{dm_{i}^{2}}{d\phi}\int \frac{d^{3}p}{(2\pi)^{3}2E_{i}}\delta f_{i} = 0$$

with a simpler dissipative term. For instance

$$\partial_{\mu}\partial^{\mu}\phi + rac{\partial\mathcal{F}(\phi,T)}{\partial\phi} + \tilde{\eta}(\phi) u^{\mu} \partial_{\mu}\phi = 0$$

 $u^{\mu} = (\gamma, \gamma \mathbf{v})$ fluid four-velocity

To convert the field equation into a wall equation, assume φ = φ(z) in the rest frame of the wall, multiply ×∂_zφ, integrate ∫ dz. We obtain

$$\int_{b}^{u} \frac{\partial \mathcal{F}}{\partial \phi} \frac{d\phi}{dz} dz + \int_{b}^{u} \tilde{\eta} \gamma v \left[\frac{d\phi}{dz}\right]^{2} dz = 0$$

Here, γv comes from u^{z} $(v \equiv v_{z} \sim -v_{w})_{z}$

A. Mégevand, Bubble wall velocity

• Thus, we have a friction force of the form $F_{
m fr} \sim \gamma v$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙

▶ Thus, we have a friction force of the form $F_{\rm fr} \sim \gamma v$

▶ In the NR limit we have $F_{\rm fr} = -\eta v_{\rm w}$ ($\eta =$ free parameter)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

- ▶ Thus, we have a friction force of the form $F_{\rm fr} \sim \gamma v$
 - In the NR limit we have $F_{\rm fr} = -\eta v_w$ ($\eta =$ free parameter)
 - Setting $\eta = \eta_{NR}$ (from microphysics calculations), $F_{\rm fr}$ matches the correct NR limit

(日) (四) (三) (三) (三)

- ► Thus, we have a friction force of the form $F_{\rm fr} \sim \gamma v$
 - ▶ In the NR limit we have $F_{\rm fr} = -\eta v_w$ ($\eta =$ free parameter)
 - Setting η = η_{NR} (from microphysics calculations), F_{fr} matches the correct NR limit
- With suitable approximations for the profiles inside the wall, e.g., $\langle \gamma v \rangle = (\gamma_b v_b + \gamma_u v_u)/2$,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- ► Thus, we have a friction force of the form $F_{\rm fr} \sim \gamma v$
 - ▶ In the NR limit we have $F_{\rm fr} = -\eta v_w$ ($\eta =$ free parameter)
 - Setting η = η_{NR} (from microphysics calculations), F_{fr} matches the correct NR limit
- With suitable approximations for the profiles inside the wall, e.g., $\langle \gamma v \rangle = (\gamma_b v_b + \gamma_u v_u)/2$,
- ▶ and using the bag EOS, $p_{u,b} = a_{u,b}T^4/3 \epsilon_{u,b}$, we have

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- Thus, we have a friction force of the form $F_{
 m fr} \sim \gamma v$
 - ▶ In the NR limit we have $F_{\rm fr} = -\eta v_w$ ($\eta =$ free parameter)
 - Setting η = η_{NR} (from microphysics calculations), F_{fr} matches the correct NR limit
- With suitable approximations for the profiles inside the wall, e.g., $\langle \gamma v \rangle = (\gamma_b v_b + \gamma_u v_u)/2$,
- ▶ and using the bag EOS, $p_{u,b} = a_{u,b}T^4/3 \epsilon_{u,b}$, we have

$$\frac{L}{4}\left(1-\frac{T_u^2 T_b^2}{T_c^4}\right) = \eta \frac{\gamma_b v_b + \gamma_u v_u}{2}$$

- ► Thus, we have a friction force of the form $F_{\rm fr} \sim \gamma v$
 - ▶ In the NR limit we have $F_{\rm fr} = -\eta v_w$ ($\eta =$ free parameter)
 - Setting η = η_{NR} (from microphysics calculations), F_{fr} matches the correct NR limit
- With suitable approximations for the profiles inside the wall, e.g., $\langle \gamma v \rangle = (\gamma_b v_b + \gamma_u v_u)/2$,
- ▶ and using the bag EOS, $p_{u,b} = a_{u,b}T^4/3 \epsilon_{u,b}$, we have

$$\frac{L}{4}\left(1-\frac{T_u^2 T_b^2}{T_c^4}\right) = \eta \frac{\gamma_b v_b + \gamma_u v_u}{2}$$

- With these approximations, v_w depends only on:
 - the friction coefficient η,
 - the latent heat L,
 - the amount of supercooling T_n/T_c

Wall velocity as a function of the friction Solutions

Agree with numerical computations Kurki-Suonio & Laine, 1995-1996, *static case*

- 小田 ト - 日 ト - 日 ト

Wall velocity as a function of the friction **Stable** solutions (A.M., A. Membiela, 2014)

Also in agreement with Kurki-Suonio & Laine, 1995-1996, *dynamic calculation*

Wall velocity as a function of the friction Realized in the phase transition

(according to the dynamic calculation of Kurki-Suonio & Laine, 1995-1996)

(人間) トイヨト イヨト

Application to physical models (electroweak PT)

< 回 > < 回 > < 回 >

Application to physical models (electroweak PT)

< ∃⇒

So far I have considered a friction of the form ${\it F_{\rm fr}}\sim v\gamma$

イロン イロン イヨン イヨン 三日

So far I have considered a friction of the form $F_{\rm fr} \sim v \gamma$ However...

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

So far I have considered a friction of the form ${\it F}_{\rm fr} \sim v \gamma$ However...

Bödeker & Moore, 2009: the UR regime

Assume the wall has reached an ultra-relativistic velocity, with $\gamma = 1/\sqrt{1-\nu^2} \gg 1$

イロト 不得下 イヨト イヨト 二日

So far I have considered a friction of the form ${\it F}_{\rm fr} \sim {\it v}\gamma$ However...

Bödeker & Moore, 2009: the UR regime

Assume the wall has reached an ultra-relativistic velocity, with $\gamma=1/\sqrt{1-\textit{v}^2}\gg 1$

Allows several assumptions which simplify the problem

イロン イロン イヨン イヨン 三日

So far I have considered a friction of the form ${\it F}_{\rm fr} \sim {\it v}\gamma$ However...

Bödeker & Moore, 2009: the UR regime

Assume the wall has reached an ultra-relativistic velocity, with $\gamma = 1/\sqrt{1-\nu^2} \gg 1$

- Allows several assumptions which simplify the problem
- The calculation is simpler than the NR case:

 $\begin{aligned} F_{\text{net}} &= \\ V(\phi_u) - V(\phi_b) - \sum_i [m_i^2(\phi_b) - m_i^2(\phi_u)] \int \frac{d^3 p}{(2\pi)^3 2 E_{iu}} f_{iu}^{\text{eq}}(p, T_n) \end{aligned}$

イロン イロン イヨン イヨン 三日

So far I have considered a friction of the form $F_{\rm fr} \sim v \gamma$ However...

Bödeker & Moore, 2009: the UR regime

Assume the wall has reached an ultra-relativistic velocity, with $\gamma=1/\sqrt{1-\textit{v}^2}\gg 1$

- Allows several assumptions which simplify the problem
- The calculation is simpler than the NR case:

$$\begin{aligned} F_{\rm net} &= \\ V(\phi_u) - V(\phi_b) - \sum_i [m_i^2(\phi_b) - m_i^2(\phi_u)] \int \frac{d^3 p}{(2\pi)^3 2 E_{iu}} f_{iu}^{\rm eq}(p, T_n) \end{aligned}$$

• The total force $F_{net}(T_n)$ does not depend on the wall velocity

So far I have considered a friction of the form $F_{\rm fr} \sim v \gamma$ However...

Bödeker & Moore, 2009: the UR regime

Assume the wall has reached an ultra-relativistic velocity, with $\gamma = 1/\sqrt{1-\nu^2} \gg 1$

- Allows several assumptions which simplify the problem
- The calculation is simpler than the NR case:

$$\begin{aligned} F_{\text{net}} &= \\ V(\phi_u) - V(\phi_b) - \sum_i [m_i^2(\phi_b) - m_i^2(\phi_u)] \int \frac{d^3 p}{(2\pi)^3 2 E_{iu}} f_{iu}^{\text{eq}}(p, T_n) \end{aligned}$$

- The total force $F_{net}(T_n)$ does not depend on the wall velocity
- \blacktriangleright It means that in the limit $\nu\gamma \rightarrow \infty$ the friction saturates

イロト 不得下 イヨト イヨト 二日

So far I have considered a friction of the form $F_{\rm fr} \sim v \gamma$ However...

Bödeker & Moore, 2009: the UR regime

Assume the wall has reached an ultra-relativistic velocity, with $\gamma=1/\sqrt{1-\textit{v}^2}\gg 1$

- Allows several assumptions which simplify the problem
- The calculation is simpler than the NR case:

$$F_{\text{net}} = V(\phi_u) - V(\phi_b) - \sum_i [m_i^2(\phi_b) - m_i^2(\phi_u)] \int \frac{d^3p}{(2\pi)^3 2E_{iu}} f_{iu}^{\text{eq}}(p, T_n)$$

- The total force $F_{net}(T_n)$ does not depend on the wall velocity
- \blacktriangleright It means that in the limit $\nu\gamma \rightarrow \infty$ the friction saturates
- ► No stationary state: if F_{net}(T_n) > 0 we have an accelerated wall (runaway)

イロン イロン イヨン イヨン 三日

▶ Even if we obtain $F_{\rm net} > 0$, the wall has to reach $\gamma \gg 1$ for the treatment to be valid

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- ▶ Even if we obtain $F_{\rm net} > 0$, the wall has to reach $\gamma \gg 1$ for the treatment to be valid
- Intermediate cases (between NR and UR) were hardly investigated

- ▶ Even if we obtain $F_{\rm net} > 0$, the wall has to reach $\gamma \gg 1$ for the treatment to be valid
- Intermediate cases (between NR and UR) were hardly investigated

Konstandin, Nardini, Rues, 2014

Extended the treatment of Moore and Prokopec (1995) out of the NR regime, still considering small deviations δf_i

< ロ > < 圖 > < 画 > < 画 > <

- ▶ Even if we obtain $F_{\rm net} > 0$, the wall has to reach $\gamma \gg 1$ for the treatment to be valid
- Intermediate cases (between NR and UR) were hardly investigated

Konstandin, Nardini, Rues, 2014

Extended the treatment of Moore and Prokopec (1995) out of the NR regime, still considering small deviations δf_i

The result does not match the UR regime

< ロ > < 圖 > < 画 > < 画 > <

- ▶ Even if we obtain $F_{\rm net} > 0$, the wall has to reach $\gamma \gg 1$ for the treatment to be valid
- Intermediate cases (between NR and UR) were hardly investigated

Konstandin, Nardini, Rues, 2014

Extended the treatment of Moore and Prokopec (1995) out of the NR regime, still considering small deviations δf_i

The result does not match the UR regime

Alternative: Consider a phenomenological model

- ▶ Even if we obtain $F_{\rm net} > 0$, the wall has to reach $\gamma \gg 1$ for the treatment to be valid
- Intermediate cases (between NR and UR) were hardly investigated

Konstandin, Nardini, Rues, 2014

Extended the treatment of Moore and Prokopec (1995) out of the NR regime, still considering small deviations δf_i

The result does not match the UR regime

Alternative: Consider a phenomenological model

The term η̃(φ) u^μ∂_μφ is too simplistic, since F_{fr} ∼ vγ does not saturate in the UR limit

イロン 不聞 とうき とうせい ほ

Espinosa, Konstandin, No, Servant, 2010

Considered the modification

$$ilde \eta(\phi)\,u^\mu\partial_\mu\phi o { ilde \eta(\phi)\,u^\mu\partial_\mu\phi\over \sqrt{1+(u^\mu\lambda_\mu)^2}}$$

Espinosa, Konstandin, No, Servant, 2010

Considered the modification

$$ilde{\eta}(\phi) \, u^\mu \partial_\mu \phi o rac{ ilde{\eta}(\phi) \, u^\mu \partial_\mu \phi}{\sqrt{1+(u^\mu \lambda_\mu)^2}}$$

with $\lambda_{\mu} = (0, 0, 0, 1)$ in the wall frame

イロト イロト イヨト イヨト 二日

Espinosa, Konstandin, No, Servant, 2010

Considered the modification

$$ilde{\eta}(\phi) \, u^\mu \partial_\mu \phi o rac{ ilde{\eta}(\phi) \, u^\mu \partial_\mu \phi}{\sqrt{1+(u^\mu \lambda_\mu)^2}}$$

with $\lambda_{\mu}=(0,0,0,1)$ in the wall frame

► With this λ_{μ} we have, in the wall frame, $\frac{\gamma v}{\sqrt{1+(\gamma v)^2}} = v!!!$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Espinosa, Konstandin, No, Servant, 2010

Considered the modification

$$ilde{\eta}(\phi) \, u^\mu \partial_\mu \phi o rac{ ilde{\eta}(\phi) \, u^\mu \partial_\mu \phi}{\sqrt{1+(u^\mu \lambda_\mu)^2}}$$

with $\lambda_{\mu} = (0, 0, 0, 1)$ in the wall frame

- ▶ With this λ_{μ} we have, in the wall frame, $\frac{\gamma v}{\sqrt{1+(\gamma v)^2}} = v!!!$
- This changes the behavior from $F_{\rm fr}^{\rm old} \sim \eta \, \mathbf{v} \gamma$ to $F_{\rm fr}^{\rm new} \sim \eta \, \mathbf{v}$ \Rightarrow the friction saturates

イロト イヨト イヨト イヨト ヨー のへの

Espinosa, Konstandin, No, Servant, 2010

Considered the modification

$$ilde{\eta}(\phi) \, u^\mu \partial_\mu \phi o rac{ ilde{\eta}(\phi) \, u^\mu \partial_\mu \phi}{\sqrt{1+(u^\mu \lambda_\mu)^2}}$$

with $\lambda_{\mu} = (0, 0, 0, 1)$ in the wall frame

- ▶ With this λ_{μ} we have, in the wall frame, $\frac{\gamma v}{\sqrt{1+(\gamma v)^2}} = v!!!$
- ► This changes the behavior from $F_{\rm fr}^{\rm old} \sim \eta \, v \gamma$ to $F_{\rm fr}^{\rm new} \sim \eta \, v$ ⇒ the friction saturates
- However, a single free parameter η cannot match quantitatively the two limits: we have $F_{\rm fr}|_{NR} = -\eta v_w$ and $F_{\rm fr}|_{UR} = -\eta$

イロト イヨト イヨト イヨト ヨー のへの

Espinosa, Konstandin, No, Servant, 2010

Considered the modification

$$ilde{\eta}(\phi) \, u^\mu \partial_\mu \phi o rac{ ilde{\eta}(\phi) \, u^\mu \partial_\mu \phi}{\sqrt{1+(u^\mu \lambda_\mu)^2}}$$

with $\lambda_{\mu} = (0, 0, 0, 1)$ in the wall frame

- ▶ With this λ_{μ} we have, in the wall frame, $\frac{\gamma v}{\sqrt{1+(\gamma v)^2}} = v!!!$
- ► This changes the behavior from $F_{\rm fr}^{\rm old} \sim \eta \, v \gamma$ to $F_{\rm fr}^{\rm new} \sim \eta \, v$ ⇒ the friction saturates
- However, a single free parameter η cannot match quantitatively the two limits: we have $F_{\rm fr}|_{NR} = -\eta v_w$ and $F_{\rm fr}|_{UR} = -\eta$
- We need a model with two free parameters

イロン 不良と 不良と 一度 …

Espinosa, Konstandin, No, Servant, 2010

Considered the modification

$$ilde{\eta}(\phi) \, u^\mu \partial_\mu \phi o rac{ ilde{\eta}(\phi) \, u^\mu \partial_\mu \phi}{\sqrt{1 + (u^\mu \lambda_\mu)^2}}$$

with $\lambda_{\mu} = (0, 0, 0, 1)$ in the wall frame

- ▶ With this λ_{μ} we have, in the wall frame, $\frac{\gamma v}{\sqrt{1+(\gamma v)^2}} = v!!!$
- ► This changes the behavior from $F_{\rm fr}^{\rm old} \sim \eta \, v \gamma$ to $F_{\rm fr}^{\rm new} \sim \eta \, v$ ⇒ the friction saturates
- However, a single free parameter η cannot match quantitatively the two limits: we have $F_{\text{frr}}|_{NR} = -\eta v_{w}$ and $F_{\text{frr}}|_{UR} = -\eta$
- We need a model with two free parameters

Notice that the vector $\partial_{\mu}\phi$ is $(0, 0, 0, \partial_{z}\phi)$ in the wall frame

A friction which interpolates between the NR and UR limits

Consider instead the term [A.M., 2013]

$$rac{ ilde\eta\,\partial_\mu\phi\,u^\mu}{\sqrt{1+(ilde\lambda\,\partial_\mu\phi\,u^\mu)^2}}$$

イロン イロン イヨン イヨン 三日

A friction which interpolates between the NR and UR limits

Consider instead the term [A.M., 2013]

$$rac{ ilde\eta\,\partial_\mu\phi\,u^\mu}{\sqrt{1+(ilde\lambda\,\partial_\mu\phi\,u^\mu)^2}}$$

In the wall frame and after the usual manipulations, we have a friction force of the form

$$F_{
m fr} \sim rac{\eta \ \gamma m{v}}{\sqrt{1+\lambda^2 \ (\gamma m{v})^2}}$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・
Consider instead the term [A.M., 2013]

$$rac{ ilde\eta\,\partial_\mu\phi\,u^\mu}{\sqrt{1+(ilde\lambda\,\partial_\mu\phi\,u^\mu)^2}}$$

In the wall frame and after the usual manipulations, we have a friction force of the form

$$F_{
m fr} \sim rac{\eta \ \gamma m{v}}{\sqrt{1+\lambda^2 \ (\gamma m{v})^2}}$$

• gives $F_{
m fr} \sim \eta v$ for small v, and $F_{
m fr} \sim \eta / \lambda$ for v
ightarrow 1

イロト イロト イヨト イヨト 二日

Consider instead the term [A.M., 2013]

$$rac{ ilde\eta\,\partial_\mu\phi\,u^\mu}{\sqrt{1+(ilde\lambda\,\partial_\mu\phi\,u^\mu)^2}}$$

In the wall frame and after the usual manipulations, we have a friction force of the form

$$F_{
m fr} \sim rac{\eta \ \gamma v}{\sqrt{1+\lambda^2 \ (\gamma v)^2}}$$

- gives $F_{
 m fr} \sim \eta v$ for small v, and $F_{
 m fr} \sim \eta / \lambda$ for v
 ightarrow 1
- We may choose $\eta = \eta_{NR}$

イロン イロン イヨン イヨン 三日

Consider instead the term [A.M., 2013]

$$rac{ ilde\eta\,\partial_\mu\phi\,u^\mu}{\sqrt{1+(ilde\lambda\,\partial_\mu\phi\,u^\mu)^2}}$$

In the wall frame and after the usual manipulations, we have a friction force of the form

$$F_{
m fr} \sim rac{\eta \ \gamma m{v}}{\sqrt{1+\lambda^2 \ (\gamma m{v})^2}}$$

- gives $F_{
 m fr} \sim \eta v$ for small v, and $F_{
 m fr} \sim \eta / \lambda$ for v
 ightarrow 1
- We may choose $\eta = \eta_{NR}$ and $\eta/\lambda = F_{\rm fr}|_{UR}$

イロン イロン イヨン イヨン 三日

Consider instead the term [A.M., 2013]

$$rac{ ilde\eta\,\partial_\mu\phi\,u^\mu}{\sqrt{1+(ilde\lambda\,\partial_\mu\phi\,u^\mu)^2}}$$

In the wall frame and after the usual manipulations, we have a friction force of the form

$$F_{
m fr} \sim rac{\eta \ \gamma m{v}}{\sqrt{1+\lambda^2 \ (\gamma m{v})^2}}$$

- gives $F_{
 m fr} \sim \eta v$ for small v, and $F_{
 m fr} \sim \eta / \lambda$ for v
 ightarrow 1
- We may choose $\eta = \eta_{NR}$ and $\eta/\lambda = F_{\rm fr}|_{UR}$

UR friction force

• In the UR limit we have a net force $F_{net}(T_n)$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider instead the term [A.M., 2013]

$$rac{ ilde\eta\,\partial_\mu\phi\,u^\mu}{\sqrt{1+(ilde\lambda\,\partial_\mu\phi\,u^\mu)^2}}$$

In the wall frame and after the usual manipulations, we have a friction force of the form

$${m F_{
m fr}} \sim rac{\eta \ \gamma m v}{\sqrt{1+\lambda^2} \ (\gamma m v)^2}$$

- gives $F_{
 m fr} \sim \eta v$ for small v, and $F_{
 m fr} \sim \eta / \lambda$ for v
 ightarrow 1
- We may choose $\eta = \eta_{NR}$ and $\eta/\lambda = F_{\rm fr}|_{UR}$

UR friction force

- In the UR limit we have a net force $F_{net}(T_n)$
- The friction part must be identified [A.M., 2013]

Consider instead the term [A.M., 2013]

$$rac{ ilde\eta\,\partial_\mu\phi\,u^\mu}{\sqrt{1+(ilde\lambda\,\partial_\mu\phi\,u^\mu)^2}}$$

In the wall frame and after the usual manipulations, we have a friction force of the form

$$F_{
m fr} \sim rac{\eta \ \gamma m{v}}{\sqrt{1+\lambda^2 \ (\gamma m{v})^2}}$$

- gives $F_{
 m fr} \sim \eta v$ for small v, and $F_{
 m fr} \sim \eta/\lambda$ for v
 ightarrow 1
- We may choose $\eta = \eta_{NR}$ and $\eta/\lambda = F_{\rm fr}|_{UR}$

UR friction force

- In the UR limit we have a net force $F_{net}(T_n)$
- The friction part must be identified [A.M., 2013]
- To lowest order in $m(\phi)/T$, we have

 $F_{\mathrm{fr}} = \sum_{\mathrm{bos}} (g_i T/12\pi) \left[m_i^3(\phi_b) - m_i^3(\phi_u) \right] \sim \sum g_i h_i^3 \phi_b^3 T$

Old phenomenological model: $\lambda = 0$

- The second sec

э

A (10) × (10) × (10) ×

▶ For a finite value of η we have $v_w \rightarrow 1$ (runaway)

< 回 > < 回 > < 回 >

• For a finite value of η we have $v_w \rightarrow 1$ (runaway)

• This happens for $F_{dr}(T_u, T_b) = \eta/\lambda$ (i.e., for $v_w = 1$)

- 4 同 6 4 日 6 4 日 6

• For a finite value of η we have $v_w \rightarrow 1$ (runaway)

► This happens for $F_{dr}(T_u, T_b) = \eta/\lambda$ (i.e., for $v_w = 1$) with $F_{dr} \simeq p_b(T_b) - p_u(T_u) - \langle s \rangle (T_b - T_u)$

ヘロト 人間ト 人造ト 人造トー

- For a finite value of η we have $v_w \rightarrow 1$ (runaway)
- ► This happens for $F_{dr}(T_u, T_b) = \eta/\lambda$ (i.e., for $v_w = 1$) with $F_{dr} \simeq p_b(T_b) - p_u(T_u) - \langle s \rangle (T_b - T_u)$
- The runaway wall solution is possible if $F_{dr}(T_n, T_n) = \eta/\lambda$

・ロト ・個ト ・ヨト ・ヨト

• For a finite value of η we have $v_w \rightarrow 1$ (runaway)

- ► This happens for $F_{dr}(T_u, T_b) = \eta/\lambda$ (i.e., for $v_w = 1$) with $F_{dr} \simeq p_b(T_b) - p_u(T_u) - \langle s \rangle (T_b - T_u)$
- The runaway wall solution is possible if $F_{dr}(T_n, T_n) = \eta/\lambda$ i.e., $F_{dr} = p_b(T_n) - p_u(T_n)$

・ロト ・個ト ・ヨト ・ヨト

- For a finite value of η we have $v_w \rightarrow 1$ (runaway)
- ► This happens for $F_{dr}(T_u, T_b) = \eta/\lambda$ (i.e., for $v_w = 1$) with $F_{dr} \simeq p_b(T_b) - p_u(T_u) - \langle s \rangle (T_b - T_u)$
- The runaway wall solution is possible if $F_{dr}(T_n, T_n) = \eta/\lambda$ i.e., $F_{dr} = p_b(T_n) - p_u(T_n)$
- As a consequence, stationary and runaway solutions coexist

< 🗇 🕨

< 🗇 🕨

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Outlook

Apply to GW generation in the electroweak phase transition

< 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outlook

Apply to GW generation in the electroweak phase transition Extra slides Weak deflagrations are unstable for $v_w < v_{crit}$ (good for GWs)

- 小田 ト - 日 ト - 日 ト