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barrier (the absolute
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◮ High T : φ = 0

◮ Low T : φ = φb(T )

◮ Tc = critical temperature:
F(0,Tc) = F(φb ,Tc)

◮ The two phases are characterized by two different EOS
Fu(T ) = F(0,T ) and Fb(T ) = F(φb(T ),T )
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◮ Bubbles expand (bubble walls move): φ = φ(x, t)
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◮ The wall motion and latent heat release cause reheating and
bulk motions of the fluid. We have e.g. T = T (x)
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◮ However, the width of the wall is much smaller than the
length scale of fluid profiles

◮ The interface can be assumed to be infinitely thin

◮ On each side of the interface, we have
∂µT

µν = 0, with Tµν = w uµuν − p gµν

◮ Matching conditions at the interface (integrating ∂µT
µν = 0)

∆(wvγ2) = 0, ∆(wv2γ2 + p) = 0

◮ The fluid equations depend on c2s = dp/de
(cs = speed of sound; for radiation, cs =

√

1/3)
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Steady state solutions (planar walls)
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Weak deflagration:

◮ subsonic: vw < cs

◮ preceded by a shock front

◮ Tu > Tn
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[Kurki-Suonio & Laine, 1995]

◮ supersonic: cs < vw < vJ

◮ shock front and rarefaction
wave
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Weak detonation:

◮ supersonic: vw > vJ(Tu) > cs

◮ followed by a rarefaction wave

◮ Tu = Tn (Tb > Tu)
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◮ Assume steady state
[In general, reached after a very short acceleration stage]

◮ Go to the reference frame of the wall: φ = φ(z),
∂µ∂
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The wall equation
We obtain
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A. Mégevand, Bubble wall velocity 9/22



The wall equation
We obtain

∫ u

b

dz
dφ

dz

∂F(φ,T )

∂φ
︸ ︷︷ ︸

driving force Fdr

+
∑

i

∫ u

b

dz
dm2

i

dz

∫
d3p

(2π)32Ei

δfi

︸ ︷︷ ︸

friction force Ffr

= 0
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= 0

◮ For constant T we have Fdr = pb(T )− pu(T )

◮ Fdr does not depend on the wall velocity

◮ Ffr depends on wall velocity through δfi

◮ For small velocities we have δfi ∝ vw and Ffr = −ηNRvw

Hence, in the non-relativistic limit we have
pb(T )− pu(T )− ηNRvw = 0
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◮ For constant T we have Fdr = pb(T )− pu(T )

◮ Fdr does not depend on the wall velocity

◮ Ffr depends on wall velocity through δfi

◮ For small velocities we have δfi ∝ vw and Ffr = −ηNRvw

Hence, in the non-relativistic limit we have
pb(T )− pu(T )− ηNRvw = 0 ⇒ vw = ∆p/ηNR

In the general case we have

◮ A non-linear friction force Ffr(vw )

◮ An inhomogeneous temperature, so
Fdr = pb(Tb)− pu(Tu) +

∫ u

b
s(φ,T )dT
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Friction force: the non-relativistic regime

Ffr =
∑

i

∫ u

b
dz

dm2
i

dz

∫
d3p

(2π)32Ei
δfi (z , p)
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(2π)32Ei
δfi (z , p)

Moore & Prokopec, 1995 (SM)

◮ Boltzmann equations for fi = f0i + δfi ,
small wall velocity ⇒ small δfi

◮ Valid for p ≫ L−1
w (Lw = wall width)

◮ Good approximation for p ∼ T (thermal particles)
Does not take into account infrared boson excitations

◮ System of integro-differential equations, depends on all the
particle interactions, several approximations needed

◮ Results (SM, 0 < mH < 90GeV): vw ≈ 0.4
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Friction force: the non-relativistic regime

This is the usual approach. However...
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Friction force: the non-relativistic regime

This is the usual approach. However...

Moore, 2000 (SM)

Considered infrared bosons

◮ Classical treatment, overdamped evolution

Results for the SM:

◮ vw ≃ 0.1 for mH ≃ 45GeV, vw ≃ 0.01 for mH ≃ 80GeV

vw quite smaller than the Boltzmann result (vw ≈ 0.4)

For the SM, this infrared boson contribution gives a larger friction
than the thermal particles contribution

A. Mégevand, Bubble wall velocity 11/22



Friction force: the non-relativistic regime

Parametric dependence (analytic approximations)

To lowest order in vw we have Ffr = −ηNRvw
with ηNR = ηth + ηir
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Friction force: the non-relativistic regime

Parametric dependence (analytic approximations)

To lowest order in vw we have Ffr = −ηNRvw
with ηNR = ηth + ηir

◮ thermal particles: ηth ∼ ∑

i (gih
4
i /Γ̄)(φ

2
bσ)

◮ hi = coupling of particles with Higgs
◮ Γ̄ = effective interaction rate ∼ 10−2T

◮ infrared bosons: ηir ∼
∑

i (gim
2
D/Lw ) log(miLw )

[See, e.g., A.M. & A.Sánchez, NPB 825, 151 (2010)]
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A phenomenological approach to the friction
◮ Away from the NR limit, the friction has been hardly

calculated (more on this in a moment)
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∂φ
+
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dm2
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∫
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(2π)32Ei
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assume φ = φ(z) in the rest frame of the wall, multiply ×∂zφ,
integrate
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with a simpler dissipative term. For instance

∂µ∂
µφ+

∂F(φ,T )

∂φ
+ η̃(φ) uµ ∂µφ = 0

uµ = (γ, γv) fluid four-velocity
◮ To convert the field equation into a wall equation,

assume φ = φ(z) in the rest frame of the wall, multiply ×∂zφ,
integrate

∫
dz . We obtain
∫ u

b

∂F
∂φ

dφ

dz
dz +

∫ u

b

η̃ γv

[
dφ

dz

]2

dz = 0

Here, γv comes from uz (v ≡ vz ∼ −vw )
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The model η̃ uµ∂µφ

◮ Thus, we have a friction force of the form Ffr ∼ γv
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◮ With suitable approximations for the profiles inside the wall,
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L

4

(

1− T 2
uT

2
b

T 4
c

)

= η
γbvb + γuvu

2
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◮ In the NR limit we have Ffr = −η vw (η = free parameter)
◮ Setting η = ηNR (from microphysics calculations), Ffr matches

the correct NR limit

◮ With suitable approximations for the profiles inside the wall,
e.g., 〈γv〉 = (γbvb + γuvu)/2,

◮ and using the bag EOS, pu,b = au,bT
4/3− ǫu,b, we have

L

4

(

1− T 2
uT

2
b

T 4
c

)

= η
γbvb + γuvu

2

◮ With these approximations, vw depends only on:
◮ the friction coefficient η,
◮ the latent heat L,
◮ the amount of supercooling Tn/Tc
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The model η̃ uµ∂µφ

Wall velocity as a function of the friction
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The model η̃ uµ∂µφ

Wall velocity as a function of the friction

Stable solutions (A.M., A. Membiela, 2014)
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The model η̃ uµ∂µφ

Wall velocity as a function of the friction

Realized in the phase transition
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Application to physical models (electroweak PT)
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The ultra-relativistic regime

So far I have considered a friction of the form Ffr ∼ vγ
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However...

Bödeker & Moore, 2009: the UR regime

Assume the wall has reached an ultra-relativistic velocity,
with γ = 1/

√
1− v2 ≫ 1

◮ Allows several assumptions which simplify the problem

◮ The calculation is simpler than the NR case:

Fnet =
V (φu)− V (φb)−

∑

i [m
2
i (φb)−m2

i (φu)]
∫

d3p

(2π)32Eiu
f
eq
iu (p,Tn)
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Bödeker & Moore, 2009: the UR regime

Assume the wall has reached an ultra-relativistic velocity,
with γ = 1/

√
1− v2 ≫ 1

◮ Allows several assumptions which simplify the problem

◮ The calculation is simpler than the NR case:

Fnet =
V (φu)− V (φb)−

∑

i [m
2
i (φb)−m2

i (φu)]
∫

d3p

(2π)32Eiu
f
eq
iu (p,Tn)

◮ The total force Fnet(Tn) does not depend on the wall velocity
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So far I have considered a friction of the form Ffr ∼ vγ
However...

Bödeker & Moore, 2009: the UR regime

Assume the wall has reached an ultra-relativistic velocity,
with γ = 1/

√
1− v2 ≫ 1

◮ Allows several assumptions which simplify the problem

◮ The calculation is simpler than the NR case:

Fnet =
V (φu)− V (φb)−

∑

i [m
2
i (φb)−m2

i (φu)]
∫

d3p

(2π)32Eiu
f
eq
iu (p,Tn)

◮ The total force Fnet(Tn) does not depend on the wall velocity

◮ It means that in the limit vγ → ∞ the friction saturates

◮ No stationary state: if Fnet(Tn) > 0 we have an accelerated
wall (runaway)
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Intermediate cases

◮ Even if we obtain Fnet > 0, the wall has to reach γ ≫ 1 for
the treatment to be valid
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A. Mégevand, Bubble wall velocity 18/22



Intermediate cases

◮ Even if we obtain Fnet > 0, the wall has to reach γ ≫ 1 for
the treatment to be valid

◮ Intermediate cases (between NR and UR) were hardly
investigated

Konstandin, Nardini, Rues, 2014

Extended the treatment of Moore and Prokopec (1995) out of the
NR regime, still considering small deviations δfi
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Intermediate cases

◮ Even if we obtain Fnet > 0, the wall has to reach γ ≫ 1 for
the treatment to be valid

◮ Intermediate cases (between NR and UR) were hardly
investigated

Konstandin, Nardini, Rues, 2014

Extended the treatment of Moore and Prokopec (1995) out of the
NR regime, still considering small deviations δfi

◮ The result does not match the UR regime

Alternative: Consider a phenomenological model

◮ The term η̃(φ) uµ∂µφ is too simplistic, since Ffr ∼ vγ does
not saturate in the UR limit
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A friction which saturates
Espinosa, Konstandin, No, Servant, 2010

Considered the modification

η̃(φ) uµ∂µφ → η̃(φ) uµ∂µφ
√

1 + (uµλµ)2
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A friction which saturates
Espinosa, Konstandin, No, Servant, 2010

Considered the modification

η̃(φ) uµ∂µφ → η̃(φ) uµ∂µφ
√

1 + (uµλµ)2

with λµ = (0, 0, 0, 1) in the wall frame

◮ With this λµ we have, in the wall frame, γv√
1+(γv)2

= v !!!

◮ This changes the behavior from F old
fr ∼ η vγ to F new

fr ∼ η v
⇒ the friction saturates

◮ However, a single free parameter η cannot match
quantitatively the two limits:
we have Ffr|NR = −η vw and Ffr|UR = −η

A. Mégevand, Bubble wall velocity 19/22



A friction which saturates
Espinosa, Konstandin, No, Servant, 2010

Considered the modification

η̃(φ) uµ∂µφ → η̃(φ) uµ∂µφ
√

1 + (uµλµ)2

with λµ = (0, 0, 0, 1) in the wall frame

◮ With this λµ we have, in the wall frame, γv√
1+(γv)2

= v !!!

◮ This changes the behavior from F old
fr ∼ η vγ to F new

fr ∼ η v
⇒ the friction saturates

◮ However, a single free parameter η cannot match
quantitatively the two limits:
we have Ffr|NR = −η vw and Ffr|UR = −η

◮ We need a model with two free parameters
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◮ This changes the behavior from F old
fr ∼ η vγ to F new

fr ∼ η v
⇒ the friction saturates

◮ However, a single free parameter η cannot match
quantitatively the two limits:
we have Ffr|NR = −η vw and Ffr|UR = −η

◮ We need a model with two free parameters

Notice that the vector ∂µφ is (0, 0, 0, ∂zφ) in the wall frame
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A friction which interpolates between the NR and UR limits
◮ Consider instead the term [A.M., 2013]

η̃ ∂µφ uµ
√

1 + (λ̃ ∂µφ uµ)2
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A. Mégevand, Bubble wall velocity 20/22



A friction which interpolates between the NR and UR limits
◮ Consider instead the term [A.M., 2013]

η̃ ∂µφ uµ
√

1 + (λ̃ ∂µφ uµ)2

◮ In the wall frame and after the usual manipulations, we have a
friction force of the form

Ffr ∼
η γv

√

1 + λ2 (γv)2

◮ gives Ffr ∼ ηv for small v , and Ffr ∼ η/λ for v → 1
◮ We may choose η = ηNR and η/λ = Ffr|UR

UR friction force

◮ In the UR limit we have a net force Fnet(Tn)
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◮ Consider instead the term [A.M., 2013]

η̃ ∂µφ uµ
√

1 + (λ̃ ∂µφ uµ)2

◮ In the wall frame and after the usual manipulations, we have a
friction force of the form

Ffr ∼
η γv

√

1 + λ2 (γv)2

◮ gives Ffr ∼ ηv for small v , and Ffr ∼ η/λ for v → 1
◮ We may choose η = ηNR and η/λ = Ffr|UR

UR friction force

◮ In the UR limit we have a net force Fnet(Tn)
◮ The friction part must be identified [A.M., 2013]
◮ To lowest order in m(φ)/T , we have

Ffr =
∑

bos(giT/12π)
[
m3

i (φb)−m3
i (φu)

]
∼ ∑

gih
3
i φ

3
bT
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A friction which interpolates between the NR and UR limits
A.M., 2013
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A friction which interpolates between the NR and UR limits
A.M., 2013
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◮ For a finite value of η we have vw → 1 (runaway)

◮ This happens for Fdr(Tu ,Tb) = η/λ (i.e., for vw = 1)
with Fdr ≃ pb(Tb)− pu(Tu)− 〈s〉(Tb − Tu)

◮ The runaway wall solution is possible if Fdr(Tn,Tn) = η/λ
i.e., Fdr = pb(Tn)− pu(Tn)

◮ As a consequence, stationary and runaway solutions coexist
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Application to physical models (preliminary results)
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A. Mégevand, Bubble wall velocity 22/22



Application to physical models (preliminary results)

600 700 800 900 1000 1100 1200
0.0

0.2

0.4

0.6

0.8

1.0
SM with a term /

 

 

v w

  = 0
  = NR/ UR

655 660 665 670 675 680
0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

v
w

Λ

Outlook

Apply to GW generation in the electroweak phase transition
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Extra slides

Weak deflagrations are unstable for vw < vcrit (good for GWs)
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