The Electroweak Phase Transition versus LHC constraints

Stephan Huber, University of Sussex

eLISA Workshop, CERN April 2015

Higgs discovery:

- Di-photon channel: (summer 2012)
- No other particles found

Light Higgs, but no electroweak phase transition in the minimal standard model

Measured branching fractions:

[ALTAS,CMS 1503.07589]

→ Higgs is very SM-like

The future:

- Higgs

[CMS 1307.7135]

- Enhanced sensitivity to new particles, in particular new scalars

- Higgs self coupling

[TLEP 1308.6176]

The strength of the PT

Thermal potential:

$$V(H,T) = m^{2}(T)H^{2} - E(T)H^{3} + \lambda(T)H^{4}$$

• Bosons in the plasma:

SM: gauge bosons

Lattice: crossover for $m_h > 80 \text{ GeV} \rightarrow \underline{\text{requires NEW PHYSICS!}}$

Kajantie, Laine, Rummukainen, Shaposhnikov 1996

Csikor, Fodor, Heitger 1998

The strength of the PT

Thermal potential:

$$V(H,T) = m^2(T)H^2 - E(T)H^3 + \lambda(T)H^4$$

• Bosons in the plasma:

SM: gauge bosons

SUSY: light stops [Laine, Nardini, Rummumainen '12]

2HDM: heavy Higgses [Dorsch, SJH, No '13]

- tree-level: extra singlets: λ SH², NMSSM, etc. [Kozaczuk et al. 14]
- replace H⁴ by H⁶ or introduce H²log(H²), etc. [Dorsch. SJH. No '14]

Outline

- modified SM Higgs potential
- Higgs plus singlet
- extra Higgs doublets
- extra colored particles
- summary and conclusions

Modified SM potential

SM + higher-dim. operators

$$V(H) = -\mu^2 |H|^2 + \lambda |H|^4 + \frac{1}{M^2} |H|^6$$

Zhang '93 Grojean et al. '04

maybe related to strong dynamics at the TeV scale, such as technicolor or gravity? (or simply comes from integrating out extra scalars)

two parameters, (λ , M) \leftrightarrow (m_h, M)

 λ can be negative \rightarrow bump because of $|H|^4$ and $|H|^6$

$$\begin{split} V_{\text{eff}}(\phi,T) &= \quad \frac{1}{2} \left(-\mu^2 + \left(\frac{1}{2} \lambda + \frac{3}{16} g_2^2 + \frac{1}{16} g_1^2 + \frac{1}{4} y_t^2 \right) T^2 \right) \phi^2 \\ &- \frac{g_2^3}{16\pi} T \phi^3 + \frac{\lambda}{4} \phi^4 + \frac{3}{64\pi^2} y_t^4 \phi^4 \ln \left(\frac{Q^2}{c_F T^2} \right) \\ &+ \frac{1}{8M^2} (\phi^6 + 2\phi^4 T^2 + \phi^2 T^4). \end{split}$$

Results for the PT

Evaluating the 1-loop thermal potential:

strong phase transition for M<850 GeV up to $m_h \sim 170$ GeV

Bödeker, Fromme, S.H., Seniuch '04

wall thickness $2 < L_w T_c < 16$

Similar results, including Higgs cubic terms

Delaunay, Grojean, Wells '07

Phenomenology

deviations from the SM cubic Higgs self coupling µH³ expect order unity deviation! LHC: order unity sensitivity detection by HL-LHC, ILC, TLEP?

find resonances related to the UV completion?

Grojean, Servant, Wells '04

GW's in the Φ^6 model

T. Konstandin, S.H. '08

Scale invariant Higgs

Higgs mass stabilized by conformal symmetry, Broken in a hidden sector,

Transmitted to the SM by gauge mediation:

$$\delta V_{\text{eff}} \equiv V_0 = -\frac{m_h^2}{4} h^2 \left(1 + X \log\left[\frac{h^2}{v^2}\right] \right) + \frac{\lambda}{4} h^4$$

[Abel, Mariotti '13]

Higgs + singlet

The Higgs potential

[Profumo, Ramsey-Musolf, Shaughnessy '07]

$$V = V_{\rm SM} + V_{\rm HS} + V_{\rm S}$$

$$\begin{aligned} V_{\rm SM} &= -\mu^2 \left(H^{\dagger} H \right) + \bar{\lambda}_0 \left(H^{\dagger} H \right)^2 \\ V_{\rm HS} &= \frac{a_1}{2} \left(H^{\dagger} H \right) S + \frac{a_2}{2} \left(H^{\dagger} H \right) S^2 \\ V_{\rm S} &= \frac{b_2}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4 \quad , \end{aligned}$$

Constraints from Higgs-singlet mixing

One can search for extra scalars, etc.

Also huge literature on singlets in SUSY, eg. [Kozaczuk, Profumo, Haskins, Wainwright '14]

The 2HDM

The 2HDM

$$V(H_1, H_2) = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \mu_3^2 e^{i\phi} H_1^{\dagger} H_2 + \lambda_1 |H_1|^4 + \dots$$

 \rightarrow 4 extra physical Higgs degrees of freedom: 2 neutral, 2 charged

- \rightarrow CP violation, phase Φ (μ_3 breaks Z₂ symmetry softly)
- \rightarrow there is a phase induced between the 2 Higgs vevs

$$v_1 = \langle H_1 \rangle, \quad v_2 e^{i\theta} = \langle H_2 \rangle$$

Davies, Froggatt, Jenkins, Moorhouse ' 94 Cline, Kainulainen, Vischer ' 95 Cline, Lemieux '96

Turok, Zadrozny '91

early work:

simplified parameter choice:

- 1 light Higgs $m_h \rightarrow SM$ -like
- 3 degenerate heavy Higgses $m_H \rightarrow keeps EW$ corrections small

The phase transition

Evaluate 1-loop thermal potential:

loops of heavy Higgses generate a cubic term

 \rightarrow strong PT for

m_H>300 GeV

m_h up to 200 GeV

- \rightarrow PT ~ independent of Φ
- → thin walls only for very strong PT (agrees with Cline, Lemieux '96)

[Fromme, S.H., Senuich '06]

missing: 2-loop analysis of the thermal potential; lattice; wall velocity

The bubble wall

Solve the field equations with the thermal potential \rightarrow wall profile $\Phi_i(\mathbf{r})$

kink-shaped with wall thickness L_w

(numerical algorithm for multi-field profiles, T. Konstandin, S.H. '06)

The baryon asymmetry

The relative phase between the Higgs vevs, θ , changes along the bubble wall \rightarrow phase of the top mass varies $\theta_t = \theta / (1 + \tan^2 \beta)$ top transport generates a baryon asymmetry, but \rightarrow only one phase, so EDMs can be predicted: here

exp. bound: $d_n < 3.0 \ 10^{-26} e cm$

 η_B in units of 10^{-11}, $\phi\text{=}0.2$

More general parameter scan

[Dorsch, S.H., No, 2013]

$$\begin{split} V_{tree}(\Phi_{1},\Phi_{2}) &= -\mu_{1}^{2}\Phi_{1}^{\dagger}\Phi_{1} - \mu_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} - \frac{\mu^{2}}{2}\left(e^{i\phi}\Phi_{1}^{\dagger}\Phi_{2} + H.c.\right) + \\ &+ \frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger}\Phi_{2}\right)^{2} + \lambda_{3}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)\left(\Phi_{2}^{\dagger}\Phi_{2}\right) + \\ &+ \lambda_{4}\left(\Phi_{1}^{\dagger}\Phi_{2}\right)\left(\Phi_{2}^{\dagger}\Phi_{1}\right) + \frac{\lambda_{5}}{2}\left[\left(\Phi_{1}^{\dagger}\Phi_{2}\right)^{2} + H.c.\right] \end{split}$$

Type I or II, softly broken

No CP violation, i.e. $\phi=0$

We analyze the thermal 1-loop potential

 $\begin{array}{rl} 0.4 \leq \ \tan\beta \leq 10, \\ -\frac{\pi}{2} < \ \alpha & \leq \frac{\pi}{2}, \\ 0 \ \mathrm{GeV} \leq & \mu \leq 1 \ \mathrm{TeV}, \\ 100 \ \mathrm{GeV} \leq & m_{A^0}, \ m_{H^{\pm}} \leq 1 \ \mathrm{TeV}, \\ 150 \ \mathrm{GeV} \leq & m_{H^0} \leq 1 \ \mathrm{TeV}. \end{array}$

(parameter ranges, m_h=125 GeV)

Constraints: rho-parameter

 $B \rightarrow s \gamma$, B-Bbar mixing

SM like Higgs?

Di-photon channel

[Dorsch, S.H., Mimasu, No '14]

Preference for a large negative λ_5

$$\frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + H.c. \right]$$

The strong phase transition at LHC

<u>Search for $A_0 \rightarrow H_0Z \rightarrow II bb</u>$ </u> [Dorsch, S.H., Mimasu, No '14]

	Signal	$t\bar{t}$	$Z b \overline{b}$	ZZ	Zh
Event selection	14.6	1578	424	7.3	2.7
$80 < m_{\ell\ell} < 100~{\rm GeV}$	13.1	240	388	6.6	2.5
$\begin{array}{l} H_T^{\rm bb} > 150 {\rm GeV} \\ H_T^{\ell\ell bb} > 280 {\rm GeV} \end{array}$	8.2	57	83	0.8	0.74
$\Delta R_{bb} < 2.5, \ \Delta R_{\ell\ell} < 1.6$	5.3	5.4	28.3	0.75	0.68
$m_{bb}, m_{\ell\ell bb}$ signal region	3.2	1.37	3.2	< 0.01	< 0.02

Discovery needs ~ 40 fb⁻¹ (at 14 TeV) (m[±]=400 GeV, m_{Ho}=180 GeV)

a strong phase transition in the 2HDM is very much consistent with a SM-like light Higgs

specific predictions for the mass spectrum and certain coupling constants

testable at LHC

Classic: The MSSM

strong PT from stop loops

 \rightarrow right-handed stop mass ~100 GeV left-handed stop mass ~1000 TeV

CP violation from varying chargino mixing

resonant enhancement of η for M₂ ~ μ chargino mass < ~300 GeV large phases > 0.2 required → 1st and 2nd generation squarks heavy to keep 1-loop EDMs small

→ "Split SUSY + light stop"

Konstandin, Prokopec, Schmidt, Seco '05

v_w =0.05, M₂=200 GeV, maximal phase

similar but somewhat more optimistic results in Carena, Quiros, Seco, Wagner '02 Cirigliano, Profumo, Ramsey-Musolf '06

 \rightarrow scenario is tightly constrained!

<u>Problem:</u> modified Higgs branching ratios, e.g. into two photons:

Light stop searches: still loop holes

Summary

Depending on which is the mechanism to induce an EWPT the collider situation is quite different

modified SM Higgs potential: only deviation in Higgs cubic coupling (difficultto detect!?)

► Higgs + singlet: danger of too large Higgs singlet mixing, searches for extra scalar possible

extra Higgs doublets: easy to have a SM like Higgs, search for extra Higgs promising

extra colored states ("stops"): typically disfavored by modified Higgs branching fractions

All eyes now on the LHC!