Gravitational waves from phase transitions: Bubble collisions and turbulence

Ruth Durrer

Department of Theoretical Physics and Center for Astroparticle Physics
Geneva University
Switzerland

eLISA workshop, April 14, 2015
Outline

1. Introduction

2. Sources of gravitational waves

3. The spectrum
 - Causality
 - Peak position

4. The electroweak phase transition
 - Bubble collisions
 - Turbulent MHD

5. Conclusions
The Universe has expanded and cooled down from a very hot initial state to (presently) 2.7°K. It seems likely that it underwent several phase transitions during its evolution of adiabatic expansion.
Once emitted, gravitational waves propagate without interaction. They represent a direct probe of physical processes in the early universe as:

- **Inflation** Scale invariant spectrum.
Once emitted, gravitational waves propagate without interaction. They represent a direct probe of physical processes in the early universe as:

- **Inflation** Scale invariant spectrum.

- **Pre-heating**, $T_i \simeq 10^{14}$ GeV, $t_i = 2.3\text{sec} \left(\frac{1\text{MeV}}{T_i}\right)^2 g_{\text{eff}}(T)^{-1/2} \simeq 10^{-35}\text{sec}$,
 $\eta_i = a(t_i)/H(t_i) = 2t_i(1 + z_i) \simeq 10^{-7}\text{sec}$,
 $\omega_i \simeq (10^7 - 10^9)\text{Hz}$.
Once emitted, gravitational waves propagate without interaction. They represent a direct probe of physical processes in the early universe as:

- **Inflation** Scale invariant spectrum.

- **Pre-heating**, $T_i \sim 10^{14}\text{GeV}$, $t_i = 2.3\text{sec} \left(\frac{1\text{MeV}}{T_i}\right)^2 g_{\text{eff}}(T)^{-1/2} \sim 10^{-35}\text{sec}$,

 \[\eta_i = a(t_i)/H(t_i) = 2t_i(1 + z_i) \sim 10^{-7}\text{sec} , \]
 \[\omega_i \sim (10^7 - 10^9)\text{Hz} . \]

- **The electroweak transition** $T_{\text{ew}} \sim 10^2\text{GeV}$, $t_{\text{ew}} \sim 10^{-10}\text{sec}$,

 \[\eta_{\text{ew}} \sim 10^5\text{sec} , \quad \omega_{\text{ew}} \sim (10^{-5} - 10^{-3})\text{Hz} . \]
Once emitted, gravitational waves propagate without interaction. They represent a direct probe of physical processes in the early universe as:

- **Inflation** Scale invariant spectrum.
- **Pre-heating**, \(T_i \approx 10^{14} \text{GeV} \), \(t_i = 2.3 \text{sec} \left(\frac{1 \text{MeV}}{T_i} \right)^2 g_{\text{eff}}(T)^{-1/2} \approx 10^{-35} \text{sec} \),

 \[\eta_i = \frac{a(t_i)}{H(t_i)} = 2t_i(1 + z_i) \approx 10^{-7} \text{sec}, \]

 \[\omega_i \approx (10^7 - 10^9) \text{Hz}. \]
- **The electroweak transition** \(T_{\text{ew}} \approx 10^2 \text{GeV} \), \(t_{\text{ew}} \approx 10^{-10} \text{sec} \),

 \[\eta_{\text{ew}} \approx 10^5 \text{sec}, \]

 \[\omega_{\text{ew}} \approx (10^{-5} - 10^{-3}) \text{Hz}. \]

\(\Rightarrow \) eLISA,
Once emitted, gravitational waves propagate without interaction. They represent a direct probe of physical processes in the early universe as:

- **Inflation** Scale invariant spectrum.
- **Pre-heating**, \(T_i \simeq 10^{14} \text{GeV}, \quad t_i = 2.3 \text{sec} \left(\frac{1 \text{MeV}}{T_i} \right)^2 g_{\text{eff}}(T)^{-1/2} \simeq 10^{-35} \text{sec}, \)
 \(\eta_i = a(t_i)/H(t_i) = 2t_i(1 + z_i) \simeq 10^{-7} \text{sec}, \)
 \(\omega_i \simeq (10^7 - 10^9) \text{Hz}. \),
- **The electroweak transition** \(T_{ew} \simeq 10^2 \text{GeV}, \quad t_{ew} \simeq 10^{-10} \text{sec}, \)
 \(\eta_{ew} \simeq 10^5 \text{sec}, \quad \omega_{ew} \simeq (10^{-5} - 10^{-3}) \text{Hz}. \),
 \(\Rightarrow \text{eLISA}, \)
- **Confinement transition** \(T_c \simeq 10^2 \text{MeV}, \quad t_c \simeq 10^{-5} \text{sec}, \)
 \(\eta_c \simeq 10^8 \text{sec}, \quad \omega_c \simeq (10^{-8} - 10^{-6}) \text{Hz}. \)
Introduction

Once emitted, gravitational waves propagate without interaction. They represent a direct probe of physical processes in the early universe as:

- **Inflation** Scale invariant spectrum.

- **Pre-heating**, $T_i \simeq 10^{14}\text{GeV}$, $t_i = 2.3\text{sec} \left(\frac{1\text{MeV}}{T_i}\right)^2 g_{\text{eff}}(T)^{-1/2} \simeq 10^{-35}\text{sec}$, $\eta_i = a(t_i)/H(t_i) = 2t_i(1 + z_i) \simeq 10^{-7}\text{sec}$, $\omega_i \simeq (10^7 - 10^9)\text{Hz}$.

- **The electroweak transition** $T_{ew} \simeq 10^2\text{GeV}$, $t_{ew} \simeq 10^{-10}\text{sec}$, $\eta_{ew} \simeq 10^5\text{sec}$, $\omega_{ew} \simeq (10^{-5} - 10^{-3})\text{Hz}$, \Rightarrow eLISA,

- **Confinement transition** $T_c \simeq 10^2\text{MeV}$, $t_c \simeq 10^{-5}\text{sec}$, $\eta_c \simeq 10^8\text{sec}$, $\omega_c \simeq (10^{-8} - 10^{-6})\text{Hz}$, \Rightarrow pulsar timing arrays,
Once emitted, gravitational waves propagate without interaction. They represent a direct probe of physical processes in the early universe as:

- **Inflation** Scale invariant spectrum.

- **Pre-heating**, $T_i \approx 10^{14}\text{GeV}$, $t_i = 2.3\text{sec} \left(\frac{1\text{MeV}}{T_i} \right)^2 g_{\text{eff}}(T)^{-1/2} \approx 10^{-35}\text{sec}$,

 $\eta_i = a(t_i)/H(t_i) = 2t_i(1 + z_i) \approx 10^{-7}\text{sec}$,

 $\omega_i \approx (10^7 - 10^9)\text{Hz}$.

- **The electroweak transition** $T_{ew} \approx 10^2\text{GeV}$, $t_{ew} \approx 10^{-10}\text{sec}$,

 $\eta_{ew} \approx 10^5\text{sec}$,

 $\omega_{ew} \approx (10^{-5} - 10^{-3})\text{Hz}$.

 \Rightarrow eLISA,

- **Confinement transition** $T_c \approx 10^2\text{MeV}$, $t_c \approx 10^{-5}\text{sec}$,

 $\eta_c \approx 10^8\text{sec}$,

 $\omega_c \approx (10^{-8} - 10^{-6})\text{Hz}$.

 \Rightarrow pulsar timing arrays,

- ??
Once emitted, gravitational waves propagate without interaction. They represent a direct probe of physical processes in the early universe as:

- **Inflation** Scale invariant spectrum.
- **Pre-heating**, $T_i \approx 10^{14}\text{GeV}$, $t_i = 2.3\text{sec} \left(\frac{1\text{MeV}}{T_i} \right)^2 g_{\text{eff}}(T)^{-1/2} \approx 10^{-35}\text{sec}$,

 $\eta_i = \frac{a(t_i)}{H(t_i)} = 2t_i(1 + z_i) \approx 10^{-7}\text{sec}$,

 $\omega_i \approx (10^7 - 10^9)\text{Hz}$.

- **The electroweak transition** $T_{\text{ew}} \approx 10^2\text{GeV}$, $t_{\text{ew}} \approx 10^{-10}\text{sec}$,

 $\eta_{\text{ew}} \approx 10^5\text{sec}$, $\omega_{\text{ew}} \approx (10^{-5} - 10^{-3})\text{Hz}$.

 \Rightarrow eLISA,

- **Confinement transition** $T_c \approx 10^2\text{MeV}$, $t_c \approx 10^{-5}\text{sec}$,

 $\eta_c \approx 10^8\text{sec}$, $\omega_c \approx (10^{-8} - 10^{-6})\text{Hz}$.

 \Rightarrow pulsar timing arrays,

- ??

In this talk I present a semi-analytical evaluation of the GW signal from a first order phase transition in terms of the parameters characterizing the transition.
If a phase transition at $T = T_*$ generates a (relativistic) source of gravitational waves with energy density ρ_X, the GW spectrum has the following properties:

- **The peak frequency** (correlation scale) is larger than the Hubble rate, $k_* \gtrsim H_*$.

Ruth Durrer (Université de Genève)

Bubble collisions and turbulence

CERN 2015
If a phase transition at $T = T_*$ generates a (relativistic) source of gravitational waves with energy density ρ_X, the GW spectrum has the following properties:

- **The peak frequency** (correlation scale) is larger than the Hubble rate, $k_* \gtrsim H_*$.
- Its amplitude is of the order of

$$\Omega_{GW} \sim \Omega_{\text{rad}} \left(\frac{\Omega_X}{\Omega_{\text{rad}}} \right)^2 (H_* \Delta \eta_*)^2$$

$\Delta \eta_* = \text{duration of phase transition.}$
If a phase transition at $T = T_*$ generates a (relativistic) source of gravitational waves with energy density ρ_X, the GW spectrum has the following properties:

- **The peak frequency** (correlation scale) is larger than the Hubble rate, $k_* \gtrsim H_*$.
- Its **amplitude** is of the order of

$$\Omega_{GW} \sim \Omega_{\text{rad}} \left(\frac{\Omega_X}{\Omega_{\text{rad}}} \right)^2 (H_* \Delta \eta_*)^2$$

where $\Delta \eta_* = \text{duration of phase transition}$.

- On large scales, $k \ll k_*$ the spectrum is blue,

$$\frac{d\Omega_{GW}(k)}{d \log(k)} \propto k^3, \quad \Omega_{GW} = \int \frac{dk}{k} \frac{d\Omega_{GW}(k)}{d \log(k)}$$
If a phase transition at $T = T_*$ generates a (relativistic) source of gravitational waves with energy density ρ_x, the GW spectrum has the following properties:

- **The peak frequency** (correlation scale) is larger than the Hubble rate, $k_* \gtrsim H_*$.
- **Its amplitude** is of the order of

$$\Omega_{GW} \sim \Omega_{rad} \left(\frac{\Omega_X}{\Omega_{rad}} \right)^2 (H_* \Delta \eta_*)^2$$

$\Delta \eta_* = $ duration of phase transition.

- On large scales, $k \ll k_*$ the spectrum is blue,

$$\frac{d\Omega_{GW}(k)}{d \log(k)} \propto k^3, \quad \Omega_{GW} = \int \frac{dk}{k} \frac{d\Omega_{GW}(k)}{d \log(k)}$$

- The behaviour of the spectrum on small scales, $k \gg k_*$ depends on the details of the source.
Sources of gravitational waves

Gravitational waves are sourced by fluctuations in the energy momentum tensor which have a non-vanishing spin-2 contribution.

\[ds^2 = a^2 \left(d\eta^2 + (\gamma_{ij} + 2h_{ij})dx^i dx^j \right) \]

where \(h_{ij} \) is transverse and traceless. In Fourier space \(k^i h_{ij} = h^i = 0 \).
Sources of gravitational waves

Gravitational waves are sourced by fluctuations in the energy momentum tensor which have a non-vanishing spin-2 contribution.

\[ds^2 = a^2 \left(d\eta^2 + (\gamma_{ij} + 2h_{ij}) dx^i dx^j \right) \]

where \(h_{ij} \) is transverse and traceless. In Fourier space \(k^i h_{ij} = h_i^j = 0 \). Einstein’s eqn. to first order in \(h_{ij} \) give

\[\left(\partial^2_\eta + 2\mathcal{H} \partial_\eta + k^2 \right) h_{ij} = 8\pi G a^2 \Pi_{ij} \]

Here \(\Pi_{ij}(k) \) is the tensors type (spin-2) anisotropic stress and \(\mathcal{H} = a' a \).

\[\Omega_{GW} = \frac{\langle \dot{h}_{ij} \dot{h}^{ij} \rangle}{8\pi G \rho_c} \]
Sources of gravitational waves

Gravitational waves are sourced by fluctuations in the energy momentum tensor which have a non-vanishing spin-2 contribution.

\[ds^2 = a^2 \left(d\eta^2 + (\gamma_{ij} + 2h_{ij})dx^i dx^j \right) \]

where \(h_{ij} \) is transverse and traceless. In Fourier space \(k^i h_{ij} = h_i^i = 0 \).

Einstein’s eqn. to first order in \(h_{ij} \) give

\[\left(\partial_\eta^2 + 2H\partial_\eta + k^2 \right) h_{ij} = 8\pi G a^2 \Pi_{ij} \]

Here \(\Pi_{ij}(k) \) is the tensors type (spin-2) anisotropic stress and \(H = \frac{a'}{a} \).

\[\Omega_{GW} = \frac{\langle \dot{h}_{ij} \dot{h}^{ij} \rangle}{8\pi G \rho_c} \]

During a first order phase transition anisotropic stresses are generated by (Kamionkowskis, Kosowsky, Turner, Watkins, 92-94)

- Colliding bubbles
Sources of gravitational waves

Gravitational waves are sourced by fluctuations in the energy momentum tensor which have a non-vanishing spin-2 contribution.

\[ds^2 = a^2 \left(d\eta^2 + (\gamma_{ij} + 2h_{ij})dx^i dx^j \right) \]

where \(h_{ij} \) is transverse and traceless. In Fourier space \(k^i h_{ij} = h^i_j = 0 \). Einstein’s eqn. to first order in \(h_{ij} \) give

\[\left(\partial^2 \eta + 2H \partial \eta + k^2 \right) h_{ij} = 8\pi G a^2 \Pi_{ij} \]

Here \(\Pi_{ij}(k) \) is the tensors type (spin-2) anisotropic stress and \(H = \frac{a'}{a} \).

\[\Omega_{GW} = \frac{\langle \dot{h}_{ij} \dot{h}^{ij} \rangle}{8\pi G \rho_c} \]

During a first order phase transition anisotropic stresses are generated by (Kamionkowksi, Kosowsky, Turner, Watkins, 92-94)

- Colliding bubbles
- Inhomogeneities in the cosmic fluid (e.g. turbulence and magnetic field).
Sources of gravitational waves

Gravitational waves are sourced by fluctuations in the energy momentum tensor which have a non-vanishing spin-2 contribution.

\[ds^2 = a^2 \left(d\eta^2 + (\gamma_{ij} + 2h_{ij})dx^i dx^j \right) \]

where \(h_{ij} \) is transverse and traceless. In Fourier space \(k^i h_{ij} = h_i^i = 0 \). Einstein’s eqn. to first order in \(h_{ij} \) give

\[\left(\partial^2_\eta + 2\mathcal{H} \partial_\eta + k^2 \right) h_{ij} = 8\pi G a^2 \Pi_{ij} \]

Here \(\Pi_{ij}(k) \) is the tensors type (spin-2) anisotropic stress and \(\mathcal{H} = \frac{a'}{a} \).

\[\Omega_{GW} = \frac{\langle \dot{h}_{ij} \dot{h}^{ij} \rangle}{8\pi G \rho_c} \]

During a first order phase transition anisotropic stresses are generated by (Kamionkowksi, Kosowsky, Turner, Watkins, 92-94)

- Colliding bubbles
- Inhomogeneities in the cosmic fluid (e.g. turbulence and magnetic field).

Duration: \(\Delta \eta_* \leq \mathcal{H}_*^{-1} \), bubble size: \(R = v_b \Delta \eta_* \), \(v_b = \) bubble velocity.
\(k_* = (\Delta \eta_*)^{-1} \) or \(R^{-1} \).
Because of causality, the correlator \(\langle \Pi_{ij}(\eta_1, x)\Pi_{lm}(\eta_2, y) \rangle = M_{ijlm}(\eta_1, \eta_2, x - y) \) is a function of compact support. For distances \(|x - y| > \max(\eta_1, \eta_2) \), \(M \equiv 0 \).
Because of causality, the correlator \(\langle \Pi_{ij}(\eta_1, x) \Pi_{lm}(\eta_2, y) \rangle = \mathcal{M}_{ijlm}(\eta_1, \eta_2, x - y) \) is a function of compact support. For distances \(|x - y| > \max(\eta_1, \eta_2) \), \(\mathcal{M} \equiv 0 \).

Therefore, the spatial Fourier transform, \(\mathcal{M}_{ijlm}(\eta_1, \eta_2, k) \) is analytic in \(k \).
Because of causality, the correlator \(\langle \Pi_{ij}(\eta_1, x)\Pi_{lm}(\eta_2, y) \rangle = M_{ijlm}(\eta_1, \eta_2, x - y) \) is a function of compact support. For distances \(|x - y| > \max(\eta_1, \eta_2) \), \(M \equiv 0 \).

Therefore, the spatial Fourier transform, \(M_{ijlm}(\eta_1, \eta_2, k) \) is analytic in \(k \).

We decompose \(\Pi_{ij} \) into two helicity modes which we assume to be uncorrelated (parity),

\[
\Pi_{ij}(\eta, k) = e_{ij}^+ \Pi_+ (\eta, k) + e_{ij}^- \Pi_- (\eta, k)
\]

\[
\langle \Pi_+ (\eta, k)\Pi^*_+ (\eta', k') \rangle = \langle \Pi_- (\eta, k)\Pi^*_- (\eta', k') \rangle = (2\pi)^3 \delta^3 (k - k') \rho^2_X P(\eta, \eta', k)
\]

\[
\langle \Pi_+ (\eta, k)\Pi^*_- (\eta', k') \rangle = 0.
\]

Here \(\rho_X \) is the energy density of the component \(X \) with anisotropic stress \(\Pi \) which has been factorized in order to keep \(k^3 P(\eta, \eta', k) \) dimensionless.
Typical frequencies and the spectrum

- Because of causality, the correlator \(\langle \Pi_{ij}(\eta_1, x)\Pi_{lm}(\eta_2, y) \rangle = M_{ijlm}(\eta_1, \eta_2, x - y) \) is a function of compact support. For distances \(|x - y| > \max(\eta_1, \eta_2) \), \(M \equiv 0 \).
- Therefore, the spatial Fourier transform, \(M_{ijlm}(\eta_1, \eta_2, k) \) is analytic in \(k \).
- We decompose \(\Pi_{ij} \) into two helicity modes which we assume to be uncorrelated (parity),
 \[
 \Pi_{ij}(\eta, k) = e^+_{ij} \Pi_+(\eta, k) + e^-_{ij} \Pi_-(\eta, k)
 \]
 \[
 \langle \Pi_+(\eta, k)\Pi_+^*(\eta', k') \rangle = \langle \Pi_-(\eta, k)\Pi_-^*(\eta', k') \rangle = (2\pi)^3 \delta^3(k - k') \rho_X^2 P(\eta, \eta', k)
 \]
 \[
 \langle \Pi_+(\eta, k)\Pi_-^*(\eta', k') \rangle = 0.
 \]
 Here \(\rho_X \) is the energy density of the component \(X \) with anisotropic stress \(\Pi \) which has been factorized in order to keep \(k^3 P(\eta, \eta', k) \) dimensionless.
- Causality implies that the function \(P(\eta, \eta', k) \) is analytic in \(k \). We therefore expect it to start out as white noise and to decay beyond a certain correlation scale \(k_*(\eta, \eta') > \min(1/\eta, 1/\eta') \).
The anisotropic stress power spectrum from Kolmogorov turbulence. On small scales $P \propto k^{-11/3}$.
If the gravitational wave source is active only for a short duration $\Delta \eta^*$ (less than one Hubble time), we can neglect the damping term $2\mathcal{H}^*$ in the equation of motion for h.

The gravitational wave energy density is given by

$$\rho_{gw}(\eta, x) = \frac{1}{8\pi} G a^2 \langle \partial_\eta h_{ij}(\eta, x) \partial_\eta h_{ij}^*(\eta, x) \rangle$$

If the Universe is radiation dominated during the phase when the gravitational waves are generated, this gives on large scales, $k < k^*$

$$d \Omega_{gw} d \log(k)(\eta_0) = \frac{3}{4} \Omega_{\text{rad}}(\eta_0) 4\pi^2 \left(\Omega_X(\eta^*) \Omega_{\text{rad}}(\eta^*)\right)^2 H^2 k^3 \Re\left[\hat{P}(k, k, k)\right].$$
If the gravitational wave source is active only for a short duration $\Delta \eta_*$ (less than one Hubble time), we can neglect the damping term $2H_*$ in the equation of motion for h.

The solution with vanishing initial conditions is then

$$h(k, \eta) = \frac{4i\pi G\alpha_\ast^3}{ak} \left[e^{-ik\eta} \int_{\eta_*}^{\eta_* + \Delta \eta_*} d\eta' e^{ik\eta'} \Pi(\eta', k) + e^{ik\eta} \int_{\eta_*}^{\eta_* + \Delta \eta_*} d\eta' e^{-ik\eta'} \Pi(\eta', k) \right]$$

$$= \frac{4i\pi G\alpha_\ast^3}{ak} \left[e^{-ik\eta} \hat{\Pi}(k, k) + e^{ik\eta} \hat{\Pi}(-k, k) \right]$$
If the gravitational wave source is active only for a short duration $\Delta \eta^*$ (less than one Hubble time), we can neglect the damping term $2\mathcal{H}^*$ in the equation of motion for h.

The solution with vanishing initial conditions is then

$$h(k, \eta) = \frac{4i\pi G a^3}{ak} \left[e^{-ik\eta} \int_{\eta^*}^{\eta^* + \Delta \eta^*} d\eta' e^{ik\eta'} \Pi(\eta', k) + e^{ik\eta} \int_{\eta^*}^{\eta^* + \Delta \eta^*} d\eta' e^{-ik\eta'} \Pi(\eta', k) \right]$$

$$= \frac{4i\pi G a^3}{ak} \left[e^{-ik\eta} \hat{\Pi}(k, k) + e^{ik\eta} \hat{\Pi}(-k, k) \right]$$

The gravitational wave energy density is given by

$$\rho_{gw}(\eta, x) = \frac{1}{8\pi G a^2} \langle \partial_\eta h_{ij}(\eta, x) \partial_\eta h_{ij}^*(\eta, x) \rangle$$
The spectrum

- If the gravitational wave source is active only for a short duration $\Delta \eta_*$ (less than one Hubble time), we can neglect the damping term $2H_\ast$ in the equation of motion for h.

- The solution with vanishing initial conditions is then

$$ h(k, \eta) = \frac{4i\pi G\alpha^3}{ak} \left[e^{-ik\eta} \int_{\eta_*}^{\eta_* + \Delta \eta_*} d\eta' e^{ik\eta'} \Pi(\eta', k) + e^{ik\eta} \int_{\eta_*}^{\eta_* + \Delta \eta_*} d\eta' e^{-ik\eta'} \Pi(\eta', k) \right] $$

$$ = \frac{4i\pi G\alpha^3}{ak} \left[e^{-ik\eta} \hat{\Pi}(k, k) + e^{ik\eta} \hat{\Pi}(-k, k) \right] $$

- The gravitational wave energy density is given by

$$ \rho_{gw}(\eta, x) = \frac{1}{8\pi G\alpha^2} \left\langle \partial_\eta h_{ij}(\eta, x) \partial_\eta h_{ij}^*(\eta, x) \right\rangle $$

- If the Universe is radiation dominated during the phase when the gravitational waves are generated, this gives on large scales, $k < k_*$

$$ \frac{d\Omega_{gw}}{d \log(k)}(\eta_0) = \frac{3\Omega_{rad}(\eta_0)}{4\pi^2} \left(\frac{\Omega_X(\eta_*)}{\Omega_{rad}(\eta_*)} \right)^2 H_\ast^2 k^3 \text{Re}[\hat{\mathcal{P}}(k, k, k)]. $$
The spectrum

\[
\frac{d\Omega_{gw}}{d \log(k)} = \frac{3\Omega_{\text{rad}}}{4\pi^2} \left(\frac{\Omega_{X}}{\Omega_{\text{rad}}}(\eta_{*}) \right)^2 \mathcal{H}_{*}^2 k^3 \text{Re}[\hat{P}(k, k, k)].
\]

Here

\[
\hat{P}(\omega, \omega', k) \equiv \int_{-\infty}^{\infty} d\eta \int_{-\infty}^{\infty} d\eta' P(\eta, \eta', k) e^{i(\omega \eta - \omega' \eta')}.
\]

(see Caprini, RD, Konstandin & Servant ’09)
The spectrum

\[\frac{d \Omega_{gw}}{d \log(k)} = \frac{3 \Omega_{rad}}{4 \pi^2} \left(\frac{\Omega_X}{\Omega_{rad}}(\eta_*) \right)^2 \mathcal{H}_*^2 k^3 \Re[\hat{P}(k, k, k)]. \]

Here

\[\hat{P}(\omega, \omega', k) \equiv \int_{-\infty}^{\infty} d\eta \int_{-\infty}^{\infty} d\eta' P(\eta, \eta', k) e^{i(\omega \eta - \omega' \eta')}. \]

(see Caprini, RD, Konstandin & Servant '09)

On large scales, \(k < k_* > \mathcal{H}_* \) the GW energy density from a 'causal' source always scales like \(k^3 \). This remains valid also for long duration sources. \(1/k_* \) is the correlation scale which is smaller than the co-moving Hubble scale \(1/\mathcal{H}_* = \eta_* \).

(see Caprini, RD & Servant '09)
The spectrum

\[
\frac{d\Omega_{gw}}{d' \log(k)} = \frac{3 \Omega_{rad}}{4\pi^2} \left(\frac{\Omega_X}{\Omega_{rad}} (\eta_*) \right)^2 \mathcal{H}_*^2 k^3 \text{Re}[\hat{P}(k, k, k)].
\]

Here

\[
\hat{P}(\omega, \omega', k) \equiv \int_{-\infty}^{-\infty} d\eta \int_{-\infty}^{-\infty} d\eta' P(\eta, \eta', k) e^{i(\omega \eta - \omega' \eta')}.
\]

(see Caprini, RD, Konstandin & Servant ’09)

- On large scales, \(k < k_* > \mathcal{H}_* \) the GW energy density from a ’causal’ source always scales like \(k^3 \). This remains valid also for long duration sources. \(1/k_* \) is the correlation scale which is smaller than the co-moving Hubble scale \(1/\mathcal{H}_* = \eta_* \). (see Caprini, RD & Servant ’09)

- The behavior or the spectrum close to the peak and its decay rate on smaller scales depends on the source characteristics, on its temporal behavior (continuity, differentiability) and its power spectrum.
For a totally incoherent source, \(P(\eta, \eta', k) = \delta(\eta - \eta') \Delta \eta \star P(\eta, \eta, k) \) the peak position of the GW spectrum is determined by the peak of the spatial Fourier transform of the source.
For a totally incoherent source, \(P(\eta, \eta', k) = \delta(\eta - \eta') \Delta \eta \star P(\eta, \eta, k) \) the peak position of the GW spectrum is determined by the peak of the spatial Fourier transform of the source.

For a coherent source, \(P(\eta, \eta', k) = \sqrt{P(\eta', \eta', k) P(\eta, \eta, k)} \), when \(P(\eta, \eta, k) \) is continuous in time but not differentiable (bubble collisions) the peak position of the GW spectrum \(\propto k^3 P(k, k, k) \) is determined by the peak of the temporal Fourier transform of the source.

(see Caprini, RD and Servant, 2009, arXiv:0909.0622 for details)
For a totally incoherent source, \(P(\eta, \eta', k) = \delta(\eta - \eta')\Delta\eta \cdot P(\eta, \eta, k) \) the peak position of the GW spectrum is determined by the peak of the spatial Fourier transform of the source.

For a coherent source, \(P(\eta, \eta', k) = \sqrt{P(\eta', \eta', k)P(\eta, \eta, k)} \), when \(P(\eta, \eta, k) \) is continuous in time but not differentiable (bubble collisions) the peak position of the GW spectrum \(\propto k^3 P(k, k, k) \) is determined by the peak of the temporal Fourier transform of the source.

For a source with finite coherence time,
\[P(\eta, \eta', k) = \sqrt{P(\eta', \eta', k)P(\eta, \eta, k)}\Theta(x_c - |\eta - \eta'|k), \quad x_c \sim 1 \] the GW spectrum is again determined by the peak of the spatial Fourier transform of the source.

(see Caprini, RD and Servant, 2009, arXiv:0909.0622 for details)
The GW energy density spectrum in the incoherent (red, dashed), tophat (black, dotted) and coherent (blue solid). The parameters are: $T_* = 100$ GeV, $\Delta \eta_* H_* = 0.01$, $\Omega_X/\Omega_{\text{rad}} = 2/9$ ($\langle v^2 \rangle = 1/3$). Caprini, RD and Servant, 2009, arXiv:0909.0622
According to the standard model, the electroweak transition is not even second order, but only a cross-over. If this is true, the ew transition does not lead to the formation of gravitational waves.

However, if the standard model is somewhat modified e.g. in the Higgs sector or in certain regions of the MSSM parameter space, the electroweak phase transition can become first order, even strongly first order and generate gravitational waves by Bubble collisions and turbulence. The spectrum is supposed to peak at the correlation scale \(k^* = 1/\Delta \eta^* \approx 100/\eta^* \sim 10^{-3} \text{Hz} \), which is close to the frequency of the peak sensitivity for the space born gravitational wave antenna eLISA.
According to the standard model, the electroweak transition is not even second order, but only a cross-over. If this is true, the electroweak transition does not lead to the formation of gravitational waves.

However, if the standard model is somewhat modified e.g. in the Higgs sector or in certain regions of the MSSM parameter space, the electroweak phase transition can become first order, even strongly first order and generate gravitational waves by

- Bubble collisions
- Turbulence and magnetic fields.

The spectrum is supposed to peak at the correlation scale $k^* = 1/\Delta \eta^* \approx 100/\eta^* \sim 10^{-3}$ Hz, which is close to the frequency of the peak sensitivity for the space born gravitational wave antenna eLISA.
According to the standard model, the electroweak transition is not even second order, but only a cross-over. If this is true, the ew transition does not lead to the formation of gravitational waves.

However, if the standard model is somewhat modified e.g. in the Higgs sector or in certain regions of the MSSM parameter space, the electroweak phase transition can become first order, even strongly first order and generate gravitational waves by

- Bubble collisions
According to the standard model, the electroweak transition is not even second order, but only a cross-over. If this is true, the ew transition does not lead to the formation of gravitational waves.

However, if the standard model is somewhat modified e.g. in the Higgs sector or in certain regions of the MSSM parameter space, the electroweak phase transition can become first order, even strongly first order and generate gravitational waves by

- Bubble collisions
- Turbulence and magnetic fields.
According to the standard model, the electroweak transition is not even second order, but only a cross-over. If this is true, the ew transition does not lead to the formation of gravitational waves.

However, if the standard model is somewhat modified e.g. in the Higgs sector or in certain regions of the MSSM parameter space, the electroweak phase transition can become first order, even strongly first order and generate gravitational waves by

- Bubble collisions
- Turbulence and magnetic fields.

The spectrum is supposed to peak at the correlation scale
\[k_* = 1/\Delta \eta_* \simeq 100/\eta_* \sim 10^{-3}\text{Hz}, \]
which is close to the frequency of the peak sensitivity for the space born gravitational wave antenna eLISA.
The electroweak phase transition: GW’s from bubble collisions

The peak amplitude of the resulting GW spectrum depends on the strength of the phase transition, $\alpha = \rho V / \rho_{\text{rad}}$ and the velocity of the bubble wall, v_b. The spectrum goes like $d^2 \Omega_{GW} / d \ln (k) \propto k^3$, $k < k^\ast \approx \pi / \Delta \eta$ and $d^2 \Omega_{GW} / d \ln (k) \propto k^{-1}$, $k > k^\ast$. The peak sensitivity of eLISA is supposed to be about $h_2^2 d^2 \Omega_{GW} / d \ln (k) \bigg|_{k = k_p} \approx 10^{-12}$, $k_p \sim 10^{-3}$ Hz.

Ruth Durrer (Université de Genève)
The electroweak phase transition: GW’s from bubble collisions

- The peak amplitude of the resulting GW spectrum depends on the strength of the phase transition, $\alpha = \rho V / \rho_{\text{rad}}$ and the velocity of the bubble wall, v_b.
- The spectrum goes like $\frac{d\Omega_{GW}}{d\ln(k)} \propto k^3$, $k < k_* \simeq \pi / \Delta \eta_*$ and $\frac{d\Omega_{GW}}{d\ln(k)} \propto k^{-1}$, $k > k_*$. The peak sensitivity of eLISA is supposed to be about $h^2 \frac{d\Omega_{GW}}{d\ln(k)} \bigg|_{k=k_p} \simeq 10^{-12}$, $k_p \sim 10^{-3}$Hz.
The peak amplitude of the resulting GW spectrum depends on the strength of the phase transition, $\alpha = \rho_V / \rho_{\text{rad}}$ and the velocity of the bubble wall, v_b.

The spectrum goes like $\frac{d\Omega_{GW}}{d\ln(k)} \propto k^3$, $k < k_* \simeq \pi / \Delta \eta_*$ and $\frac{d\Omega_{GW}}{d\ln(k)} \propto k^{-1}$, $k > k_*$. The peak sensitivity of eLISA is supposed to be about $h^2 \left. \frac{d\Omega_{GW}}{d\ln(k)} \right|_{k=k_p} \simeq 10^{-12}$, $k_p \sim 10^{-3}$Hz.

Caprini, RD, Konstandin, Servant, 2009 arXiv:0901.1661 ($\beta = (\Delta \eta_*)^{-1}$)
The electroweak phase transition: GW’s from bubble collisions

Huber & Konstandin 2008

\(\Omega_{GW} \) from colliding bubbles, numerical results, \(\Omega_X/\Omega_{\text{rad}} = 0.03 \).
The electroweak phase transition: GW’s from turbulence and magnetic fields

- The Reynolds number of the cosmic plasma at $T \sim 100\text{GeV}$ is very high. The bubbles of the broken phase expanding into it therefore lead to turbulence.
The electroweak phase transition: GW’s from turbulence and magnetic fields

The Reynolds number of the cosmic plasma at $T \sim 100\text{GeV}$ is very high. The bubbles of the broken phase expanding into it therefore lead to turbulence.

Furthermore, in the broken phase the electromagnetic field does generically not vanish. The high conductivity rapidly damps the electric fields so that we are left with a magnetic field in a turbulent plasma, MHD turbulence.

Because both, the vorticity and the magnetic field are divergence free, causality requires that both,

$$P_v(k) \propto k^2 \quad \text{for small } k,$$

and the functions

$$\langle v_i(k)v_j(k') \rangle = \left(\frac{2\pi}{2\pi}\right)^3 \delta^3(k-k')\hat{k}_j\hat{k}_i - \delta_{ij}P_v(k),$$

$$\langle B_i(k)B_j(k') \rangle = \left(\frac{2\pi}{2\pi}\right)^3 \delta^3(k-k')\hat{k}_j\hat{k}_i - \delta_{ij}P_B(k),$$

must be analytic because of causality.

The behavior of the spectrum on scales smaller than the correlation scale $k > k_c$ is expected to be a Kolmogorov spectrum for the vorticity field, $P_v \propto k^{-11/3}$ and an Iroshnikov–Kraichnan spectrum, $P_B \propto k^{-7/2}$ or a Kolmogorov spectrum, $P_B \propto k^{-11/3}$ for the magnetic field.

For the induced GW spectrum this yields

$$\frac{d\Omega_{GW}}{d\ln(k)} \simeq \Omega_{rad}(\eta_0) \left(\frac{\Omega_{\text{rad}}(\eta_0)}{\Omega_{\text{rad}}(\eta_0)}\right)^2 \times \left\{\begin{array}{ll}
\left(k/k^*_\eta_0\right)^3 & \text{for } k < k^*_\eta_0 \\
(k/k^*_\eta_0)^{-\alpha} & \text{for } k > k^*_\eta_0
\end{array}\right.$$

For $\bullet = v$ we have $\alpha = 11/3 - 1 = 8/3$ and for $\bullet = B$ we have $\alpha = 7/2 - 1 = 5/2$.

(See Caprini & RD, 2006, astro-ph/0603476)
The electroweak phase transition: GW’s from turbulence and magnetic fields

- The Reynolds number of the cosmic plasma at $T \sim 100\text{GeV}$ is very high. The bubbles of the broken phase expanding into it therefore lead to turbulence.

- Furthermore, in the broken phase the electromagnetic field does generically not vanish. The high conductivity rapidly damps the electric fields so that we are left with a magnetic field in a turbulent plasma, MHD turbulence.

- Because both, the vorticity and the magnetic field are divergence free, causality requires that both, $P_v(k)$ and $P_B(k) \propto k^2$ for small k.

\[
\langle v_i(k)v_j(k') \rangle = (2\pi)^3 \delta^3(k - k')(\hat{k}_j\hat{k}_i - \delta_{ij})P_v(k),
\]

\[
\langle B_i(k)B_j(k') \rangle = (2\pi)^3 \delta^3(k - k')(\hat{k}_j\hat{k}_i - \delta_{ij})P_B(k)
\]

and the functions $(\hat{k}_j\hat{k}_i - \delta_{ij})P\bullet(k)$ must be analytic because of causality.

\[
\langle v_i(k)v_j(k') \rangle = (2\pi)^3 \delta^3(k - k')(\hat{k}_j\hat{k}_i - \delta_{ij})P_v(k),
\]

\[
\langle B_i(k)B_j(k') \rangle = (2\pi)^3 \delta^3(k - k')(\hat{k}_j\hat{k}_i - \delta_{ij})P_B(k)
\]

For $\bullet = v$ we have $\alpha = 11/3 - 1 = 8/3$ and for $\bullet = B$ we have $\alpha = 7/2 - 1 = 5/2$.

(See Caprini & RD, 2006, astro-ph/0603476)
The electroweak phase transition: GW’s from turbulence and magnetic fields

- The Reynolds number of the cosmic plasma at $T \sim 100\text{GeV}$ is very high. The bubbles of the broken phase expanding into it therefore lead to turbulence.
- Furthermore, in the broken phase the electromagnetic field does generically not vanish. The high conductivity rapidly damps the electric fields so that we are left with a magnetic field in a turbulent plasma, MHD turbulence.
- Because both, the vorticity and the magnetic field are divergence free, causality requires that both, $P_v(k)$ and $P_B(k) \propto k^2$ for small k.
- The behavior of the spectrum on scalar smaller than the correlations scale $k > k_c$ is expected to be a Kolmogorov spectrum for the vorticity field, $P_v \propto k^{-11/3}$ and an Iroshnikov–Kraichnan spectrum, $P_B \propto k^{-7/2}$ or a Kolmogorov spectrum, $P_B \propto k^{-11/3}$ for the magnetic field.
The electroweak phase transition: GW’s from turbulence and magnetic fields

- The Reynolds number of the cosmic plasma at $T \sim 100\text{GeV}$ is very high. The bubbles of the broken phase expanding into it therefore lead to turbulence.
- Furthermore, in the broken phase the electromagnetic field does generically not vanish. The high conductivity rapidly damps the electric fields so that we are left with a magnetic field in a turbulent plasma, MHD turbulence.
- Because both, the vorticity and the magnetic field are divergence free, causality requires that both, $P_v(k)$ and $P_B(k) \propto k^2$ for small k.

$$\langle v_i(k)v_j(k') \rangle = (2\pi)^3 \delta^3(k - k')(\hat{k}_j \hat{k}_i - \delta_{ij})P_v(k),$$

$$\langle B_i(k)B_j(k') \rangle = (2\pi)^3 \delta^3(k - k')(\hat{k}_j \hat{k}_i - \delta_{ij})P_B(k)$$

and the functions $(\hat{k}_j \hat{k}_i - \delta_{ij})P_\bullet(k)$ must be analytic because of causality.
- The behavior of the spectrum on scaler smaller than the correlations scale $k > k_c$ is expected to be a Kolmogorov spectrum for the vorticity field, $P_v \propto k^{-11/3}$ and an Iroshnikov–Kraichnan spectrum, $P_B \propto k^{-7/2}$ or a Kolmogorov spectrum, $P_B \propto k^{-11/3}$ for the magnetic field.
- For the induced GW spectrum this yields

$$\frac{d\Omega_{GW\bullet}(k, \eta_0)}{d\ln(k)} \simeq \Omega_{\text{rad}}(\eta_0) \left(\frac{\Omega_{\bullet}(\eta_*)}{\Omega_{\text{rad}}(\eta_*)} \right)^2 \times \begin{cases} (k/k_*)^3 & \text{for } k < k_* \\ (k/k_*)^{-\alpha} & \text{for } k > k_* \end{cases}$$

For $\bullet = v$ we have $\alpha = 11/3 - 1 = 8/3$ and for $\bullet = B$ we have $\alpha = 7/2 - 1 = 5/2$.

(See Caprini & RD, 2006, astro-ph/0603476)
The electroweak phase transition: GW’s from turbulence and magnetic fields

ω_{GW} from magnetic fields (red) and turbulence (blue), total (black). Modelling the time-decorrelation of the source (Kraichnan decorrelation) by a ’top-hat’ in Fourier space. Sensitivity curves from A. Buonanno 2003.

Caprini, RD, Servant, arXiv:0909.0622
We also consider a phase transition at $T = 5 \times 10^6$ GeV with $\Delta \eta_\ast = 0.02/H_\ast$.

Caprini, RD, Servant, arXiv:0909.0622
It is difficult to estimate $\Omega_B(\eta_*)$ or $\Omega_V(\eta_*)$ accurately, but since causality requires the spectra to be so blue, $\frac{d\Omega_B(k,\eta_*)}{d\ln(k)} \propto k^5$, the limit on gravitational waves (which comes from small scales $k \simeq k_*$) yields very strong limits on primordial magnetic fields on large scales. Already from the simple nucleosynthesis constraint, $\Omega_{GW} \lesssim 0.1 \Omega_{\text{rad}}$.
It is difficult to estimate $\Omega_B(\eta_*)$ or $\Omega_V(\eta_*)$ accurately, but since causality requires the spectra to be so blue, $\frac{d\Omega_B(k,\eta_*)}{d\ln(k)} \propto k^5$, the limit on gravitational waves (which comes from small scales $k \simeq k_*$) yields very strong limits on primordial magnetic fields on large scales. Already from the simple nucleosynthesis constraint, $\Omega_{GW} \lesssim 0.1 \Omega_{\text{rad}}$. E.g. for $k_1 = (0.1\text{Mpc})^{-1}$ we obtain $k_1^{3/2} B(k_1) < 10^{-30}\text{Gauss}$.
It is difficult to estimate $\Omega_B(\eta_*)$ or $\Omega_V(\eta_*)$ accurately, but since causality requires the spectra to be so blue, $d\Omega_B(k,\eta_*)/d\ln(k) \propto k^5$, the limit on gravitational waves (which comes from small scales $k \approx k_*$) yields very strong limits on primordial magnetic fields on large scales.

Already from the simple nucleosynthesis constraint, $\Omega_{GW} \lesssim 0.1\Omega_{\text{rad}}$.

E.g. for $k_1 = (0.1\text{Mpc})^{-1}$ we obtain $k_1^{3/2}B(k_1) < 10^{-30}\text{Gauss}$.

This is purely a consequence of the redness of the magnetic field spectrum. The simple requirement that $\rho_B(t_*) < \rho_c(t_*)$ yields

$$k_1^{3/2}B(k_1) < 10^{-29}\text{Gauss} \left(\frac{k_1 \cdot 0.1\text{Mpc}}{k_* \cdot 10^3\text{sec}} \right)^{5/2}.$$

$(10^3\text{sec} = 10^{-11}\text{Mpc})$
There is a possible way out of these stringent constraints: During the electroweak phase transition parity is broken. Actually, the Chern-Simon winding number of the gauge field, $N_{CS} \propto \int F \wedge A$, which is related to the baryon number, has an electromagnetic part to it which is nothing else than the helicity of the magnetic field, $H = V^{-1} \int_V A \cdot B d^3x$ (Vachaspati, 2001).
There is a possible way out of these stringent constraints:
During the electroweak phase transition parity is broken. Actually, the Chern-Simon winding number of the gauge field, $N_{CS} \propto \int F \wedge A$, which is related to the baryon number, has an electromagnetic part to it which is nothing else than the helicity of the magnetic field, $H = V^{-1} \int_V A \cdot B d^3 x$ (Vachaspati, 2001).

This relates the baryon number the the magnetic helicity.
There is a possible way out of these stringent constraints: During the electroweak phase transition parity is broken. Actually, the Chern-Simon winding number of the gauge field, $N_{CS} \propto \int F \wedge A$, which is related to the baryon number, has an electromagnetic part to it which is nothing else than the helicity of the magnetic field, $H = V^{-1} \int_V A \cdot B d^3x$ (Vachaspati, 2001).

This relates the baryon number to the magnetic helicity.

Such helical magnetic fields and or turbulence lead to T-B and E-B correlations in the CMB, and they also generate gravitational waves with non-vanishing helicity (Caprini, Kahniashvili, RD, 2004; Kahniashvili, Gogoberize & Ratra, 2005).
The electroweak phase transition: helical magnetic fields and parity violation

Helicity conservation for a helical field leads to an inverse cascade in the evolution of the magnetic field:

This can move power from small to larger scales. However, this is not quite sufficient to lead to sufficient large scale magnetic fields for the electroweak phase transition, but it can work for the QCD phase transition (Caprini, RD, Fenu 2009).
The electroweak phase transition: helical magnetic fields and parity violation

Helicity conservation for a helical field leads to an inverse cascade in the evolution of the magnetic field:

This can move power from small to larger scales. However, this is not quite sufficient to lead to sufficient large scale magnetic fields for the electroweak phase transition, but it can work for the QCD phase transition (Caprini, RD, Fenu 2009).

In this case, the GW background is not parity symmetric. There are more GW’s of one helicity than of the other.
First order phase transitions stir the relativistic cosmic plasma sufficiently to induce the generation of a (possibly observable) stochastic gravitational wave background.
First order phase transitions stir the relativistic cosmic plasma sufficiently to induce the generation of a (possibly observable) stochastic gravitational wave background.

Observing such a background would open a new window to the early Universe and to high energy physics!
First order phase transitions stir the relativistic cosmic plasma sufficiently to induce the generation of a (possibly observable) stochastic gravitational wave background.

Observing such a background would open a new window to the early Universe and to high energy physics!

Generically, the density parameter of the GW background is of the order of

\[\Omega_{GW}(t_0) \simeq \Omega_{rad}(t_0) \left(\frac{\Omega_X(t_*)}{\Omega_{rad}(t_*)} \right)^2 \left(\mathcal{H}_* \Delta \eta_* \right)^2 \]
Conclusions

- First order phase transitions stir the relativistic cosmic plasma sufficiently to induce the generation of a (possibly observable) stochastic gravitational wave background.
- Observing such a background would open a new window to the early Universe and to high energy physics!
- Generically, the density parameter of the GW background is of the order of

\[
\Omega_{GW}(t_0) \simeq \Omega_{rad}(t_0) \left(\frac{\Omega_X(t_*)}{\Omega_{rad}(t_*)} \right)^2 (\mathcal{H}_* \Delta \eta_*)^2
\]

- The spectrum grows like \(\frac{d\Omega_{GW}(k,t_0)}{d \ln(k)} \propto k^3 \) on large scales and decays on scales smaller than the correlations scale \(k_* \gtrsim 1/\eta_* \). The decay law depends of the physics of the source.
Conclusions

If the SM holds, the electroweak phase transition is not of first order and does (probably) not generate an appreciable gravitational wave background. However, simple deviations from the SM can make it first order (like adding a Higgs singlet (Ashoorioon & Konstandin 2009)).
If the SM holds, the electroweak phase transition is not of first order and does (probably) not generate an appreciable gravitational wave background. However, simple deviations from the SM can make it first order (like adding a Higgs singlet (Ashoorioon & Konstandin 2009)).

In this case we expect a GW background which can be detected by eLISA.
Conclusions

- If the SM holds, the electroweak phase transition is not of first order and does (probably) not generate an appreciable gravitational wave background. However, simple deviations from the SM can make it first order (like adding a Higgs singlet (Ashoorioon & Konstandin 2009)).

- In this case we expect a GW background which can be detected by eLISA.

- It has been proposed that the magnetic fields generated in this case, could represent the seeds for the fields observed in galaxies and clusters.
Conclusions

- If the SM holds, the electroweak phase transition is not of first order and does (probably) not generate an appreciable gravitational wave background. However, simple deviations from the SM can make it first order (like adding a Higgs singlet ([Ashoorioon & Konstandin 2009]).

- In this case we expect a GW background which can be detected by eLISA.

- It has been proposed that the magnetic fields generated in this case, could represent the seeds for the fields observed in galaxies and clusters.

- If there is no inverse cascade acting on the magnetic field spectrum, the limits on the large scale fields coming from the generated GW background are too strong to allow significant magnetic fields even for the most optimistic dynamo mechanism.
Conclusions

- If the SM holds, the electroweak phase transition is not of first order and does (probably) not generate an appreciable gravitational wave background. However, simple deviations from the SM can make it first order (like adding a Higgs singlet (Ashoorioon & Konstandin 2009).

- In this case we expect a GW background which can be detected by eLISA.

- It has been proposed that the magnetic fields generated in this case, could represent the seeds for the fields observed in galaxies and clusters.

- If there is no inverse cascade acting on the magnetic field spectrum, the limits on the large scale fields coming from the generated GW background are too strong to allow significant magnetic fields even for the most optimistic dynamo mechanism.

- However, if the magnetic field is helical, helicity conservation provokes an inverse cascade which can alleviate these limits.
Conclusions

- If the SM holds, the electroweak phase transition is not of first order and does
 (probably) not generate an appreciable gravitational wave background. However,
simple deviations from the SM can make it first order (like adding a Higgs singlet
(Ashoorioon & Konstandin 2009)).

- In this case we expect a GW background which can be detected by eLISA.

- It has been proposed that the magnetic fields generated in this case, could
 represent the seeds for the fields observed in galaxies and clusters.

- If there is no inverse cascade acting on the magnetic field spectrum, the limits on
 the large scale fields coming from the generated GW background are too strong to
 allow significant magnetic fields even for the most optimistic dynamo mechanism.

- However, if the magnetic field is helical, helicity conservation provokes an inverse
 cascade which can alleviate these limits.

- In this case we also expect a parity violating gravitational wave background,
 $|h_+(k)|^2 \neq |h_-(k)|^2$.