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Motivation / Context

1. Why do we care about detecting stochastic backgrounds?

• learn about populations of astrophysical sources (e.g., 
SMBHBs) and processes in the very early universe

2. Why is detection challenging?

• stochastic signals are effectively another source of noise in a 
detector.  How do you detect noise in noise?

3. What detection methods does one use?

• cross-correlation; null channels or instrument noise modeling; 
frequentist statistics & Bayesian inference

4. What are the prospects for detection?

• depends on source of background (e.g., astrophysical or 
cosmological); specified by detection sensitivity curves
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Plan of talk

1. Characterizing stochastic backgrounds

2. Cross-correlation methods

a. simple example; frequentist and Bayesian approaches

3. Response functions and overlap functions for cross-correlations

4. Single-detector data analysis methods for (e)LISA

5. Detection sensitivity curves
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1. Characterizing GW backgnds 
• Random GW signal;  “confusion noise” from a large 

number of weak, independent, unresolved sources

• Cosmological or astrophysical in origin

• Characterized statistically in terms of the moments

 

• Plane-wave expansion:

• Statistical properties encoded in:
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⇤
1� e�i 2�fL

c (1�k̂·û)
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�
⇤fL

c
(1� k̂ · û)
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Isotropic, unpolarized Gaussian-
stationary background
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Isotropic, unpolarized Gaussian-
stationary background
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Isotropic, unpolarized Gaussian-
stationary background
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Other types of backgrounds

6

1. Anisotropic, polarized, and/or non-Gaussian backgrounds, ... are 
also specified in terms of the expectation values of the Fourier 
components

2. E.g., anisotropic, unpolarized background:

3. Although early analyses (before ~2000) focused on isotropic 
unpolarized backgrounds, more recent analyses have considered 
anisotropic, polarized, non-Gaussian backgrounds

4. This talk will focus on isotropic, unpolarized, Gaussian-stationary 
backgrounds
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2. Cross-correlation method

1. A stochastic GW background is correlated across multiple detectors 
in ways that differ from instrumental noise

2. Cross-correlation methods basically use the random output of one 
detector as a template for the other, taking into account the physical 
separation and relative orientation of the two detectors 

3. Frequentist and Bayesian methods both start with a likelihood; use 
detection statistics or model selection to search for signals

7
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Example of cross-corr method
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Example of cross-corr method

8

Single sample of data in two detectors; uncorrelated noise, common GW signal:

d1 = h + n1

d2 = h + n2
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Single sample of data in two detectors; uncorrelated noise, common GW signal:
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variance of random
GW signal

cross-correlation

2.1 Basic idea

Stochastic gravitational waves are indistinguishable from unidentified instrumetal noise
in a single detector, but are correlated between pairs of detectors in ways that di↵er, in
general, from instrumental noise. As an example, consider data from two detectors:
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which is just the variance (or power) of the stochastic gravitational-wave signal.
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Fourier components hA(f, k̂) are random variables. Here k̂ is the direction of wave prop-
agation, which we take to be toward the origin:

k̂ = � sin ✓ cos� x̂� sin ✓ sin� ŷ � cos ✓ ẑ (8)
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Likelihood function
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Likelihood function
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Cn =

✓
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n1

0
0 �2
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◆
Ch = �2

h

If the noise and GW signal are described by multivariate Gaussian distributions 
with covariance matrices:
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Likelihood function
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Cn =

✓
�2
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0 �2
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h

If the noise and GW signal are described by multivariate Gaussian distributions 
with covariance matrices:

Likelihood function:
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noise params: (σn12, σn22)
signal parameters:  σh2

data vector: (d1, d2)
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Frequentist analysis
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Frequentist analysis
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Maximum likelihood detection statistic: 

noise-only model

signal+noise model

⇤ML ⌘ max✓nmax✓h p(d|✓n,✓h)

max✓n pn(d|✓n)
=
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�̂n1 �̂n2
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�̂2
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Maximum likelihood estimators: 
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NOTE: If we treat the noise variances as known (i.e., vary only σh2):
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single detector ‘excess power’ statistics

Maximum likelihood detection statistic: 
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Bayesian analysis 
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Bayesian analysis 

11

Use Bayes’ theorem to calculate posterior distributions:
prior

joint posterior:

normalization factor

likelihood

p(✓n,✓h|d) =
p(d|✓n,✓h)⇡(✓n,✓h)

p(d)

etc.
marginalized posterior:

p(✓h|d) =
Z

d✓n p(✓n,✓h|d)
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• References:

Jenet et al., 2005

Anholm et al., Phys. Rev. D79, 084030 (2009)

Hellings, 1983

• Basic idea:

x1 = h+ n1

x2 = h+ n2

⌅x1x2⇧ = ⌅h2⇧+ ⌅n1n2⇧+ ⌅h1n2⇧+ ⌅n1h2⇧ = ⌅h2⇧

• Detector response

r(t) =

⇥
d⇤

⇥
d3xhab(t� ⇤, ⌫x� ⌫y)Rab(⇤, ⌫y)

=

⇥
df

⇥
d2⇥k̂

�

A

hA(f, k̂)R
A(f, k̂)ei2⇥f(t�k̂·✏x/c)

s(t) =

⇥
df

⇥
d2⇥k̂

�

A

hA(f, k̂)R
A(f, k̂)ei2⇥f(t�k̂·✏x/c)

• Plane wave expansion:

hab(t, ⌫x) =

⇥
df

⇥
d2⇥k̂

�

A

eAab(k̂)hA(f, k̂) e
i2⇥f(t�k̂·✏x/c)

• Example: Timing residual in single link

�T (t) =
1

2c
uaub

⇥ L

�=0

d�hab(t(�), ⌫x(�))

t(�) = (t� L/c) + �/c , ⌫x(�) = ⌫r1 + �û

RA(f, k̂) =
1

2
uaubeAab(k̂)

1

i2⇥f

1

1� k̂ · û

⇤
1� e�i 2�fL

c (1�k̂·û)
⌅

1

transfer function for a plane-wave
with frequency f, direction k, polarization A

r = Rh = (R+∗h+ + R×∗h×)(t,x)
detector 
response

impulse response detector 
location

convolution

Response function converts metric perturbations to detector output
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2
uaubeAab(k̂)

• Example: Equal-arm laser interferometer in long-wavelength limit:

h(t) ⌅ 1

2

�
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⌃hA(f, k̂)h
⌅
A0(f ⇧, k̂⇧)⌥ = H(f) �(f � f ⇧)�AA0�2(k̂, k̂⇧)

H(f) =
3H2

0

32⇥3

⇥gw(f)

f 3
, ⇥gw(f) =

1

⇤c

d⇤gw(f)

d ln f

⇤c = 3c2H2
0/8⇥G
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i2⇡f

1

2
uaubeAab(k̂)

1

1 + k̂ · û
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�
⇤fL

c
(1� k̂ · û)
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detector responses
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1. Encodes reduction in sensitivity to a stochastic GW background 
due to separation and relative orientation of two detectors

2. For I=J, represents the transfer function from GW power to 
detector response power in a single detector

3. For anisotropic backgrounds, the relevant quantity is the 
integrand

Transfer function between GW power and detector cross-power 
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LIGO Hanford-LIGO Livingston overlap 
function (long-wavelength approx)
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variable frequency,
fixed detector pair

ΓIJ(f) = sum of spherical Bessel 
functions j0(α), j1(α), j2(α), 
where α=2π|Δx|f/c, with coeffs  
depending on separation vector 
Δx, and the detector tensors
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~60 Hz ~c/λ=c/(2x3000 km)

100

Min Zero Max

L1

L2
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FIG. 3. The surface of the earth (15◦ < latitude < 75◦, −130◦ < longitude < 20◦) including

the LIGO detectors in Hanford, WA (L1) and Livingston, LA (L2), the VIRGO detector (V) in
Pisa, Italy, and the GEO-600 (G) detector in Hanover, Germany. The perpendicular arms of the
LIGO detectors are also illustrated (though not to scale). A plane gravitational wave passing by

the earth is indicated by successive minimum, zero, and maximum of the wave. As this wave
passes by the pair of LIGO detectors, it excites the two in coincidence at the moment shown, since

both detectors are driven negative by the wave. During the time when the zero is between L1 and
L2, the two detectors respond in anti-coincidence. Provided that the wavelength of the incident
gravitational wave is larger than twice the separation (d = 3001 km) between the detectors, the

two detectors are driven in coincidence more of the time than in anti-coincidence.

are separated by 94.33◦. Below we give a more detailed version of the derivation that appears
in Ref. [7], and correct a typographical error that appears in Eq. (B6) of that paper.

We take, as our starting point for the derivation, the integral expression (3.30) for γ(f).
To simplify the notation in what follows, we also define

∆"x := d ŝ and α :=
2πfd

c
, (3.32)

where ŝ is a unit vector that points in the direction connecting the two detectors, and d is
the distance between the two detectors. In terms of these quantities, we can write

γ(f) = dab
1 dcd

2 Γabcd(α, ŝ) , (3.33)

where

Γabcd(α, ŝ) :=
5

8π

∑

A

∫

S2
dΩ̂ eiαΩ̂·ŝ eA

ab(Ω̂)eA
cd(Ω̂) . (3.34)
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4. (e)LISA data analysis
1. Cross-correlation is not an option for (e)LISA; have to resort to 

single-detector methods to discriminate signal from noise

a. LISA: 6 links, 3 michelsons (X, Y,Z), 3 noise and signal orthogonal 
channels (A,E,T)  (T is a null channel - insensitive to GW at low f)

b. eLISA: 4 links, single michelson X (no null channel)
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single-detector methods to discriminate signal from noise

a. LISA: 6 links, 3 michelsons (X, Y,Z), 3 noise and signal orthogonal 
channels (A,E,T)  (T is a null channel - insensitive to GW at low f)

b. eLISA: 4 links, single michelson X (no null channel)

2. Proper modeling of instrumental noise, astrophysical foregrounds 
(galactic white dwarf binaries), and GW background allows you to 
discriminate all three components (Adams & Cornish, 2010, 2014):

a. Ωgw(f) ~ few x 10-13 with 1-year data 
b. Reduction from 6 to 4 links increases Ωgw(f) by only ~3x
c. Null channel not crucial; becomes important if noise is not well 

understood (e.g., non-Gaussian or non-stationary)
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Astrophysical foreground
yearly modulation of foreground discriminates it from other noise components

Ωgw(f)=5 x 10-13

X
(t

)

t (sec) 1 year
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Model spectra
different spectral shapes allow to differentiate the different noise components
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(from Hobbs et al., 2011)

5. Detection sensitivity curves
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Remarks about sensitivity curves

1. Can also plot Sh(f) or Ω(f) versus frequency for different detectors

2. Detection sensitivity curves should be different for different sources:

a. transient sources (e.g., binary coalescence, supernovae) 

b. long-lived sources (continuous waves or stochastic background)

3. Sensitivity curves should reflect details of the data analysis method 
(e.g. cross-corr or single-detector; integration over time and freq)
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Power-law integrated sensitivity 
curves for cross-corr searches

For a set of power-law indices, find the amplitude of the background that make 
the network SNR = 1.  Sensitivity curve is envelope of these power-law curves.
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Power-law integrated sensitivity 
curves for cross-corr searches

For a set of power-law indices, find the amplitude of the background that make 
the network SNR = 1.  Sensitivity curve is envelope of these power-law curves.
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Power-law integrated sensitivity 
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Power-law integrated sensitivity curves
(for LIGO-Hanford, LIGO-Livingston)

integrate over frequency 
assuming ρ = 1

 Ωgw(f) = Ωβ(f/fref)β
Ω(f)

envelope of power-law curves
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Power-law integrated sensitivity curves
(for LIGO-Hanford, LIGO-Livingston)

effective strain noise 
for a single detector

integrate over frequency 
assuming ρ = 1

 Ωgw(f) = Ωβ(f/fref)β
Ω(f)

envelope of power-law curves
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Power-law integrated sensitivity curves
(for LIGO-Hanford, LIGO-Livingston)

effective strain noise for H-L 
detector pair (divide by |ΓIJ(f)|)

effective strain noise 
for a single detector

integrate over frequency 
assuming ρ = 1

 Ωgw(f) = Ωβ(f/fref)β
Ω(f)

envelope of power-law curves
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Power-law integrated sensitivity curves
(for LIGO-Hanford, LIGO-Livingston)

effective strain noise for H-L 
detector pair (divide by |ΓIJ(f)|)

effective strain noise 
for a single detector

integrate over 1 year, 0.25 Hz bins

integrate over frequency 
assuming ρ = 1

 Ωgw(f) = Ωβ(f/fref)β
Ω(f)

envelope of power-law curves
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Projected power-law integrated 
sensitivity curves
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Summary

1. Detecting a stochastic GW background is important because it 
can provide info about both astrophysical source populations and 
the very early Universe, which are inaccessible by other means

2. Detection is challenging because a stochastic GW signal it is just 
another source of noise in a single detector

3. Cross-correlation methods can be used whenever you have 
multiple detectors that all respond to the common GW 
background (e.g., LIGO, Virgo, ...  pulsar timing)

4. Proper modeling of instrument noise and GW signal can be used 
to discriminate between signal and noise if the frequency spectra 
or time-domain behavior are different (e.g., (e)LISA)
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Different types of response

29

of the emitted pulses induced by a gravitational wave. The detector response for such a
measurement is thus

r
doppler

(t) ⌘ �⌫(t)

⌫
0

=
d�T (t)

dt
(24)

where �T (t) is the deviation of the round-trip travel time of a pulse away from the value
it would have had at time t in the absence of the gravitational wave. (See Figure 2.)
(ii) Pulsar timing is even simpler in the sense that we only have one-way transmission

Figure 2: A space-time diagram representation of �T (t) for a two-way spacecraft Doppler
tracking measurement. Time increases vertically upward. The vertical arrows are space-
time worldlines for the Earth and a spacecraft. The measurement is made at time t.
The blue dotted line shows the trajectory of a pulse of electromagnetic radiation in the
absence of a gravitational wave; the red solid line shows the trajectory in the presence of
a gravitational wave.

of electromagnetic radiation (i.e., radio pulses are emitted by a pulsar and received by a
radio receiver on Earth). The response for such a system is simply the timing residual

r
timing

(t) = �T (t) (25)

which is the di↵erence between the measured time of arrival of a radio pulse and the
expected time of arrival of the pulse (as determined from a detailed timing model for the
pulsar) due to the presence of a gravitational wave. (See Figure 3.) (iii) Finally, for laser

10

Figure 3: A space-time diagram representation of �T (t) for a (one-way) pulsar timing
residual measurement. Time increases vertically upward. The vertical arrows are space-
time worldlines for a pulsar and a detector on Earth. The measurement is made at time t.
The blue dotted line shows the trajectory of the radio pulse in the absence of a gravitational
wave; the red solid line shows the trajectory in the presence of a gravitational wave.

interferometers like LIGO or LISA, the detector response is the phase di↵erence in the
laser light sent down and back two arms of the interferometer. Again, the phase di↵erence
can be calculated in terms of the change in the round-trip travel time of a photon from
one test mass (e.g., the beam splitter) to another (e.g., one of the end test masses). If we
consider an equal-arm Michelson interferometer with unit vectors û and v̂ pointing from
the beam splitter to the end masses in each of the arms, then

r
phase

(t) ⌘ ��(t) = 2⇡⌫
0

�T (t) (26)

where �T (t) ⌘ Tû,rt(t) � Tv̂,rt(t) is the di↵erence of the round-trip travel times, and ⌫
0

is the frequency of the laser light. (See Figure 4.) Alternatively, one often writes the
interferometer response as a strain measurement in the two arms

r
strain

(t) ⌘ �L(t)

L
=

�T (t)

2L/c
(27)

where �L(t) ⌘ Lû(t)�Lv̂(t) is the di↵erence of the proper lengths in the two arms (having
unperturbed length L), and �T (t) is the di↵erence in round-trip travel times as before.
Thus, interferometer phase and strain response are simply related to one another.

Calculation of �T (t) for beam detectors is most simply carried out in the transverse-
traceless gauge (refs: schutz, MTW, hartle) since the unperturbed separation L of the
two test masses can be large or comparable to the wavelength � ⌘ c/f of an incident
gravitational wave having frequency f . This is definitely the case for pulsar timing where
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L is of order a kpc, and for spacecraft Doppler tracking where L is of order tens of AU.
It is also the case for space-based detectors like LISA (L = 5⇥ 106 km) for gravitational
waves with frequencies around a tenth of a Hz. On the other hand, for Earth-based
detectors like LIGO (L = 4 km), L ⌧ � is a good approximation below a few kHz. Thus,
the approach that we will take in the following subsections is to calculate the detector
response in general, not making any approximation a priori regarding the relative sizes
of � = c/f and L. To recover the standard expressions (i.e., in the long-wavelength or
small-antenna limit) for Earth-based detectors like LIGO will be a simple matter of taking
the limit fL/c to zero. For reference, Table 1 summarizes the characteristic properties
(i.e., size, characteristic frequency, sensitivity band, etc.) of di↵erent beam detectors.

Beam detector L (km) f⇤ (Hz) f (Hz) f/f⇤ Relation

Ground-based ⇠ 1 ⇠ 105 10� 104 10�4 � 10�1 f ⌧ f⇤
interferometer
Space-based ⇠ 106 ⇠ 10�1 10�4 � 10�1 10�3 � 1 f . f⇤
interferometer
Spacecraft Doppler ⇠ 109 ⇠ 10�4 10�6 � 10�3 10�2 � 10 f ⇠ f⇤
tracking
Pulsar timing ⇠ 1017 ⇠ 10�12 10�9 � 10�7 103 � 105 f � f⇤

Table 1: Characteristic properties of di↵erent beam detectors: column 2 is the arm length
or characteristic size of the detector (tens of AU for spacecraft Doppler tracking; a few
kpc for pulsar timing); column 3 is the frequency corresponding to the characteristic size
of the detector, f⇤ ⌘ c/L; columns 4 and 5 are the frequencies at which the detector is
sensitive in units of Hz and units of f⇤, respectively; and column 6 is the relationship
between f and f⇤.

5.2 Calculation of response functions and antenna patterns

Gravitational waves are weak. Thus, the detector response is linear in the metric pertur-
bations h = hab(t, ~x) describing the wave, and can be written as the convolution of h with
the impulse response R = Rab(t, ~x) of the detector. Schematically:

r(t) = (R ⇤ h)(t, ~x) (28)

where ~x is the location of the measurement at time t. More explicitly:

r(t) =

Z 1

�1
d⌧

Z
d3y Rab(⌧, ~y)hab(t� ⌧, ~x� ~y) (29)

=

Z 1

�1
df

Z
d2⌦

ˆk

X

A

RA(f, k̂)hA(f, k̂)e
i2⇡f(t�ˆk·~x/c) (30)

where we have written hab as a superposition of plane waves from di↵erent directions on
the sky (cf. Equation 7) to get the last line. Note that RA(f, k̂) is the detector response
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Figure 12: A plot of the normalized transfer function �II(f) for the strain response of
an equal-arm Michelson interferometer. The dips in the transfer function occur around
integer multiples of c/(2L).
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Figure 13: An extension of Figure 12 to lower and higher frequencies, and plotted on a
log-log scale. The position of the labels show the relative location of the frequency bands
for gravitational-wave searches using ground-based interferometers like LIGO, space-based
interferometers like LISA, spacecraft Doppler tracking and pulsar timing arrays, expressed
in units of c/(2L). See also Table 1 for more details.
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ΓII(f) normalized
to unity at f=0
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Null channel
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Null channel
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Acts as a noise calibrator for the system if you how it is related to the noise in the 
other channel.
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• Frequentists and Bayesians both assume that the measured data are drawn 
from an underlying probability distribution given a particular hypothesis or 
model (called the likelihood function)

• For the case of an additive signal in noise d = Rh + n we have:

• For stochastic signals, h is random, so we marginalize (i.e., integrate) over it 

• For multivariate Gaussian distributions for the noise and signal with 
covariance matrices Cn and Ch, the likelihood function is also multivariate 
Gaussian with covariance matrix C = Cn + R Ch RT 

• But we can consider other probability distributions as well -- e.g., for non-
Gaussian noise and non-Gaussian stochastic background analyses

32

Likelihood function

detector responsenoise and signal parameters

p(d|✓n,✓h) =

Z
pn(d�Rh|✓n)ph(h|✓h) dh

32



33

EARLY ANALYSES (before 2000) MORE RECENT ANALYSES

used frequentist statistics have used Bayesian inference

used cross-correlation methods
typically use cross-correlation methods,
but use null channel or knowledge about 

instrument noise when cross-corr not available

assumed stationary, Gaussian noise have allowed non-Gaussian noise

assumed stationary, Gaussian, unpolarized, and 
isotropic stochastic GW backgrounds

have allowed non-Gaussian, polarized, and 
anisotropic stochastic GW backgrounds

were done in the context of ground-based 
detectors (e.g., resonant bars and LIGO-like 
interferometers) where the long-wavelength 

approximation is valid

 have been done in the context of space-based 
detectors (e.g., spacecraft tracking, LISA)  and 

pulsar timing arrays for which the long-
wavelength approximation is no longer valid

Overview of analysis methods

Despite apparent differences,  ALL analyses use a likelihood function (e.g., as a sampling distribution
for frequentist statistics or for calculating posterior distributions for Bayesian inference) and take 
advantage of cross-correlation if multiple detectors are available
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FREQUENTIST BAYESIAN

probabilities assigned only to propositions about 
outcomes of repeatable experiments (i.e., 
random variables), not to hypotheses or 

parameters, which have fixed but unknown values

probabilities can be assigned to hypotheses and 
parameters, since probability is degree of belief 
(or confidence, plausibility) in any proposition

assumes measured data are drawn from an 
underlying probability distribution, which 

assumes the truth of a particular hypothesis or 
model (likelihood function)

same

constructs a statistic to estimate a parameter, or 
to decide whether or not to claim a detection

needs to specify prior degree of belief in a 
particular hypothesis or parameter

calculates the probability distribution of the 
statistic (sampling distribution)

uses Bayes’ theorem to update prior degree of 
belief in light of new data 

(likelihood + prior →  posterior)

constructs confidence intervals and p-values (for 
parameter estimation and hypothesis testing)

constructs posteriors and odds ratios (for 
parameter estimation and hypothesis testing)
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Likelihood function is starting point for both
frequentist and Bayesian analyses!!
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Example: Frequentist optimally-filtered 
cross-correlation statistic

35

Generalization of the simple cross-correlation statistic to include a 
filter function Q(t-t’) chosen to maximize the SNR of the statistic

Y ⌘
Z T

0
dt

Z T

0
dt0 d1(t)d2(t

0)Q(t� t0) =

Z
df d̃1(f)d̃

⇤
2(f)Q̃(f)

SNRY =
hY ip

hY 2i � hY i2where

Typical assumptions:
1)  Stationary data ( Q(t,t’) = Q(t-t’) )
2)  Uncorrelated noise (Y is unbiased)
3)  Weak signal (noise power is just the measured auto-correlated power)
4)  Only unknown is the overall strength of the GW background
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Optimally-filtered statistic

36

Filtered cross-correlation:

Expected value and variance:

A. Anholm-et-al statistic

YIJ =

⌦ T

0

dt

⌦ T

0

dt⇤ xI(t)xJ(t
⇤)Q(t� t⇤)
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⇥
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| A|2
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