

EPTA constraints on the SGWB of cosmic strings

Sotiris Sanidas

Anton Pannekoek Institute for Astronomy, University of Amsterdam

In collaboration with: Richard Battye (U. of Manchester) Ben Stappers (U. of Manchester)

April 15, 2015

Outline

- A (very) brief introduction on cosmic strings and the difficulties involved in the GW spectrum computation.
- Modelling of the cosmic string SGWB and our approach in setting the tension upper limits.
- Updated constraints on the cosmic string SGWB by the EPTA (New EPTA limit on an isotropic SGWB submitted yesterday).
- Projected tension constraints for GW detection experiments.

Introduction

Main SGWB sources for PTAs (probed frequencies: $10^{-9} - 10^{-8}$ Hz)

Supermassive Black Hole Binaries

Cosmic (super)strings

Potentially, any other broadband SGWB source

 \rightarrow Inflation

- \rightarrow 1st Order phase transitions (Caprini, Durrer, Siemens 2010)
- → Global Phase Transitions (Jones-Smith, Krauss, Mathur 2008)
- → Self-ordering of scalar fields (Fenu, Figueroa, Durrer, Garcia-Bellido 2009)
- → ANY scaling source in the radiation era (Figueroa, Hindmarsh, Urrestilla 2013)

 Cosmic (super)strings provide a *unique* "laboratory" for High Energy Physics in the Early Universe

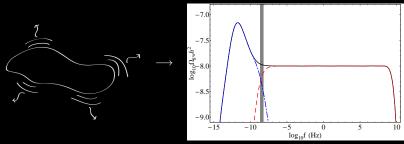
Cosmic Strings

Cosmic superstrings

1)Energy scale of the phase transition

Fundamental string coupling
 Compactification/Warping scales

Directly related to the linear energy density of cosmic strings $G\mu/c^2$



Introduction

Cosmic string network: "Infinite" strings and loops

- Scaling evolution in the radiation and matter eras.
- Energy loss mechanism required
 - \rightarrow loop creation through (self)intercommutation

Loops once formed, decay through GW emission and create a SGWB

Loop birth scale / number density

Basic ingredient: The size of the loops born...

```
Loop size at birth: \ell(t) = \alpha t
```

Numerical simulations

- $lpha \sim 0.1$: Vanchurin et al. 2005/6, Olum & Vanchurin 2007
- 2 $\alpha \sim 10^{-2} 10^{-3}$: Martins & Shellard 2006, Ringeval et al. 2007, _ Blanco-Pillado et al. 2011/14
- 3 $\alpha \sim (\Gamma G \mu / c^2)^k$: Bennett & Bouchet 1989, Allen & Shellard 1990, Siemens & Olum 2001, Siemens et al. 2002
- $\alpha \sim \delta$: Vincent, Antunes & Hindmarsh 1998, Hindmarsh et al. 2008

Analytic results

Polchinski-Rocha 2007, Lorenz et al. 2010, and approximate estimations (i.e., Damour & Vilenkin 2001/2005)

Qualitative and quantitative disagreement due to:

- Differences in the underlying physics (e.g. Nambu-Goto vs. Abelian-Higgs)
 - Simulation specific differences and approximations.

STRONOMICAL INSTITUTE

Dominant GW emission mechanism from loops

GW emission from:

- Cusps (Damour & Vilenkin 2001/5)
- Kinks (Damour & Vilenkin 2001, O'Callaghan & Gregory 2010)

It's not just cusps!!!

- Gravitational backreaction might play an important role.
 (Goldstone boson radiation simulations suggest damping of high emission modes, Battye & Shellard 1994)
- Reduced cusp formation probability in superstrings? (O'Callaghan et al. 2010)

Generic SGWB investigations (Caldwell & Allen 1992, Caldwell et al. 1996, DePies & Hogan 2007)

Impact on PTA tension constraints: 1)PPTA: $G\mu/c^2 < 1.5 \times 10^{-8}$ Jenet et al. 2006 2)EPTA: $G\mu/c^2 < 1.2 \times 10^{-8}$ Van Haasteren et al 2011 (2012 erratum) 3)NANOGrav: $G\mu/c^2 < 10^{-9}$ Demorest et al. 2013

 $Our \ philosophy \rightarrow minimize \ the assumptions made and being \ conservative$ 1st eLISA Cosmology WG Workshop, CERN, April 2015 6/25

Loop number density

Assumptions:

The one-scale model accurately describes the cosmic string network evolution.
 The network is always at the scaling regime.
 (see, Avelino-Sousa 2013 for alternative)

Main parameters:

- String tension, $G\mu/c^2$
- birthscale of loops relative to the horizon, α
- intercommutation probability p ($p = [10^{-3} 1], k = -0.6 \text{ or } -1$)

Loop produced since the creation of the network

$$\frac{dN_{\rm loop}}{dt} = -\frac{V(t)}{f_{\rm r}\mu\alpha d_{\rm H}(t)c^2} \times \left[\dot{\rho}_{\infty}(t) + 2\frac{\dot{a}(t)}{a(t)}\rho_{\infty}(t)\left(1 + \langle v^2 \rangle/c^2\right)\right]$$

Size of loops: $\ell(t,t_{\rm b}) = f_{\rm r} \alpha d_{\rm H}(t_{\rm b}) - \frac{\Gamma G \mu}{c} (t-t_{\rm b})$

Number density:
$$n(\ell_{\rm i}, t_{\rm j}) = \frac{1}{V(t_{\rm j}) \left[f_{\rm r} \alpha \dot{d}_{\rm H}(t_{{\rm b}, {\rm j}}) + \Gamma G \mu / c \right]} \left. \frac{dN_{\rm loop}}{dt} \right|_{t=t_{{\rm b}, {\rm j}}}$$

Intercommutation probability effects: $\rho_{\infty, p \neq 1} \propto p^k \rho_{\infty, p=1}$ 1st eLISA Cosmology WG Workshop, CERN, April 2015

STRONOMICAL INSTITUTE

GW emission mechanism

GW emission modelling: a loop that oscillates relativistically and emits GWs Main parameters:

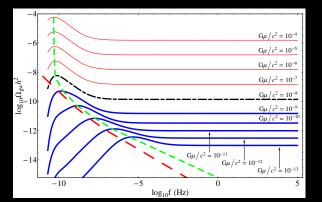
- number of emission modes (harmonics), n
 - n_* high frequency cut-off ($n_* = 1 \rightarrow \infty$)
- spectral index q (cusps:q = 4/3, kinks:q = 2)

SGWB computation

GW emission harmonics (modes): $f_n = \frac{2nc}{\ell}$, $n = 1, \dots, n_*$

• GW power emission:
$$\frac{dE_{\text{gw,loop}}}{dt} = P_n G \mu^2 c$$
, $P_n = \Gamma n^{-q} / \sum_{m=1}^{n_*} m^{-q}$

$$\frac{d\rho_{\rm gw}}{df}(t) = 2\pi \int_{t_{\rm f}}^t dt' \left(\frac{a(t')}{a(t)}\right)^3 \int_0^{f_r \alpha d_{\rm H}(t')} \ell d\ell n(\ell, t') g\left(\frac{a(t_0)}{a(t')}\frac{2\pi}{c}f\ell\right)$$


GW radiation spectrum (unknown; assuming discrete):

$$g(z) = G\mu^2 c \sum_{j=1}^{n_*} P_j \delta(z - 4\pi j)$$
, normalisation: $\int_0^\infty g(z) dz = \Gamma G\mu^2 dz$
 $\Omega_{\rm gw}(f) = \frac{2G\mu^2 c^3}{
ho_{\rm crit} a^5(t_0) f} \sum_{i=1}^{n_*} j P_j \int_{t_0}^{t_0} a^5(t') n_j(f, t') dt'$

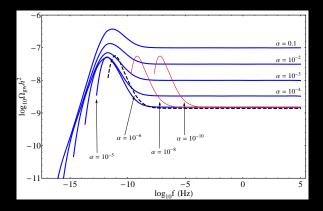
Varying $G\mu/c^2$

Two qualitatively different regimes, signified by the gravitational backreaction scale

$$\alpha \approx \Gamma G \mu / c^2$$

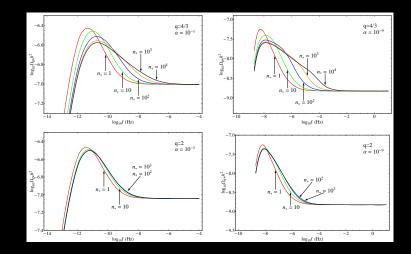
 $\begin{array}{l} \operatorname{For} \alpha \gg \overline{\Gamma G \mu c^2}, \ \Omega \propto (\Gamma G \mu / c^2)^{1/2} & f_{\mathrm{peak}} = \frac{2}{3 f_r \alpha t_0} \left(2 + \frac{3 f_r \alpha c^2}{\Gamma G \mu} \right) \\ \operatorname{For} \alpha \ll \Gamma G \mu / c^2, \ \Omega \propto \Gamma G \mu / c^2 \\ \operatorname{1st} \mathsf{eLISA} \operatorname{Cosmology} \mathsf{WG} \operatorname{Workshop}, \operatorname{CERN}, \operatorname{April 2015} \end{array}$

9/25

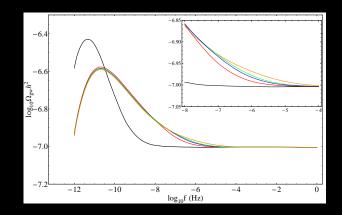

10/9

Varying α

Two qualitatively different regimes, signified by the gravitational backreaction scale

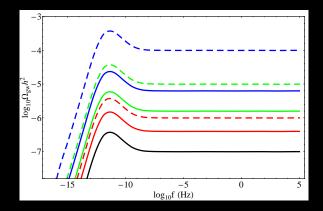

$$\alpha\approx\Gamma G\mu/c^2$$

For
$$\alpha \gg \Gamma G \mu c^2$$
, $\Omega \propto \alpha^{1/2} \to \alpha^{1/4}$
For $\alpha \ll \Gamma G \mu / c^2$, $f_{\text{peak}} \propto \alpha^{-1}$


Varying n_*

Less prominent differences between the two regimes for varying q and n_{\ast} (for kink dominated emission almost insignificant)

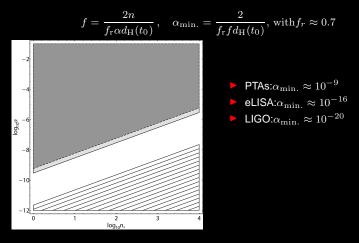
Varying n_*



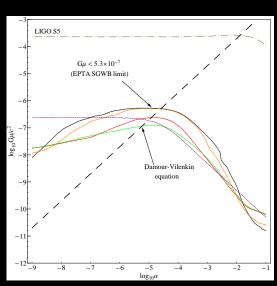
Minimal differences for $n_{\ast}>10^4$ (cusps) $n_{\ast}>10^2$ (kinks)

Varying p

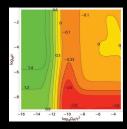
Effects of $p \neq 1$, just a rescaling



The low frequency cut-off


The minimum frequency at which a network can emit is defined by the largest loops present.

 \rightarrow GW detection experiments can probe networks with $\alpha \geq \alpha_{\min}$

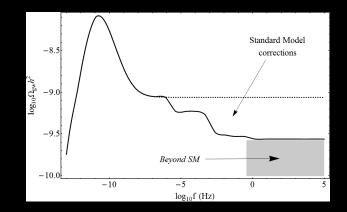


Tension constraints

Constraints (*the only*) utilising amplitude+slope information.

For upper limits: $n_* = 1$ and $n_* = 10^4$, q = 4/3networks necessary.

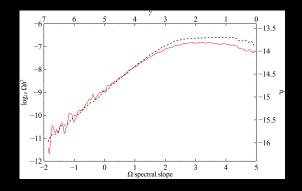
Massive Particle Annihilation


- Corrections due to the massive particle annihilation correction apply!
 Remember that the network forms at the end of inflation
- Every time T_{Univ}. <particle mass threshold, the respective family becomes non-relativistic

Change in the relativistic degrees of freedom, g_* \rightarrow change in the expansion rate of the Universe, and therefore, Ω_{gw}

Correction:
$$\left(\frac{g_{*,t_0}}{g_{*,t_{\rm SP.}}}\right)^{1/3}$$

applied at $t_{\rm sp.} = \left(\frac{32\pi G\rho}{3}\right)^{-1/2}$, $\rho = \frac{\pi^2}{30}g_*T_{\rm Univ.}$
 \rightarrow frequency: $f = \frac{2}{f_{\rm r}\alpha d_{\rm H}(t_{\rm sp.})}\frac{a(t_{\rm sp.})}{a(t_0)}$, α -dependent



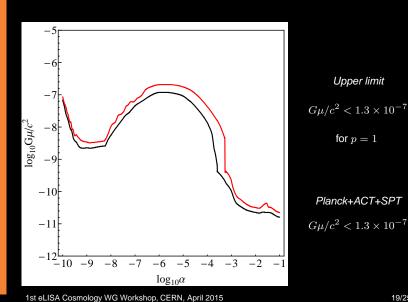
Corrected GW spectrum

• PTAs are affected for a small region of the parameter space. Interferometric detectors are affected significantly.

New EPTA limit on an Isotropic SGWB

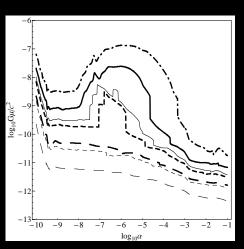
Upper Limit

ANTON PANNEKOEK


$$h_{\rm c} < 3.0 \times 10^{-15} \ @f = 1 {\rm yr}^{-1}$$

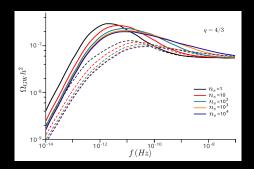
for a SMBH SGWB

- 6 pulsars
- 18 years data span
- Bayesian analysis (intrinsic psr noise parameters + common correlated signals)
- Spectral index free



New EPTA limit on $G\mu/c^2$ (p=1)

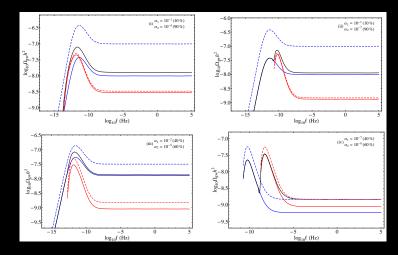
New EPTA limit on $G\mu/c^2$ ($p \neq 1$)



Model	Scenario ii (varying spectral index, varying noise)	
Scaling law	k=0.6	k=1
$p = 10^{-1}$ $p = 10^{-2}$ $p = 10^{-3}$	$\begin{array}{c} 2.2\times 10^{-8} \\ 7.3\times 10^{-9} \\ 2.3\times 10^{-9} \end{array}$	$\begin{array}{c} 1.1 \times 10^{-8} \\ 1.6 \times 10^{-9} \\ 2.8 \times 10^{-10} \end{array}$
Model	Scenario iii (varying spectral index, additional common noise)	
Scaling law	k=0.6	k=1
$p = 10^{-1}$ $p = 10^{-2}$ $p = 10^{-3}$	$\begin{array}{c} 2.4 \times 10^{-8} \\ 6.9 \times 10^{-9} \\ 2.1 \times 10^{-9} \end{array}$	$\begin{array}{c} 1.0 \times 10^{-8} \\ 1.5 \times 10^{-9} \\ 2.2 \times 10^{-10} \end{array}$

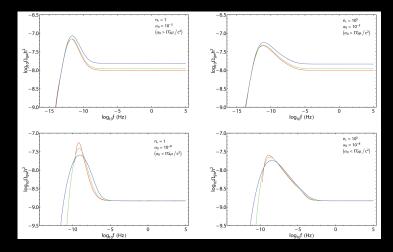
Possible caveats

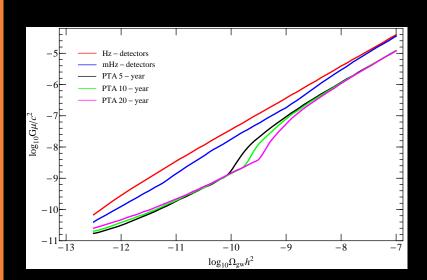
Delay on the onset of scaling


- Infinite string emission (Kawasaki et al. 2010)
- Emission from scaling evolution (Figueroa et al 2012)

Avelino & Souza 2013

Possible caveats


Multiple loop birth scales scales - 2 scales


Possible caveats

Multiple loop birth scales scales - log normal α distribution

Projected constraints for GW detection experiments

Conclusions

- We presented a generic model to describe the GW spectrum of cosmic strings minimising the involved assumptions.
 - Constraints independent of the main model parameters.
 - Robustness closer to that of CMB results.
 - Flexible to adapt and extend.
- ▶ EPTA tension constraints utilise amplitude and local spectral slope information from the SGWB limits. New EPTA limit $G\mu/c^2 < 1.3 \times 10^{-7}$ for p = 1, equal to the *Planck+SPT+ACT* limit.
- Cosmic string GW emission provide a unique opportunity for joint eLISA+PTA investigations.