Gravitational Wave Signal from Preheating

Arttu Rajantie eLISA Cosmology Working Group Workshop CERN, 17 April 2015

Inflation

- Simple, universal predictions:
 - Nearly scale-invariant, nearly Gaussian curvature perturbations
 - Nearly scale-invariant gravitational wave spectrum
 - Great for testing the paradigm, bad for understanding in detail
- Little knowledge about details
 - Any set of observable values compatible with a wide range of models

End of Inflation

- Energy transfer from inflation to Standard Model fields
- Details depend sensitively on microscopic dynamics:
 - Perturbative decay

- Preheating Parametric resonance (Kofman et al 1994)
- Tachyonic preheating Symmetry breaking (Felder et al 2000)
- Observable signatures?
 - Relics (particles, strings etc.)
 - Curvature perturbations (Chambers&AR 2007)
 - Gravitational waves (Khlebnikov&Tkachev 1997)

Preheating

- After inflation, inflaton oscillates about its minimum
- Coupling to other fields
 - -> Parametric resonance (Kofman, Linde & Starobinsky 1994)

Inflaton Oscillations

Toy model: Inflaton coupled to another scalar

$$V = \frac{1}{2}m^2\phi^2 + \frac{1}{2}g^2\phi^2\chi^2 + \frac{1}{2}M^2\chi^2$$

• End of inflation: $\chi \approx 0$, $\phi \sim M_{\rm Pl}$

Classical equation of motion

$$\ddot{\phi} + 3H\dot{\phi} - \frac{1}{a^2}\vec{\nabla}^2\phi + \frac{\partial V}{\partial\phi} = 0$$

Approximate solution

$$\phi(t) = M_{\rm Pl} a^{-3/2} \sin mt$$

Oscillations of Other Scalar

Equation of motion

$$\ddot{\chi}_{k} + 3H\dot{\chi}_{k} - \frac{k^{2}}{a^{2}}\chi_{k} + g^{2}\phi(t)^{2}\chi_{k} + M^{2}\chi_{k} = 0$$

▶ For slowly varying *a*, Mathieu equation

$$\chi_k''(z) + (A_k - 2q\cos 2z)\chi_k(z) = 0,$$

where $q = \frac{g^2 \Phi^2}{4m^2}$, $A_k = 2q + \frac{k^2}{a^2m^2} + \frac{M^2}{m^2}$

Floquet theorem: Solutions of the form $\chi_k(z) = f_k(z)e^{\mu_k t}$ with periodic $f_k(z)$ and constant Floquet index μ_k

Instability Bands

 $\chi_k(z) = f_k(z) e^{\mu_k t}$

- Imaginary μ_k -> Stable
- Real µ_k -> Unstable (exp growing)
- A_k and q decrease:
 Move through
 instability bands
- Narrow $(q \leq 1)$ vs broad $(q \geq 1)$ resonance

Preheating

- Exponentially growing χ_k : Rapid non-perturbative particle production
- Lasts until mode moves out of resonance band or dynamics becomes non-linear
- Non-equilibrium dynamics
 - Need numerical lattice simulations (Khlebnikov&Tkachev 1996)
 - Gravitational wave production (Khlebnikov&Tkachev 1997)
- Followed by turbulence, thermalisation

Massless Preheating

Massless fields

$$V = \frac{1}{4}\lambda\phi^{4} + \frac{1}{2}g^{2}\phi^{2}\chi^{2}$$

• Compatible with observations if non-minimal coupling $\xi \gtrsim 0.005$

Massless Preheating

Massless fields 3.0 $V = \frac{1}{4}\lambda\phi^4 + \frac{1}{2}g^2\phi^2\chi^2$ 2.5Convenient: 2.0No dimensionless κ^2 1.5 parameters 1.0Lamé equation $\widetilde{\chi}_{k}^{\prime\prime} + \left(\kappa^{2} + \frac{g^{2}}{\lambda} \operatorname{cn}^{2}\left(\tau; \frac{1}{\sqrt{2}}\right)\right) \widetilde{\chi}_{k} = 0,^{0.5}$

where $\kappa^2 = k^2 / \lambda \phi_{\rm ini}^2$

Tachyonic Preheating

Hybrid inflation

$$V = \frac{1}{2}m^2\phi^2 + \frac{1}{2}g^2\phi^2\chi^2 + \frac{1}{4}\lambda(\chi^2 - \nu^2)^2$$

Symmetry breaking at

$$\phi = \phi_{\rm c} = \sqrt{\frac{\lambda}{g^2}}v$$

• Modes χ_k grow exponentially for $k \leq \sqrt{\lambda}v$

Non-equilibrium dynamics,Gravitational waves

GW from Non-Equilibrium Fields

• Tensor perturbation h_{ij} :

$$ds^{2} = dt^{2} - a^{2}(t) \left(\delta_{ij} - h_{ij}(t, \vec{x})\right) dx^{i} dx^{j}$$

• Transverse $\partial_i h_{ij} = 0$, traceless $h_{ii} = 0$

Linearised e.o.m

$$\ddot{h}_{ij} + 3H\dot{h}_{ij} - \frac{1}{a^2}\vec{\nabla}^2 h_{ij} = \frac{16\pi}{M_{\rm Pl}^2 a^2} \Pi_{ij}^{\rm TT},$$

with TT anisotropic stress tensor $\Pi_{ij}^{TT}(\vec{k}) = \Lambda_{ij,lm}(\hat{k})\Pi_{ij}(\vec{k}),$ $\Pi_{ij}(\vec{x}) = \partial_i \chi \partial_j \chi + \partial_i \phi \partial_j \phi$

GW from Non-Equilibrium Fields

Energy density in gravitational waves

$$\frac{d\rho_{\rm GW}}{d\log k} = \frac{k^3}{(4\pi L)^3 G} \int \frac{d\Omega_{\hat{k}}}{4\pi} \left| \dot{h}_{ij}(\vec{k}) \right|^2$$

GW energy fraction today

$$\Omega_{\rm GW} h^2 = \Omega_{\rm r} h^2 \left(\frac{\rho_{GW}}{\rho_{\rm tot}}\right) \left(\frac{g_0}{g_*}\right)^{1/3} \sim 10^{-5} \left(\frac{\rho_{GW}}{\rho_{\rm tot}}\right)$$

Peak frequency

$$f_* \sim 6 \times 10^{10} \text{Hz} \frac{k_*}{\sqrt{M_{\text{Pl}} H_{\text{inf}}}}$$

Rough Estimates (Amin et al. 2014)

Characteristic wave number k_{*} ~ H/β, β < 1
 -> Peak frequency

$$f_* \sim 10^{11} \text{Hz} \, \beta^{-1} \frac{\rho_{\text{inf}}^{1/4}}{M_{\text{Pl}}}$$

• Energy fraction in anisotropic stresses $\delta_{\Pi} < 1$ -> Maximum amplitude $\Omega_{GW}(f_*)h^2 \sim 10^{-5}\delta_{\Pi}^2\beta^2$

GW from Quadratic Preheating

GW from Massless Preheating

GW from Preheating

GW from Tachyonic Preheating

Anisotropic GW Background

- Light scalar χ :
 - Scale-invariant fluctuation
- Each direction on the sky:
 - Different χ
- Influences preheating
 - GW amplitude

$$\Omega_{\rm GW} = \Omega_{\rm GW}(\chi)$$

 Different amplitude in different directions (Bethke, Figueroa & AR 2013)

Anisotropy in Massless Preheating

Massless preheating

$$V(\phi, \chi) = \frac{1}{4}\lambda\phi^4 + \frac{1}{2}g^2\phi^2\chi^2 \quad \text{with} \quad \frac{g^2}{\lambda} = 2$$

- Simulate for a range of χ centred around average $\overline{\chi}$
 - Knowing statistics of χ , we can obtain statistics of Ω_{GW}
 - Calculate amplitude on large angular scales
- Strength of signal depends on average $\bar{\chi}$

Dependence on Local χ Value

Dependence on Local χ Value

A. Rajantie, GW Signal from Preheating, 17 April 2015

Amplitude of GW Anisotropy

 $\sim 1\%$ amplitude – observable?

GW Background Anisotropy

- Need a light scalar whose value influences
 GW production locally
- Smoother dependence may lead to a stronger signal
- Phase transitions, defects?

Summary: GW from Preheating

- In principle a way to distinguish between inflationary models:
 - Amplitude
 - Spectrum
 - Anisotropy
- Simplest models:
 - $^\circ\,$ Frequency far too high for eLISA, $f_* \sim 100~{
 m MHz}$
- eLISA frequencies need TeV-scale inflation
 - $^{\circ}$ Typically suppresses amplitude by $ho_{
 m inf}^{1/2}/M_{
 m Pl}^2$