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Inflationary GW: prospects for 
measurement in the near future

□ Background: polarization and gravitational radiation

□ State of the art: Planck, BICEP, Polarbear, etc. 

□ The next generation

□ The next decade

□ Beyond detection: characterising inflation



Evidence & Observations: 
Cosmic Microwave Background

□ 400,000 years after the Big Bang, the temperature 
of the Universe was T~3,000 K 

□ Hot enough to keep hydrogen atoms ionized until 
this time
□ proton + electron → Hydrogen + photon [p+ + e- → H+γ] 
□ charged plasma → neutral gas 

■ depends on entropy of the Universe 
□ Photons (light) can't travel far in  

the presence of charged particles
□ Opaque → transparent

Opaque

Transparent



What affects the CMB 
temperature?

□ Initial temperature (density) of the photons 
 

□ Doppler shift due to movement of baryon-photon plasma
□ Gravitational red/blue-shift as photons climb out of potential wells or fall off of 

underdensities 
 
 
 

□ Photon path from LSS to today
□ All linked by initial conditions ⇒ 10-5 fluctuations

Cooler Hotter
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i.e., Fourier 
Transform, but on a 
sphere

Power Spectrum:

Multipole ℓ ∼ angular scale 180°/ℓ

For a Gaussian theory, Cℓ completely  
determines the statistics of the temperature. 

Determined by temperature, velocity and metric  
on the last scattering surface. 

z~1300: p+e→H & Universe becomes transparent.

CMB Statistics



Theoretical Predictions

~180°/Angular scale
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CMB Polarization:  
Generation

□ Ionized plasma + quadrupole radiation field: 
■ Thomson scattering ⇒ [linearly] polarized emission

□ Unlike intensity, only generated when ionization  
fraction, 0<x<1 (i.e., during transition) 

□ Scalar perturbations: traces ~gradient of velocity
■ same initial conditions as temperature and density fluctuations

□ Tensor perturbations: independent of density fluctuations 
■ +,× patterns of quadrupoles (impossible to form via linear scalar 

perturbations)
■ at last-scattering, from primordial background of gravitational 

radiation, predicted by inflation

e

HOT

COLD



CMB Polarization:  
 E/B Decomposition

□ 2-d (headless) vector field on a sphere
□ Spin-2/tensor spherical harmonics
□ grad/scalar/E + curl/pseudoscalar/B patterns 
 
 
 

□ NB.  From polarization pattern ⇒ E/B 
decomposition requires integration (non-local) or 
differentiation (noisy)
■ Lewis et al; Bunn et al; Smith & Zaldarriaga; Grain et al; 

Bowyer & AJ; … 
■ (data analysis problems)

E E B B



E/B decomposition:  
the math

□ Scalar and tensor modes are isotropic, parity-
symmetric fields on the sky. 

□ T is a scalar, E is the “gradient” of a scalar, B is the 
“curl” of a pseudoscalar

■ everything except scalar perturbations sources B
■ parity: expect 〈EB〉=〈TB〉= 0 
■ try to measure 〈TT〉, 〈BB〉, 〈EE〉, 〈TE〉 
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where the sYlm are spin-weighted spherical harmonics[13] with integer spin weight s — reduc-

ing to the standard spherical harmonics Ylm for s = 0 — n̂ is the chosen coordinate basis and

the aXlm are the s = 0 harmonic coefficients of X = {E,B}. Since one can decompose vector and

tensor fields into curl and divergence parts, and cosmological vector fields decay exponentially

in the inflationary scenario, the decomposition of tensor perturbations corresponds uniquely to

the E- and B-modes. In the real universe of course, the situation is conflated by the presence of

lensing, reionization and other astrophysical phenomena restricting the detection of primordial

tensor mode phenomena to low-l multipoles.
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Gravitational Radiation from 
Inflation

□ Gravitational radiation produced during inflation
□ Characterized by ratio of amplitudes of tensor 

perturbation power (GWs) to scalar power 
(density), r=T/S 
■ ⇒Energy scale of inflation:

□ Contributes to all CMB power spectra (T, E, B)

□ In single-field, “slow-roll” models, r is further 
related to the scalar and tensor spectral indices:
□ Pt(k)∝knt  PS(k)∝k1-ns

� 

V 1/ 4 /MPl ≈ 3×10
−3 r1/ 4



Models of  inflation
□ Scalar & tensor spectra:

■ Energy scale of inflation
□ Single-field Slow-roll  
 
 
 

■ Consistency:  

□ Beyond slow-roll: model-dependent
■ large derivatives of V
■ multiple fields
■ non Bunch-Davies vacuum
■ non-standard kinetic term
■ not inflation: pre-BB, string gas, …

✏V =
M2

plV
2
,�

2V 2
⌧ 1 ⌘V =

M2
plV,��

V
|⌘V | ⌧ 1

Polarbear Experiment Tensor Tilt nT

The coe�cients of Eqs. 5 and 6 at their respective leading orders in the slow-roll parameters are given by

As ⇡
V

24⇡2M4
pl✏V

, (8)

At ⇡
2V

3⇡2M4
pl

, (9)

ns � 1 ⇡ 2⌘V � 6✏V , (10)

nt ⇡ �2✏V , (11)

dns/d ln k ⇡ +16✏V ⌘V � 24✏2V � 2⇠2V , (12)

dnt/d ln k ⇡ +4✏V ⌘V � 8✏2V , (13)

where the slow-roll parameters are defined in Eqs. 2,3,4.

3 Slow-roll Consistency

In single-field inflation with a standard kinetic term, as discussed here, the tensor spectrum shape is not
independent from the other parameters. The slow-roll paradigm implies a tensor-to-scalar ratio at the
pivot scale of

r =
Pt(k⇤)

PR(k⇤)
⇡ 16✏V ⇡ �8nt , (14)

referred to as the consistency relation, Eq. 1 This consistency relation is also useful to help understand
how r is connected to the evolution of the inflaton:

��

Mpl
⇡ 1p

8

Z N

0
dN

p
r . (15)

The above relation, called the Lyth bound [6], implies that an inflaton variation of the order of the Planck
mass is needed to produce r & 0.01. Such a threshold is useful to classify large- and small-field inflationary
models with respect to the Lyth bound.

4 Deviations from slow roll

The recent BICPE2 results, r ⇡ 0.2, motivate us to measure the BB spectrum at a range of scales and
hence determine nt.

Unfortunately, a direct check of the consistency relation seems di�cult in the near term: [quote reasonable
projections for �(nt)]. Hence we are motivated to find ways in which the consistency relation can be
violated: are such models interesting to either detect or rule out?

Note further that the use of very di↵erent kinds of experiments (e.g., pulsar timing constraints) to deter-
mine the slow-roll parameters relies on the assumption that the evolution is well described by a low-order
Taylor series around a single point over a very large range of scales, far from that point.

It seems like it ought to be easy to violate the condition, in a number of ways:

– violate slow-roll for part of the evolution;

– have multiple fields;

– have a di↵erent (non Bunch-Davies) vacuum; and/or
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r =
At

As
⇡ 16✏V ⇡ �8nt

(Also, GWs from preheating,  
etc—see Arttu’s, Enrico’s, … talks)

(measured by Cℓ𝓁)

Polarbear Experiment Tensor Tilt nT

– have a non-standard kinetic term.

By some measure, almost any realistic theory will fall into one or more of these categories, but perhaps
only to a small extent. So we need to be a little more quantitative.

Considered models: violate slow-roll for part of the evolution; have multiple fields; have a di↵erent (non
Bunch-Davies) vacuum; have a non-standard kinetic term (k-inflation, DBI / brane); ekpyrotic / bouncing
models, models predicting nt > 0, f(R), G-inflation...1

4.1 Models of inflation with deviation from slow-roll

4.1.1 General Single Field Models

Needs modifications, here simple adaptation of [2]

The simplest models of Inflation rely on some simple conditions: a single scalar field, slowly rolling down its
(featureless) potential with a canonical kinetic term (and lying in a Bunch-Davies vacuum). In particular
the consistency relation, nt = �r/8 follows from the standard Klein-Gordon Lagrangian L with a standard
kinetic term for the inflaton field �. It is interesting to consider some more general classes of inflationary
models characterized by a non-standard kinetic term whose Lagrangian is a general function of the scalar
inflaton field and its first derivative: L = P (�, X) where X = �gµ⌫@µ�@⌫�/2.

Specific realizations of models of this type include, e.g., k-inflation models ([7, 8]), Dirac-Born-Infield
(DBI) models introduced in the context of brane inflation ([9, 10]) and ghost inflation ([11]).

One of the main features of inflationary models with non-standard kinetic terms is that the inflaton
fluctuations can propagate at a sound speed cs < 12 while in the standard case cs = 1. Therefore in these
models new parameters, like the sound speed and its running, enter in the expressions of the inflationary
observables. It is useful to define an additional slow-roll parameter

s =
ċs
csH

. (16)

For values of these parameters much less than unity the leading order scalar power-spectrum is modified [8]
and the scalar-spectral index gets an additional contribution from the running of the sound speed but the
gravitational sector remains unaltered by the non-trivial inflaton sound speed retaining the same form as
for the standard slow-roll models. Therefore the usual consistency relation is modified to

r = �8ntcs . (17)

Predictions of cs for di↵erent models, to include on the nt/r plot.

Explain that constraints on cs can be obtained with NG constraints, use fNL constraints from [2] to put on

this plot.

1List of available inflation models – non exhaustive : eternal inflation, hybrid inflation, chaotic, Ghost inflation, Tilted
Ghost inflation, DBI inflation, brane inflation, N-flation, bubble inflation, extended inflation, false vacuum inflation, power
law inflation, k-inflation, hyperextended inflation, supersymmetric inflation, Quintessential inflation, Natural inflation, Super
inflation, Supernatural inflation, D-term inflation, B -inflation, Thermal inflation, discrete inflation, Assisted inflation, Polar
cap inflation, Open inflation, Topological inflation, Double inflation, Multiple inflation, Induced-gravity inflation, Warm
inflation, stochastic inflation, Generalized assisted inflation, self-sustained inflation, Graduated inflation, Local inflation,
Singular inflation, Slinky inflation, locked inflation, Elastic inflation, Mixed inflation, Phantom inflation, Boundary inflation,
Non-commutative inflation, Tachyonic inflation, Tsunami inflation, Lambda inflation, Steep inflation, Oscillating inflation,
Mutated Hybrid inflation, intermediate inflation, Inhomogeneous inflation.

2 The sound speed is given by c2s = P,X/(P,X + 2XP,XX) [8], so that in the standard models P (�, X) = V (�)�X
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CMB Signals  
from inflation

□ Want to probe inflaton potential V(φ)
□ Induce scalar and tensor power spectra
■ Observables:
□ temperature and polarization CMB spectra
□ functionally linear  

relationships 

□ Transfer functions T depend on cosmological parameters
□ Amplitude (r=T/S) and shape (ns, nT) of the spectra probe the 

inflaton potential

□ Non-gaussianity:
■ specific inflationary models ⇒ departures from Gaussianity
■ e.g., fNL~1 (in reach of Planck, but not [yet] detected)

CBB
⌅ =

⇤
dk ThB

⌅ (k)Ph(k)

CTT
⌅ =

⇤
dk

�
ThT

⌅ (k)Ph(k) + TRT
⌅ (k)PR(k)

⇥



The Polarization of  the CMB
□ Anisotropic radiation field at last 

scattering → polarization
□ “Grad” or E mode
■ Breaks degeneracies
■ New parameters:

□ reionization
□ “Curl” or B sensitive to  

 gravity waves
■ “Smoking gun” of inflation?
■ Very low amplitude

□ Need [better] handle on 
□ systematics, 
□ lensing
□ polarized foregrounds

Temperature  
(determined by params)

E-Mode Pol 
(determined by params)

B-Mode Pol 
(depends on inflation)

E E B B

(no lensing)



Gravitational Radiation  
& CMB

□ Last scattering: “direct” 
effect of tensor modes 
(primordial GWs) on the 
primordial plasma
■ inflationary potential

□ dominated by lensing of 
E ⇒ B for ℓ≳200

■ [sensitive to mν≲0.06eV
□ (i.e., hot dark matter)]

□ Reionization peak ℓ≲20
■ need ~full-sky. Difficult for 

single suborbital 
experiments

■ Planck 2015: τ≈0.07 — low

□ Limits depend on full set of 
parameters

GRAVITATIONAL WAVES IN THE CMB

• Cosmic variance of dominant scalar fluctuations limits �r = 0.07 from T and
�r = 0.02 if include E

– Degeneracies make actual limits worse; WMAP5 alone r < 0.43 (95% CL)

3

Courtesy A. Challinor

Reionization  
peak

Lensing 
peak

Suborbital experiments target ℓ~100 peak:
kilopixel telescopes give order-of-magnitude 
increase in sensitivity over Planck



Planck 2015



Planck 2015-2016
□ 2015 data release 
■ To be completed ~June 2015 (with likelihood code)
■ Temperature: all
■ Polarization: full high-ℓ𝓁 data, only 70 GHz low-ℓ𝓁
□ polarization is hard: differencing sensitive to detector drifts 

(low-frequency noise/systematics)
□ temperature remains baseline

□ 2016 data release
■ full-mission temperature and polarization
■ better measurements of τ, reionization history



Evidence for inflation?
□ A flat universe



Inflation: Models
□ Slightly redder than scale-invariant (ns≲1)
□ Simplest models: scalar field φ w/very flat potential V(φ)
□ Planck constrains specific models of inflation
□ No evidence of gravitational radiation in the early 

universe



Inflation: Models
□ Slightly redder than scale-invariant (ns≲1)
□ Simplest models: scalar field φ w/very flat potential V(φ)
□ Planck constrains specific models of inflation
□ No evidence of gravitational radiation in the early 

universe



From low frequency to high: 
Future and Current limits

□ courtesy http://rhcole.com/apps/GWplotter/
□ (see Moore, Cole & Berry 2014, arXiv:1408.0740)
□ nb. Joe Romano’s caveats on these figures...

current CMB: r<0.12  
⇾ V1/4<2×1016 GeV 

extrapolated from 10-16 Hz!
(assuming non-blue spectrum)

⌦GW(k) / Pt(k)

/ V

/ r

http://rhcole.com/apps/GWplotter/


Post-Planck CMB
□ Since late 1990s, (bolometric) detectors at ~ 

quantum limits
■ need many detectors (low noise)
□ Can only improve by √N

■ … at many frequencies (discriminate foregrounds)
□ narrow bands (or even Fourier-transform spectroscopy)
□ (fewer photons per band, so see above — many detectors)

□ e.g., lithography  
+ antenna coupling

Original Polarbear  
design, c. 2000



BICEP2

□ 256×2 = 512  
TES bolos  
@150GHz

□ 0.5 deg FWHM 
□ Strategy: large sky area 380 deg2 (AJ et al ’00)
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FIG. 2.— BICEP2 power spectrum results for signal (black points) and temporal-split jackknife (blue points). The red curves show the lensed-⇤CDM theory
expectations — in the case of BB an r = 0.2 spectrum is also shown. The error bars are the standard deviations of the lensed-⇤CDM+noise simulations. The
probability to exceed (PTE) the observed value of a simple �2 statistic is given (as evaluated against the simulations). Note the very different y-axis scales for the
jackknife spectra (other than BB). See the text for additional discussion of the BB spectrum.
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FIG. 11.— Modified constraints on the tensor-to-scalar ratio r when sub-
tracting each of the foreground models shown in Figure 6 from the BICEP2
BB bandpowers. The line styles and colors match Figure 6 with dashed for
auto spectra and solid for cross spectra. The probability that each of these
models reflects reality is hard to assess — see the text for discussion.

atic contamination, and shown that foreground is highly un-
likely to contribute a large fraction of our observed signal, we
must ask what extensions to the standard model might resolve
this situation.

One obvious modification is to allow the initial scalar per-
turbation spectrum to depart from the simple power law form
which is assumed in the base ⇤CDM model. A standard
way in which this is done is by introducing a “running” pa-
rameter dns/d lnk. In Planck Collaboration XVI (2013) the
constraint relaxes to r < 0.26 (95% confidence) when run-
ning is allowed with dns/d lnk = -0.022± 0.010 (68%) (for
the Planck+WP+highL data combination). In Figure 13 we
show the constraint contours when allowing running as taken
from Figure 23 of Planck Collaboration XVI (2013), and how
these change when the BICEP2 data are added. The red con-
tours on the plot are simply the Monte Carlo Markov Chains
(MCMC) (Gamerman & Lopes 2006; Lewis & Bridle 2002)
provided with the Planck data release37 (and are thus identical
to those shown in that Planck paper). We then apply impor-

37 As downloaded from http://www.sciops.esa.int/
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FIG. 12.— Joint constraints on the tensor-to-scalar ratio r and the lensing
scale factor AL using the BICEP2 BB bandpowers 1–5. One and two � con-
tours are shown. The horizontal dotted lines show the 1� constraint from
Planck Collaboration XVI (2013). The BICEP2 data are compatible with the
expected amplitude of the lensing B-mode which is detected at 2.7�.
tance sampling (Hastings 1970) to these chains using our r
likelihood as shown in Figure 10 to derive the blue contours.

The point of Figure 13 is not to endorse running as the cor-
rect explanation of the observed deficit of low ` T T power.
It is simply to illustrate one example of a simple model ex-
tension beyond standard ⇤CDM+tensors which can resolve
the apparent tension between previous T T measurements and
the direct evidence for tensors provided by our B-mode mea-
surements — probably there are others. Of course one might
also speculate that the tension could be reduced within the
standard ⇤CDM+tensors model, for example if ⌧ or other pa-
rameters were allowed to shift. We anticipate a broad range
of possibilities will be explored.

12. CONCLUSIONS

We have described the observations, data reduction, sim-
ulation and power spectrum analysis of all three seasons of
data taken by the BICEP2 experiment. The polarization maps
presented here are the deepest ever made at degree angular
scales having noise level of 87 nK-degrees in Q and U over
an effective area of 380 square degrees.

wikiSI/planckpla section “Cosmological Parameters”.



BICEP2

□ 256×2 = 512  
TES bolos  
@150GHz

□ 0.5 deg FWHM 
□ Strategy: large sky area 380 deg2 (AJ et al ’00)
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FIG. 2.— BICEP2 power spectrum results for signal (black points) and temporal-split jackknife (blue points). The red curves show the lensed-⇤CDM theory
expectations — in the case of BB an r = 0.2 spectrum is also shown. The error bars are the standard deviations of the lensed-⇤CDM+noise simulations. The
probability to exceed (PTE) the observed value of a simple �2 statistic is given (as evaluated against the simulations). Note the very different y-axis scales for the
jackknife spectra (other than BB). See the text for additional discussion of the BB spectrum.
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atic contamination, and shown that foreground is highly un-
likely to contribute a large fraction of our observed signal, we
must ask what extensions to the standard model might resolve
this situation.

One obvious modification is to allow the initial scalar per-
turbation spectrum to depart from the simple power law form
which is assumed in the base ⇤CDM model. A standard
way in which this is done is by introducing a “running” pa-
rameter dns/d lnk. In Planck Collaboration XVI (2013) the
constraint relaxes to r < 0.26 (95% confidence) when run-
ning is allowed with dns/d lnk = -0.022± 0.010 (68%) (for
the Planck+WP+highL data combination). In Figure 13 we
show the constraint contours when allowing running as taken
from Figure 23 of Planck Collaboration XVI (2013), and how
these change when the BICEP2 data are added. The red con-
tours on the plot are simply the Monte Carlo Markov Chains
(MCMC) (Gamerman & Lopes 2006; Lewis & Bridle 2002)
provided with the Planck data release37 (and are thus identical
to those shown in that Planck paper). We then apply impor-

37 As downloaded from http://www.sciops.esa.int/
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FIG. 12.— Joint constraints on the tensor-to-scalar ratio r and the lensing
scale factor AL using the BICEP2 BB bandpowers 1–5. One and two � con-
tours are shown. The horizontal dotted lines show the 1� constraint from
Planck Collaboration XVI (2013). The BICEP2 data are compatible with the
expected amplitude of the lensing B-mode which is detected at 2.7�.
tance sampling (Hastings 1970) to these chains using our r
likelihood as shown in Figure 10 to derive the blue contours.

The point of Figure 13 is not to endorse running as the cor-
rect explanation of the observed deficit of low ` T T power.
It is simply to illustrate one example of a simple model ex-
tension beyond standard ⇤CDM+tensors which can resolve
the apparent tension between previous T T measurements and
the direct evidence for tensors provided by our B-mode mea-
surements — probably there are others. Of course one might
also speculate that the tension could be reduced within the
standard ⇤CDM+tensors model, for example if ⌧ or other pa-
rameters were allowed to shift. We anticipate a broad range
of possibilities will be explored.

12. CONCLUSIONS

We have described the observations, data reduction, sim-
ulation and power spectrum analysis of all three seasons of
data taken by the BICEP2 experiment. The polarization maps
presented here are the deepest ever made at degree angular
scales having noise level of 87 nK-degrees in Q and U over
an effective area of 380 square degrees.

wikiSI/planckpla section “Cosmological Parameters”.

Planck Collaboration: Dust polarization at high latitudes

Fig. 8: Top: map in orthographic projection of the 150 GHz DBB

` amplitudes at ` = 80, computed from the Planck 353 GHz data,
extrapolated to 150 GHz, and normalized by the CMB expectation for tensor-to-scalar ratio r = 1. The colours represent the
estimated contamination from dust in rd units (see details in Sect. 5.3). The logarithm of the absolute value of rd for a 400 deg2 patch
is presented in the pixel on which the patch is centred. As described in Sect. 3.3.2, the patches overlap and so their properties are not
independent. The northern (southern) Galactic hemisphere is on the left (right). The thick black contour outlines the approximate
BICEP2 deep-field region (see Sect. 6). Bottom: associated uncertainty, �(rd).

their positions, sizes, shapes, and apodizations. In addition, be-
cause we found the amplitudes of the dust DBB

` spectra asso-
ciated with these patches based on a power-law fit, our esti-
mate does not take into account possible features in the power
spectra that might alter the precise value of dust contamination.
Nevertheless, there are clearly some patches that appear to be op-
timal, i.e. cleaner than the others. But it needs to be emphasized

that finding the cleanest areas of the polarized sky for primordial
B-mode searches cannot be accomplished accurately using the
Planck total intensity maps alone.
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Foreground modelling
□ The Planck/BICEP2 experience has shown that 

foregrounds dominate even “clean” areas of sky
■ low dust intensity ≠ low dust polarisation

□ need enough frequency coverage to measure dust 
(&c) properties on small patches.
■ e.g. two-temperature  

grey-body models, galactic  
magnetic field

■ traced better at higher  
(dust) and lower (synch,  
free-free) frequencies  
than 100-200 GHz where  
CMB dominates.

S Feeney/EBEX



The Post-Planck generation: 
Lensing

□ Polarization: Starting to get the first results from kilo-
pixel CMB detector arrays — sufficient to detect lensing 
conversion of E→B 
■ Sensitive to growth of structure  

(e.g., neutrinos)
■ Cross-correlation with large-scale structure  

(SPTPol: Hanson et al;  
ACT: Hand et al; Polarbear @ ~4σ)

■ ⟨EEEB⟩ & ⟨EBEB⟩  
(Polarbear @ ~4σ)

■ These are not 
primordial B modes  
(gravitational radiation)
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FIG. 3. Polarization lensing power spectra for each lensing estimator. Measured polarization lensing power spectra for each of
Polarbear’s three patches for both lensing estimators ⟨EEEB⟩ (left) and ⟨EBEB⟩ (right). The lensing signal predicted by
the ΛCDM model is shown in solid black curve. The lensing power spectra are shown for each patch in dark green (RA23), blue
(RA12) and magenta (RA4.5), respectively. Patch-combined lensing power spectrum is shown in red. Covariance estimates are
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FIG. 4. Polarization lensing power spectra. Polarization lensing power spectra (red) with B-modes co-added from the three
Polarbear patches and two estimators. ⟨EEEB⟩ is in blue and ⟨EBEB⟩ dark green. Left: A 4.6σ rejection of the null
hypothesis of no lensing. This data fits a lensing amplitude A = 1.37 ± 0.30 normalized to the fiducial ΛCDM value. Right:
The same data, assuming the existence of lensing to calculate error bars including sample variance and including the covariance
between ⟨EEEB⟩ and ⟨EBEB⟩. In this case, the amplitude is measured as A = 1.06 ± 0.47, corresponding to a 43%
uncertainty on the amplitude of the Cdd

L power spectrum (a 22% uncertainty on the amplitude of matter fluctuations). The
posterior distribution functions of the amplitudes A from both unlensed and lensed simulations are shown in the inserted boxes.
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FIG. 1: Cross-power spectra of CMB polarization lensing
and the 500µm Herschel CIB flux. Top panel: the min-
imum variance combination of all polarization lensing mea-
surements cross-correlated with the Herschel maps; this re-
sult corresponds to 4.0� evidence for gravitational lensing of
CMB polarization. Middle panel: the cross power of EB-
reconstructed lensing with the Herschel maps; constructed
from the EB estimator applied to both Polarbear maps,
this result corresponds to 2.3� evidence for lensing B-modes.
Bottom panel: all four combinations of the two lensing
estimators (EE,EB) applied to two di↵erent Polarbear

maps (RA23, RA12) and cross-correlated with Herschel -
EB/RA23 (dark blue), EE/RA23 (green), EE/RA12 (red),
EB/RA12 (cyan), listing from left to right for each band-
power. The fiducial theory curve for the lensing – CIB cross-
spectrum [16] is also shown (solid line).

gives similar detection significances (to within 0.2�). As
our null hypothesis is the absence of gravitational lens-
ing of CMB polarization, we include no lensing in the
Monte Carlo simulations used to derive the detection sig-
nificance.
Systematic Error Estimates and Null Tests:

Here we discuss the e↵ects of potential sources of sys-
tematic error on the polarization lensing – CIB cross-
correlation. We briefly focus on astrophysical fore-
grounds before turning to instrumental systematics.
To check the foreground contamination level, we com-
pare the lensing-CIB cross-powers with and without the
ATCA sources masked in the CMB; we find the di↵er-
ences are less than 0.2�, which indicates that the con-
tribution of polarized point sources is negligible. As
an additional test, we simulate polarized point sources
(very conservatively estimating 10% polarization frac-
tion, counts as in [36], and neglecting any source mask-
ing in Polarbear) in both CMB and CIB maps and
propagate these maps through our lensing estimation and
cross-correlation pipeline. We find negligible contamina-
tion to the cross-power (at levels well below a percent of
the signal).
We next discuss instrumental systematic errors. First,

we consider a general systematic that linearly couples
T and E modes into B-modes, as leakage most a↵ects
the small B-mode signal (in addition, no other system-
atics can mimic the galaxy EB-lensing cross-correlation
signal, as the signal will still be zero on average if the
lensing B-mode is zero). To estimate the e↵ects of such
instrumental systematic errors, we simply insert a gen-
eral expression for the systematic-contaminated B mode

B̃(`) = B(`) +

Z
d2`0

(2⇡)2
sEB(`� `0)E(`0)

+

Z
d2l0

(2⇡)2
sTB(`� `0)T (`0), (5)

into our expression for the cross-correlation using the
EB-reconstruction. Here the functions s describe the
systematic-induced couplings and the fields E,B, T are
the true (lensed) fields on the sky. Analytically calculat-
ing the e↵ects of such leakage on the cross-correlation,
we find that the bias it induces is zero, essentially due to
the fact that, in cross-correlation, the EB-estimator is
insensitive to leakage of even parity. To test this analytic
calculation in simulations, we repeat the cross-correlation
pipeline verification described earlier, except now intro-
ducing leakage terms. We add 1% of the temperature
maps to the Q and U maps, and add 10% of Q to U
and vice versa. The introduced leakage does not bias the
cross-correlation to percent-level accuracy although the
errors increase marginally.
We estimate the e↵ects of beam uncertainty by gen-

erating simulations with the beam values everywhere in-
creased or decreased by an amount equal to the 1� error.

PB x Herschel H-Atlas CIB measurement
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Beyond detections
□ already done: Ωk=1, ns ≠ 1
□ detection: r ≠ 0
□ characterisation:
■ measure r to a “few sigma”
■ measure running 
■ measure shape of tensor power spectrum, nT
□ for single-field inflation these essentially give derivatives of the 

potential V(φ)
■ (also, detect non-Gaussianity,  

isocurvature modes)
■ other physics, e.g., neutrino mass

Figure 2: Simons Array constraints on the tensor-
to-scalar ratio r and spectral index ns. Closed con-
tours give experimental constraints. The majority of
single-field slow-roll inflation models are “large field”
which occupy the white space above r = 0.01. Simons
Array will be able to detect or rule out the majority
of these models. Dashed lines separate single-field
slow-roll inflation models into regions separated by
the first derivative of their potential. Polarbear-1
constraints are labeled as PB-1.

insight to the symmetry properties of quantum
gravity and the possible role of string theory at
these ultra-high energies.

When the Astro2010 Decadal Survey listed
a CMB search for the inflationary gravitational
waves as one of eight compelling areas for mid-
scale ground-based projects, they wrote “Detect-
ing the B-mode polarization pattern on the Cos-
mic Microwave Background impressed by gravi-
tational waves produced during the first few mo-
ments of the universe both would provide strong
evidence for the theory of inflation that is so cru-
cial to our understanding of how structures form,
and would open a new window on exotic physics
in the early universe in regimes not accessible
even to the most powerful particle accelerators
on Earth.”

1.2 Large-Scale Structure

CMB photons are gravitationally lensed by
large-scale structure in the universe. A detailed
characterization of this e↵ect will be a powerful
probe of astrophysics, cosmology, and fundamen-
tal physics. Both the CMB temperature and po-
larization fluctuations are distorted by structure
between the last-scattering surface and the ob-
server. CMB lensing measures the accumulated
deflection along the line of sight. The lensing
kernel peaks at z ⇠ 2 with a long tail to z ⇠ 8
that gives sensitivity to essentially all structure
in the universe. CMB lensing is complementary

Figure 3: The Simons Array constraints on ⌃m⌫
and ⌦m. CMB lensing and Baryon Acoustic Oscil-
lation (BAO) data are complementary in breaking
degeneracy between these two parameters. The con-
straints from the combination of the two is better
than either alone. The combination of the Simons
Array and DESI BAO give a constraint on ⌃m⌫ of
18 meV, giving a > 3� detection of the known 58
meV minimum mass. Dashed and solid lines are 1
and 2� constraints respectively. Assumed model has
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masses and constrain the time evolution of dark
energy. It will also be be synergistic with other
large-scale structure surveys, providing further
constraints and searching for the e↵ects of in-
strumental and astrophysical systematic errors.

The Simons Array will measure 80% of the
sky with 3.50 resolution and su�cient depth to
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and dark energy to those of the cmbpol mission
design. The survey maps we produce will be a
very important legacy data set, which we will
make available to the community.

We know that neutrinos have mass di↵erences
from flavor oscillation experiments, but we have
only upper limits on absolute mass. The current
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the combination of CMB and other astrophysical
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do not fall into potential wells. Holding the to-
tal dark matter constant, the formation of large-
scale structure is suppressed with increasing neu-
trino mass since the ratio of hot to cold dark
matter is increased. CMB data shows that the
sum of the masses of relativistic species, includ-
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delensing
□ Matter along the line sight shifts photon trajectories 

E⇾B (and B⇾E)
□ Already observed in CMB alone and in cross-correlation with LSS 

observations
■ modifies the distribution function of temperature and polarisation
□ induces non-Gaussianity (Hu and Okamoto)
□ use high-resolution observations to de-lens low-l spectra

■ correlates signal with ρ along line of sight (Smith et al)
□ with LSS obs’ns, not as powerful as CMB-only; 21cm a possibility
□ What about “mass maps” from GW sirens?

■ In principal, can use these to separate  
the lensing effect from the primordial  
contribution.
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The next (last?) generation: S4
□ Currently planning/funding 104-detector 

experiments — need another order of magnitude 
to take full advantage of the sky
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Parts of this talk based on data & papers released 2013-15 by the 400-person Planck Collaboration



Moore’s law for CMB 
experiments?

□ Goal r~10-3

■ Starobinsky, Higgs
■ trans-Planckian 

excursions
■ (Creminelli et al 2015)

■ also nt ~ 0.1 
□ Multiple ground-

based telescopes
□ >105 detectors
□ 50% sky
□ 40-240 GHz for 

foreground  
removal  

□ 1 μK arcm 
sensitivity 

□ TES bolos
□ 1 TB/day 

□ (supplemented 
by balloons for 
>300 GHz?)  

□ similar to a 
future satellite (!)
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Prospects for the coming  
decade+

□ Still have 1-2 more orders of magnitude in r to observe
□ Interesting models to see or rule out.
□ Technical challenges — 100k detector arrays, foregrounds, lensing

CMB goal: r<10-3  
⇾ V1/4<6×1015 GeV 

⌦GW(k) / Pt(k)

/ V

/ r


