

eLISA sensitivity and data analysis

A. Petiteau (APC – University Paris Diderot)

eLISA cosmology working group

CERN – 14th April 2015

Outline

- > Introduction on eLISA
- "Cosmological sources" and eLISA
- Keys aspects of the design constraining the sensitivity
- > The first set of configurations
- First estimations on the science capabilities for various configurations
- Status of data analysis
- Conclusion

Outline

- Introduction on eLISA
- "Cosmological sources" and eLISA
- Keys aspects of the design constraining the sensitivity
- > The first set of configurations
- First estimations on the science capabilities for various configurations
- Status of data analysis
- Conclusion

eLISA as L3 mission at ESA

- Gravitational Universe" theme selected for L3 in Cosmic Vision program at ESA : launch around 2034
- ESA asks to start NOW the study of technological needs,
- Selection of the mission around 2018,
- > \rightarrow If LISAPathfinder (2015) is a success, some chance to have a rearrangement of calendar and a launch before 2034 !

The Gravitational Universe

A science theme addressed by the *eLISA* mission observing the entire Universe

eLISA L3 concept

- > 3 spacecrafts (SC) forming 2 arms of 1 million kilometres,
- > SC always adjusts on a free-falling test mass using micro-thruster,
- Exchange of laser for forming an interferometer and measuring GW deformations

eLISA in next years

- Enlarge scientific community around eLISA: future of GW astronomy,
- Science potential and data analysis has to be studied in details,
- Detailed concept has to be defined : preliminary studies based on eLISA/NGO varying key aspects already start ...

LISAPathfinder

Petiteau - eLISA

- Basic idea : squeeze one arm of eLISA
 from one millions km to few tens of cm.
- > The LISAPathfinder will test in flight :
 - Inertial sensor,
 - Interferometry between free floating test masses,
 - Drag Free and Attitude Control System
 - Micro-Newton propulsion technology

LISAPathfinder

Ready to be launch on September 2015.

L

eLISA sources

- ➢ Galactic binaries : few tens millions in Galaxy and about 3000 resolvable including verification binaries, i.e. sources already observed (about ten more are coming with Gaia)
 → guaranteed sources
- Massive Black Hole Binaries,
- Extreme Mass Ratio Inspirals
- Bursts : cosmic string cusps, ...
- Cosmological backgrounds,
- All the unknown sources !

0

S DER

2.0

4

Complementarity between detectors: binary sources

PARIS BIDEROT

Outline

- Introduction on eLISA
- "Cosmological sources" and eLISA
- Keys aspects of the design constraining the sensitivity
- > The first set of configurations
- First estimations on the science capabilities for various configurations
- Status of data analysis
- Conclusion

"Cosmological sources" and eLISA

- > At least 2 possible types of signals :
 - Stochastic background : example : first order phase transitions in the early Universe, cosmic string background, ...
 - Bursts : cosmic string cusps and/or kinks, ... (?)
- > Important to study them now in order to evaluate the characteristic of a realistic signal and the possible impact on the design :
 - How to detect this kind of signal ?
 - How to separate them from instrumental noise ?
 - How can it influence observation of others sources ?
 - Which calibration procedures are need (and have to be consider in the design) to be able to identified noises and background ?

EROT

Complementarity between detectors: cosmological backgrounds

Example of cosmic string background :

eLISA sensitivity and data analysis - A. Petiteau - eLISA Cosmology WG - 14/04/15

DIDEROT

Outline

- > Introduction on eLISA
- "Cosmological sources" and eLISA
- Keys aspects of the design constraining the sensitivity
- > The first set of configurations
- First estimations on the science capabilities for various configurations
- Status of data analysis
- Conclusion

- > Acceleration noise :
 - Ability to keep a mass in free fall
 - Will be measured by LISAPathfinder
 - For eLISA-L3 : Margin x 3x10⁻¹⁵ m.s⁻².Hz^{-1/2}

ESA Margin = 1/0.65

Shot noise :

- Due to the very weak power received on photodiode after the inter-spacecraft travelling.
- Depend on armlength and telescope diameter
- For eLISA-L3 : Margin x 4.7x10⁻¹² m.Hz⁻¹

ESA Margin = 1/0.65

0

DIDER

٩

- Other Measurement
 Noises :
 - All unknown noise.
 - Very approximative in the simplified version.
 - For eLISA-L3 : Margin x 5.15x10⁻¹² m.Hz⁻¹

ESA Margin = 1/0.65

- > All Noises :
 - Low frequency dominated by Acceleration Noise.
 - High frequency dominated by Shot Noise and Other
 Measurement
 Noise

Response to Gws for eLISA-L3

- Response to GWs :
 - Depending on orbits (armlength)
 - Frequency dependance partially due to Time Delay Interferometry (recombination of phasemeter measurements to remove the laser noise)

• Computation: PSD of TDI X with as input 192 white stochastic GWs isotropically distributed on sky

Standard sensitivity

- > S^2 = Response to Noises / Response to GWs = PSD_{Noises} GWs
- Also called "Strain linear spectral density"
 - In Hz^{-1/2} 1e-14 Strain linear spectral density $(1/\sqrt{Hz})$ 1e-15 1e-16 1e-17 1e-18 1e-19 1e-20 1e-05 0.1 0.0001 0.001 0.01 Frequency (Hz)

eLISA sensitivity and data analysis - A. Petiteau - eLISA Cosmology WG - 14/04/15

٩

Sensitivity in characteristic amplitude

- $\succ S_h^2 = f S^2$
- > Dimensionless

Sensitivity in GW energy density

- > $h^2 \Omega_{_{GW}} = 4 \pi^2 f^3 S^2 / (3 H_0^2)$
- Typical representation used in cosmology and more generally in theoretical physics (cosmic strings, etc)
 0.001

DIDEROT

- Introduction on eLISA
- "Cosmological sources" and eLISA
- Keys aspects of the design constraining the sensitivity
- > The first set of configurations
- First estimations on the science capabilities for various configurations
- Status of data analysis
- Conclusion

Context

- > Need a "detailed" configuration for the selection in 2017-2018.
- > We have some time now :
 - to study the technical possibilities for the instrument,
 - and in parallel doing science studies as exhaustive as possible.
- Step 1 : study science with simplified configurations covering a wide range of possibilities in coordination with the GOAT.

 \rightarrow understand the relations between design and science returns.

- Step 2 : (in parallel) define detailed configurations.
- Step 3 : do science case for few detailed configurations.

Varying armlength

- > 3 armlength values djusting telescope diameter D & laser power Pto have shot noise just below other measurement noises :
 - A1: 1 Gm (eLISA) : P = 0.7 WD = 25 cm
 - A2: 2 Gm :
 P = 2 W
 D = 28 cm
 - A5 : 5 Gm (old LISA) P = 2 WD = 40 cm

0

DER

2.0

Note : no margin

L

Varying acceleration noise

- > 2 choices for the acceleration noise :
 - N1 : LISAPathfinder required : very pessimistic : 3x10⁻¹⁴ m.s⁻².Hz^{-1/2}

 N2 : LISAPathfinder expected : optimistic : 3x10⁻¹⁵ m.s⁻².Hz^{-1/2}

2.0

2 or 3 arms (4 or 6 links)

- ≻ 2 arms :
 - one interferometer
 - cheaper (?)
- > 3 arms :
 - 2 independent interferometers noise independent :
 - possible to measure the polarisation
 - detect correlation between the 2 interferometer ... stochastic background
 - Increase of SNR by square root of 2

Varying mission duration

- > eLISA-L3 : 2 years
- > 2 values : 2 or 5 years
- Science impact on :
 - SNR of "permanent" sources
 - Mathematical increases (in probability) of the number of transients (MBHB, EMRIs, Bursts).
- > Technological impacts :
 - requirement and redundancy about the subsystem
 - orbits

6 basic configurations, 24 in total

- Main difference at low frequency : from best to worth :
 - LxA1N1, LxA2N1, LxA5N1, LxA1N2, LxA2N2, LxA5N2
 Main impact from acceleration noise
- For each of this 6
 basic configurations :
 - 2 or 5 years
 - 4 or 6 links

> 24 in total

DE

2.0

6 basic configurations, 24 in total

- Main difference at low frequency : from best to worth :
 - LxA1N1, LxA2N1, LxA5N1, LxA1N2, LxA2N2, LxA5N2
 Main impact from acceleration noise
- For each of this 6
 basic configurations :
 - 2 or 5 years
 - 4 or 6 links

> 24 in total

Next steps in the design : detailed configurations

- Replace shot noise + other measurement noises by a decomposition of all effects :
 - thermal, electric, optical, read-out, ...
- > Optimize orbits taking into account influence of the Earth
- Realistic acceleration : eLISAnoise simulator (SSM model) + LISAPathfinder

Work in progress within the simulation working group with major contribution from APC and AEI : new "detailled" simulator (extended LISACode ?)

0

Outline

- > Introduction on eLISA
- "Cosmological sources" and eLISA
- Keys aspects of the design constraining the sensitivity
- > The first set of configurations
- First estimations on the science capabilities for various configurations
- Status of data analysis
- Conclusion

Preliminary estimations for galactic binaries

- PRELIMINARY ESTIMATION
- > Over 60 millions sources
- Detected
- > Localized :
 - 2D
 - 3D

Type of mass transfer

	Arm	Noise	Links	Full ID	S/N > 7	2-D	3-D	$\dot{f} < 20\%$	$\ddot{f} < 20\%$
		N1	L4	L4A1M2N1	569	241	82	464	1
	A1		L6	L6A1M2N1	952	418	103	672	3
		N2	L4	L4A1M2N2	5248	1366	452	1496	1
			L6	L6A1M2N2	8805	2390	600	1936	3
		N1	L4	L4A2M2N1	1298	498	205	809	3
	A2		L6	L6A2M2N1	2043	800	246	1056	3
		N2	L4	L4A2M2N2	9189	2754	1001	2255	3
		112	L6	L6A2M2N2	14757	4562	1257	2804	3
	A5	N1	L4	L4A5M2N1	3073	987	410	1275	3
			L6	L6A5M2N1	4987	1674	548	1604	3
		N2	L4	L4A5M2N2	13634	5558	1816	3287	3
		112	L6	L6A5M2N2	21744	8815	2127	3989	3

2.0

Preliminary estimations for galactic binaries

- PRELIMINARY ESTIMATION
- Confusion noise : sum of all unresolved galactic binaries
- Needed for at least for configuration with LPF expected acceleration noise

ШО

2.0

Preliminary estimations for Massive Black Hole Binaries

- PRELIMINARY ESTIMATION : Optimal waveform not available ... pessimistic estimations, ..
- ▹ 1Gm 2 years LPF required :
 - 5-40 detected in total but very few with a decent parameters estimation.
- > 1 Gm 2 years LPF expected :
 - 10-100 detected in total with few high redshift (z>10) but still poor parameters estimation.
- > 5 Gm − 2 years − LPF expected :
 - 15 250 detected in total ; 0-80 @ z>10 and few tens with good parameter estimations

Preliminary estimations : Cosmological sources

- To be done !
- Should be easy to over plot model on sensitivity curve
- It could be very interesting to use more realistic data using for example catalog of event for cosmic strings : working in progress at APC (student J.-B. Jolly) ...

Outline

- > Introduction on eLISA
- "Cosmological sources" and eLISA
- Keys aspects of the design constraining the sensitivity
- > The first set of configurations
- First estimations on the science capabilities for various configurations
- Status of data analysis
- Conclusion

Data analysis for bursts

- Heritage from Mock LISA data Challenge : cosmic string bursts were included in the MLDC3 (Babak et al. CQG27:084009,2010)
 [5Gm – 3 arms - 2 years – LPF expected] :
 - Methods :
 - Matched filtering with search algorithm to find the best parameters : MultiNest, MCMC parallel tempering
 - Time-frequency
 - Results :
 - Detection : OK
 - Problem to recover the direction of the burst because the waveform is short : very difficult for 3 arms so almost impossible with 2 arms

EROT

Data analysis for bursts

Challenge 3.4: Cosmic string-cusp bursts

Results : SNR, Fitting Factor and parameters

- All groups successfully recovered all the 3 bursts.
- Very good estimation of SNR and Fitting Factor > 0.99 BUT ...
 - ... poor accuracies on parameters due to the character of the waveform.

$_{(SNR_{true})}^{source}$	group	Δsky (deg)	Δt_D (sec)	$\Delta \psi$ (rad)	$\Delta A/A$	SNR	FF_A	FF_E
String-1 (43.46)	CAM CAM JPLCIT JPLCIT MTGWAG	106.9 49.4 34.2 113.7 106.6	$\begin{array}{c} 1.462 \\ 2.331 \\ 1.585 \\ 1.574 \\ 2.071 \end{array}$	$\begin{array}{c} 0.501 \\ 1.065 \\ 3.726 \\ 3.739 \\ 2.600 \end{array}$	$\begin{array}{c} 0.904 \\ 1.128 \\ 0.413 \\ 0.431 \\ 0.745 \end{array}$	43.706 43.520 43.506 43.497 43.287	$\begin{array}{c} 0.99947 \\ 0.99964 \\ 0.99986 \\ 0.99988 \\ 0.99975 \end{array}$	$\begin{array}{c} 0.99797 \\ 0.99591 \\ 0.99844 \\ 0.99847 \\ 0.99565 \end{array}$
String-2 (33.6)	CAM JPLCIT JPLCIT MTGWAG	$82.0 \\ 90.5 \\ 45.2 \\ 53.1$	3.683 4.005 3.847 3.223	$\begin{array}{r} 4.846 \\ 4.268 \\ 6.364 \\ 0.158 \end{array}$	$\begin{array}{c} 0.062 \\ 0.282 \\ 0.231 \\ 0.011 \end{array}$	33.690 33.689 33.694 33.696	$\begin{array}{c} 0.99945 \\ 0.99949 \\ 0.99939 \\ 0.99926 \end{array}$	0.99986 0.99929 0.99960 0.99978
String-3 (41.42)	CAM CAM CAM JPLCIT JPLCIT MTGWAG	80.8 133.3 44.5 59.0 157.7 137.9	$\begin{array}{c} 1.249 \\ 1.715 \\ 0.763 \\ 1.546 \\ 1.226 \\ 0.980 \end{array}$	3.785 3.257 3.202 3.129 5.614 0.110	$\begin{array}{c} 0.338\\ 0.238\\ 0.066\\ 0.317\\ 0.220\\ 0.161 \end{array}$	$\begin{array}{r} 41.326\\ 41.456\\ 41.142\\ 41.315\\ 41.316\\ 41.418\end{array}$	$\begin{array}{c} 0.99073\\ 0.99388\\ 0.99700\\ 0.99554\\ 0.99717\\ 0.99327 \end{array}$	$\begin{array}{c} 0.99923\\ 0.99869\\ 0.99883\\ 0.99848\\ 0.99864\\ 0.99948\end{array}$

0

DER

2.0

8

L

Data analysis for bursts

Data analysis for bursts

- New tests have to be done :
 - with more realistic noises, in particular in the presence of glitches,
 - with more bursts at lower amplitude : confusion limit,
 - with realistic burst population.
- Recover/reimplement old data analysis and develop new ones
- > Working in progress at APC ...

Data analysis for stochastic background

- Heritage from Mock LISA data Challenge : cosmic string bursts were included in the MLDC3 (Babak et al. CQG27:084009,2010)
 [5Gm - 3 arms - 2 years - LPF expected] :
 - Method :
 - Used the noise uncorrelated virtual interferometer A & E or
 A, E and T : need 3 arms
 - MCMC to estimate parameters
 - Results :
 - Partial recovery.
 - Limitations in data simulation

2.0

Data analysis for stochastic background

- > With 2 arms some ideas using the spectral shape (Cornish et al.) ...
- > NEED more work to :
 - Investigate feasibility,
 - Develop new methods,
 - Generate more realistic background.
- Can we characterize each type of background ? Can we do realistic simulation for each of them ?
- > Use anisotropy if there is some ?
- Possibly related to the design and the calibration procedure.
- > Working in progress ... everybody is welcome !

44

Conclusion

- Need studies now : the 2–3 next years, before selection in 2018, are the right time to do a "complete" coherent study for eLISA.
- Working in progress on the design of the detector and the key technological aspects.
- Study in progress with a first set of 24 configurations :
 - 3 armlength : 1, 2 or 5 Gm,
 - 2 acceleration noises : LISAPathfinder required or expected
 - 2 durations : 2 or 5 years
 - 2 or 3 arms
- Data analysis : heritage from MLDC but a lot of work has still to be done in particular for the backfround.
- Cosmological sources also have a potential implication on design : calibration procedures, ...

eLISA sensitivity and data analysis - A. Petiteau - eLISA Cosmology WG - 14/04/15

DEROT

Thank you.

L

DA individual sources: MSGA

Framework to run in parallel several dedicated search methods :

- → "Global searches" looks for new good candidates avoiding the ones already found.
- → "Local searches" explores in details the best candidates found at the previous step.
- "Modes separation" : the results are combined to find a new set of best candidates using some criterions (high SNR and not to close to the others).
- Each search is done by a GA with a special tuning.

