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How do we understand perturbative field theory?

Textbook formulation: Lagrangian <— Feynman diagrammatics.

Manifest properties:
@ Poincaré invariance
@ Unitarity

@ Locality of the interactions

Drawbacks:
o Field redefinitions
@ Gauge redundancies
@ Gauge invariance broken at intermediate stages

@ Further structures and symmetries hidden
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Constructive approach to perturbation theory

Object of investigation: Scattering amplitudes M,

Analytic function

Super-Poincaré:
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Grassmann coherent states (N < 4):
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Building blocks: 3-particle amplitudes

(Super)-Poincaré invariance:

@ momentum conservation: (p® + p@)2 = (—p¥)2 = 0
() =0.Yi = M= M([i.J]) + M ((i.))

@ little group = functional form of Mék), k=12



Building blocks: 3-particle amplitudes

(Super)-Poincaré invariance:
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Decorated on-shell diagrammatics

On-shell rules:

@ Gluing — On-shell processes

\ Z / dz/\(’)d21“)d~(l)
i i/ Vol{GL(1)} 1

4

o More constraints than degrees of freedom: singularity
@ Same number of contraints as dofs: localised diagram
@ Less constraints than dofs: differential forms
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Decorated on-shell diagrammatics

On-shell rules
@ Helicity flows
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Scattering amplitudes as on-shell forms

General structure of the perturbative expansion

- aL
Ma({A7, A b 71 = Y M@PAY, A% b 7}, {2}) A dan
L=0 I=1

[

Inequivalent on-shell diagrams with 4L dofs unfixed

@ L = 0: fully localised diagrams <—> Tree level amplitudes
o L > 1: 4L-differential forms <= L-loop integrand
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Scattering amplitudes as on-shell forms

Singularity equation:
o () = + X + H + H
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BCFW bridging as integration of the singularity equation
Tree-level
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Scattering amplitudes as on-shell forms
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Scattering amplitudes as on-shell forms
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Scattering amplitudes as on-shell forms
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Scattering amplitudes as on-shell forms
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Extraction of physical info: Look at the poles
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Scattering amplitudes as on-shell forms

Ma(Q) = +
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Extraction of physical info: Look at the poles
Triangle coefficients:
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Scattering amplitudes as on-shell forms
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Extraction of physical info: Look at the poles

Double cut structure:
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Conclusion

On-shell diagrammatics as a starting point for a Lagrangian
free definition of field theory

Locality is lost for individual diagrams
Symmetry and Structure of the theory more transparent.

All-loop recursion relation holds for the intergrand of N' > 1
SYM in the planar sector (diagrammatic proof!)

Provide a natural definition for the forward limit in A/ = 0
YM < |t needs to be checked

Difference in structure between SYM and YM suggested to be
due to the different structure in the tree-level boundary term
(deeper understanding needed)

It is lacking an on-shell interpretation for the all-plus helicity
amplitudes



