

Tomeu Fiol Universitat de Barcelona

Overview of work done in collaboration with Blai Garolera, Alberto Güijosa, Aitor Lewkowycz, Juan Pedraza and Genís Torrents

Probing a CFT

Consider a heavy probe coupled to a CFT, in some rep. of the gauge group.

It may be coupled to additional fields.

Its world-line is prescribed. It defines a line operator (Wilson line,....).

What are the fields it creates? Energy radiated? Momentum fluctuations?.....

Wilson operator, 't Hooft operator,....

An example: Maxwell theory

Coulomb

1

 $|\vec{x}|$

 $\mathcal{L} \sim F^2 \sim E^2 - \cancel{B^2}$

Static
Particle $\langle \mathcal{L}(\vec{x}) \rangle = q^2 \frac{1}{|\vec{x}|^4}$

Accelerated

Particle

Accelerated

$$
P = \frac{2}{3}q^2 a^{\mu}a_{\mu}
$$

Particle

Larmor

Plan of the Talk

- *External Probes in CFTs.*
- *E* Computing Bremsstrahlung functions.

•AdS/CFT

- **•Localization**
- **Two applications.**

Cusped Wilson line: Radiation

 φ

J.J. Thomson

Bremsstrahlung function

$$
\Delta E = 2\pi B(\lambda, N) \int dt \; (\dot{v})^2
$$

Cusped Wilson line

dimension

Polyakov 80

Line operators and local operators

$$
\langle O(x) \rangle_W \equiv \frac{\langle O(x)W \rangle}{\langle W \rangle}
$$

Kapustin 05

Conformal symmetry fixes $<$ \mathcal{O} $>_{W}$ **up to a coefficient.**

Buchbinder, Tseytlin 12

Line operators and local operators

World-line Operators: Displacement Operators

For any line operator in any 4d CFT, we have defined:

$$
\langle W \rangle \sim e^{-\Gamma_{cusp}(\varphi,\lambda) \log \frac{L}{\epsilon}}
$$

$$
\Delta E = 2\pi B(\lambda, N) \int dt \; (\dot{v})^2
$$

$$
\langle \langle \mathbb{D}_i(t_1) \mathbb{D}_j(t_2) \rangle \rangle = \tilde{\gamma}(\lambda, N) \frac{\delta_{ij}}{(t_1 - t_2)^4}
$$

$$
\langle T_{00}(x) \rangle_W = h(\lambda, N) \frac{1}{|\vec{x}|^4}
$$

$$
\langle \mathcal{L}(x) \rangle_W = f(\lambda, N) \frac{1}{|\vec{x}|^4}
$$

These coefficients are actually not independent...

Expand the cusp anomalous dimension at small angles,

$$
\Gamma(\varphi) = \Gamma(\lambda,N) \varphi^2 + \mathcal{O}(\varphi^4) + \ldots
$$

Then, for any line operator and any 4d CFT,

$$
\Gamma = \frac{\tilde{\gamma}}{12} = B
$$

= *B* **Correa, Henn, Maldacena, Sever 12**

But wait!, there is more...

Hyperbolic Wilson line: accelerated probe

Hyperbolic Wilson line: accelerated probe

Since T^{Oi} is the Poynting vector, this should give an **alternative way to compute energy loss by radiation.**

BF, Garolera, Lewkowycz 12

Actually, one needs to use an improved T_{0i}.

Lewkowycz, Maldacena 13 Agón, Güijosa, Pedraza 14

Hyperbolic Wilson line: accelerated probe

BF, Garolera, Torrents 13

$$
\langle \langle \mathbb{D}_i(\tau) \mathbb{D}_j(0) \rangle \rangle = 12 B(\lambda, N) \frac{\delta_{ij}}{16R^4 \sinh^4(\frac{\tau}{2R})}
$$

$$
\kappa = \lim_{w \to 0} \int d\tau e^{iw\tau} \ll \mathbb{D}_i(\tau) \mathbb{D}_j(0) \gg = 16\pi^3 B(\lambda, N) T^3
$$
\nUnruh temperature

Very pretty.... but can we actually compute $B(\lambda, N)$ for any *probe in any CFT?*

Yes! 1/2-BPS probe coupled to *N=4* **SYM.**

A reminder: CFTs and local operators

Conformal symmetry gives constraints on correlation functions, but it doesn't fix all coefficients.

$$
\langle \mathcal{O}_i(x)\mathcal{O}_j(0)\rangle = \frac{\delta_{ij}}{(x)^{2\Delta_i(\lambda,N)}}
$$

 $<$ $O_i(x_i)O_j(x_j)O_k(x_k)$ >= $c_{ijk}(\lambda,N)$ $(x_{ij})^{2\alpha_{ijk}}(x_{ik})^{2\alpha_{ikj}}(x_{jk})^{2\alpha_{jki}}$

We need additional tools to compute coefficients.

Computing the Bremsstrahlung function

What additional tools can we consider?:

•Pert. Theory (finite N, small) λ

•Integrability (large N, finite) λ

•AdS/CFT (large N, large) λ

•Localization (finite N, finite) λ

Consider a particle in the fundamental representation. Its dual is a *fundamental string***, reaching the boundary of AdS at the particle world-line.**

In the absence of other scales, the effective charge is

 e_Γ^2 $\frac{2}{\Box} \sim \sqrt{ }$ λ

It signals screening of the charge at strong coupling.

$$
S_{NG} = -\frac{1}{2\pi\alpha'}\int d^2\sigma\sqrt{-|g|} = -\frac{\sqrt{\lambda}}{2\pi L^2}\int d^2\sigma\sqrt{-|g|}
$$

Example: accelerated particle

Mikhailov found the fundamental string dual to a particle following an *arbitrary* **timelike trajectory.**

 $P =$ 2π $a^{\mu}a_{\mu}$ $\sqrt{ }$ λ

Mikhailov 03

Example: accelerated particle

The world-sheet horizon splits the gluonic cloud into a *Coulombic and a radiative* **part.**

Circular Wilson loop

 $\ln \left(\langle W_{\bigcirc} \rangle \right) = \sqrt{\lambda}$ Berenstein *et al.* 98

All these computations yield

The $\sqrt{\lambda}$ in these results appears from evaluating **classical string solutions to the NG action. There are two types of corrections:** $\sqrt{ }$ λ

 $1/\sqrt{\lambda}$ world-sheet fluctuations. $\sqrt{ }$ λ

 \rightarrow 1/N higher genus world-sheets.

Forste, Ghoshal, Theisen 99 Drukker, Gross,Tseytlin 00 Buchbinder, Tseytlin 13

1/N Corrections with AdS/CFT

Example: accelerated particle

It is possible to find a D3-brane that reaches the boundary at an arbitrary timelike trajectory.

BF, Güijosa, Pedraza 14

$$
P = \frac{k\sqrt{\lambda}}{2\pi}\sqrt{1 + \frac{k^2\lambda}{16N^2}} a^{\mu}a_{\mu}
$$

BF, Garolera 11 BF, Güijosa, Pedraza 14

Probes in k-symmetric representation

Static
Particle
$$
\langle \mathcal{L}(\vec{x}) \rangle_{S_k} = \frac{k\sqrt{\lambda}}{16\pi^2} \sqrt{1 + \frac{k^2\lambda}{16N^2}} \frac{1}{|\vec{x}|^4}
$$

BF, Garolera, Lewkowycz 12

Accelerated
\n
$$
P = \frac{k\sqrt{\lambda}}{2\pi} \sqrt{1 + \frac{k^2\lambda}{16N^2}} a^{\mu} a_{\mu} \text{ BF, Gaijosa, Pedraza 14}
$$
\n**Particle**
\n
$$
\kappa = 4\pi k \sqrt{\lambda} \sqrt{1 + \frac{k^2\lambda}{16N^2}} T^3 \text{ BF, Garolera, Torrents 13}
$$
\n**Circular**
\n**Wilson loop**
\n
$$
\ln \langle W(\bigcirc) \rangle = \frac{k\sqrt{\lambda}}{2} \sqrt{1 + \frac{k^2\lambda}{16N^2}} + 2N \sinh^{-1} \frac{k\sqrt{\lambda}}{4N}
$$

Drukker, BF 05

Probes in k-symmetric representation

All these computations yield

$$
B(\lambda, N) = \frac{k\sqrt{\lambda}}{4\pi^2} \sqrt{1 + \frac{k^2\lambda}{16N^2}}
$$

A priori, not justified to trust this result fork=1.

probe approx.

Nevertheless, it is a fact that for these quantities k=1 correctly captures 1/N corrections.

Exact Results for External Probes

An exact Bremsstrahlung function

We will derive the Bremsstrahlung function for an electric 1/2 BPS probe in the fundamental rep. of N=4 U(N) SYM.

Start with <W>. Recall the Special Conformal Transformation,

Conformal Anomaly !

The anomaly is localized at a point in space-time It is perturbatively captured by a matrix model, guessed to be a Gaussian Hermitian matrix model.

 λ 8*N* **Erickson, Semenoff, Zarembo 00**

Drukker, Gross 00

Using localization techniques, Pestun proved the result to be correct, and exact.

$$
\langle W_{\bigcirc} \rangle = \frac{1}{N} L_{N-1}^1 \left(-\frac{\lambda}{4N} \right) e^{\frac{\lambda}{8N}}
$$

1

Pestun 07

What about $\langle T_{\mu\nu}(x)W_{\bigcirc}\rangle$?

In $N = 4$ SYM, the Lagrangian density and the stress **energy tensor belong to a short multiplet, the supercurrent multiplet.**

$$
\mathcal{O}_2 = \text{Tr}\, \left(\Phi^{\{I}\Phi^{J\}} \right) \qquad T_{\mu\nu} \sim Q^2 \bar{Q}^2 \mathcal{O}_2 \qquad \mathcal{L} \sim Q^4 \mathcal{O}_2
$$

 $<$ W_{\bigcirc} $\mathcal{O}_2(x)$ $>$ is computed with a normal matrix model

Okuyama, Semenoff 06

$$
=\frac{\sqrt{2}\lambda}{4N^3}\left[L_{N-1}^2\left(-\frac{\lambda}{4N}\right)+L_{N-2}^2\left(-\frac{\lambda}{4N}\right)\right]e^{\frac{\lambda}{8N}}
$$

and finally we arrive at the Bremsstrahlung function for an electric 1/2 BPS probe in the fundamental rep. of N=4 U(N) SYM,

$$
B_{U(N)}(\lambda,N)=\frac{\lambda}{16\pi^2N}\frac{L_{N-1}^2\left(-\frac{\lambda}{4N}\right)+L_{N-2}^2\left(-\frac{\lambda}{4N}\right)}{L_{N-1}^1\left(-\frac{\lambda}{4N}\right)}
$$

It is a rational function (why?)

Equivalently,

$$
B = \frac{1}{2\pi^2} \lambda \partial_{\lambda} \log \langle W_{\bigcirc} \rangle
$$

Correa, Henn, Maldacena, Sever 12

First application: A benchmark for transport coefficients

Momentum broadening in Q.G.P.

 $\kappa = g(\lambda, N)T^3$

Modelling QGP by N=4 SYM : trailing string

SUGRA vs. exact results

Roughly, in this range

IF the same were true for thermal

push towards QGP value ...

Second application:

Back to String Theory...

Two words about AdS/CFT

What we say....

What we do....

Quantum Gravity in AdS space

CFT in one less dimension

We can compute exactly certain quantities in CFT. Can we use them to learn about string theory beyond the SUGRA regime?

"Ask not what the world-sheet can do for you; ask what you can do for the world-sheet.

(Understandably) Anonymous

5 Witten 98

Novel feature: non-orientable surfaces in 1/N expansion

Possible to derive exact relations among vevs, even without doing the integrals:

$$
\langle W(g) \rangle_{SO(2N)} = \langle W(g) \rangle_{U(2N)} + \frac{1}{2} \int_0^g dg' \langle W(g') \rangle_{U(2N)}
$$

BF, Garolera, Torrents 14

These relations have implications for the dual perturbative string expansion.

One-crosscap diagrams related to orientable \bullet **ones:**

World-sheets with two crosscaps don't $\overline{\mathbf{o}}$ **contribute:** \otimes \otimes + \otimes \otimes + \otimes / \wedge \otimes + ... **= 0 + 0 + 0 +**

Similar features seen before in orientifolds.

Sinha, Vafa 00

Corrado *et al* **02**

Conclusions and Outlook

The Bremsstrahlung function, the small angle limit of the cusp anomalous dimension, determines many properties of heavy probes coupled to CFTs.

Thanks to localization, the Bremsstrahlung functions of probes in various reps. of N=4 SU(N) SYM can be determined exactly via matrix model computations.

In the regime of validity of SUGRA, these results reduce to functions of $\sqrt{\lambda/N}$, and D-brane probe **computations capture them precisely.** $\left(\frac{1}{2}\right)$ λ/N

Conclusions and Outlook

- *Compute* $B(\lambda, N)$ *for other probes/CFTs.*
- **Exact entanglement entropy of a probe.**
- **Finite mass ?**

Lewkowycz, Maldacena 13

Schwinger efect and critical electric field Semenoff, Zarembo 11 Adding Flavor **Karch, Katz 02**

> $E_c =$ $2\pi m^2$ $\overline{}$ λ

Beyond the vacuum state: modelling impurities, finite μ , finite T? *µ*